Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37373206

RESUMO

For targeted protein panels, the ability to specifically assay post-translational modifications (PTMs) in a quantitative, sensitive, and straightforward manner would substantially advance biological and pharmacological studies. The present study highlights the effectiveness of the Affi-BAMS™ epitope-directed affinity bead capture/MALDI MS platform for quantitatively defining complex PTM marks of H3 and H4 histones. Using H3 and H4 histone peptides and isotopically labelled derivatives, this affinity bead and MALDI MS platform achieves a range of >3 orders of magnitude with a technical precision CV of <5%. Using nuclear cellular lysates, Affi-BAMS PTM-peptide capture resolves heterogeneous histone N-terminal PTMs with as little as 100 µg of starting material. In an HDAC inhibitor and MCF7 cell line model, the ability to monitor dynamic histone H3 acetylation and methylation events is further demonstrated (including SILAC quantification). Affi-BAMS (and its capacity for the multiplexing of samples and target PTM-proteins) thus provides a uniquely efficient and effective approach for analyzing dynamic epigenetic histone marks, which is critical for the regulation of chromatin structure and gene expression.


Assuntos
Histonas , Proteômica , Histonas/metabolismo , Espectrometria de Massas em Tandem , Processamento de Proteína Pós-Traducional , Código das Histonas , Peptídeos/metabolismo , Acetilação
2.
Exp Hematol ; 86: 28-42.e3, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32473295

RESUMO

As important vectors for ectopic protein expression, gene silencing, and progenitor cell barcoding, lentiviruses continue to emerge as versatile research and clinical tools. For studies employing cell types that are relatively resistant to transduction, high-titer lentivirus preparations with low cytotoxicity are required. During lentivirus production, carryover plasmid DNA endotoxins, transfection reagents, damaged packaging cells, and virus concentration procedures are potential sources of cytotoxicity. As an often unevaluated property of lentivirus preparations, cytotoxicity can unwittingly skew estimates of functional titers and complicate interpretations of transduced cell phenotypes. By employing hematopoietic UT7epo cells cultured in erythropoietin (EPO) below maximal dosing, we first define a sensitive flow cytometric bioassay for critically assessing the cytotoxicity (and titers) of lentivirus preparations. Bioassay of custom preparations of research-grade lentiviruses from six commercial sources unexpectedly revealed substantial cytotoxicity (with certain preparations additionally registering titers several log below designated values). To overcome such limiting properties, we further report on unique, efficient workflows for reproducibly preparing and processing high-titer, low-cytotoxicity (HTLC) lentiviruses at research scale. These HTLC lentiviruses reliably transduce peripheral blood hematopoietic stem/progenitor cells (PB-HSPCs) at frequencies ≥40%, with low cytotoxicity. In addition, by employing cyclosporin H (to inhibit IFITM3), PB-HSPCs can be transduced at heightened efficiency with nominal cytotoxicity. Overall, this work provides straightforward approaches to (1) critical assessment of the cytotoxicity of lentivirus preparations; (2) reproducible generation (and concentration) of high-quality lentiviruses via a streamlined workflow; and (3) transduction of PB-HSPCs at benchmark levels with nominal cytotoxicity.


Assuntos
Eritropoetina , Vetores Genéticos , Mobilização de Células-Tronco Hematopoéticas , Lentivirus , Células-Tronco de Sangue Periférico/metabolismo , Transdução Genética , Linhagem Celular , Eritropoetina/biossíntese , Eritropoetina/genética , Humanos , Células-Tronco de Sangue Periférico/citologia
3.
Cell Signal ; 69: 109554, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32027948

RESUMO

The formation of erythroid progenitor cells depends sharply upon erythropoietin (EPO), its cell surface receptor (erythropoietin receptor, EPOR), and Janus kinase 2 (JAK2). Clinically, recombinant human EPO (rhEPO) additionally is an important anti-anemia agent for chronic kidney disease (CKD), myelodysplastic syndrome (MDS) and chemotherapy, but induces hypertension, and can exert certain pro-tumorigenic effects. Cellular signals transduced by EPOR/JAK2 complexes, and the nature of EPO-modulated signal transduction factors, therefore are of significant interest. By employing phospho-tyrosine post-translational modification (p-Y PTM) proteomics and human EPO- dependent UT7epo cells, we have identified 22 novel kinases and phosphatases as novel EPO targets, together with their specific sites of p-Y modification. New kinases modified due to EPO include membrane palmitoylated protein 1 (MPP1) and guanylate kinase 1 (GUK1) guanylate kinases, together with the cytoskeleton remodeling kinases, pseudopodium enriched atypical kinase 1 (PEAK1) and AP2 associated kinase 1 (AAK1). Novel EPO- modified phosphatases include protein tyrosine phosphatase receptor type A (PTPRA), phosphohistidine phosphatase 1 (PHPT1), tensin 2 (TENC1), ubiquitin associated and SH3 domain containing B (UBASH3B) and protein tyrosine phosphatase non-receptor type 18 (PTPN18). Based on PTPN18's high expression in hematopoietic progenitors, its novel connection to JAK kinase signaling, and a unique EPO- regulated PTPN18-pY389 motif which is modulated by JAK2 inhibitors, PTPN18's actions in UT7epo cells were investigated. Upon ectopic expression, wt-PTPN18 promoted EPO dose-dependent cell proliferation, and survival. Mechanistically, PTPN18 sustained the EPO- induced activation of not only mitogen-activated protein kinases 1 and 3 (ERK1/2), AKT serine/threonine kinase 1-3 (AKT), and signal transducer and activator of transcription 5A and 5B (STAT5), but also JAK2. Each effect further proved to depend upon PTPN18's EPO- modulated (p)Y389 site. In analyses of the EPOR and the associated adaptor protein RHEX (regulator of hemoglobinization and erythroid cell expansion), wt-PTPN18 increased high molecular weight EPOR forms, while sharply inhibiting the EPO-induced phosphorylation of RHEX-pY141. Each effect likewise depended upon PTPN18-Y389. PTPN18 thus promotes signals for EPO-dependent hematopoietic cell growth, and may represent a new druggable target for myeloproliferative neoplasms.


Assuntos
Eritropoese , Eritropoetina/metabolismo , Janus Quinase 2/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/fisiologia , Receptores da Eritropoetina/metabolismo , Linhagem Celular , Humanos , Proteômica , Transdução de Sinais
5.
Exp Hematol ; 50: 77-83.e6, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28408238

RESUMO

Podocalyxin (Podxl) is a CD34 orthologue and cell surface sialomucin reported to have roles in renal podocyte diaphragm slit development; vascular cell integrity; and the progression of blood, breast, and prostate cancers. Roles for Podxl during nonmalignant hematopoiesis, however, are largely undefined. We have developed a Vav-Cre Podxl knockout (KO) mouse model, and report on novel roles for Podxl in governing stress myelopoiesis. At steady state, Podxl expression among hematopoietic progenitor cells was low level but was induced by granulocyte colony-stimulating factor (G-CSF) in myeloid progenitors and by thrombopoietin in human stem cells. In keeping with low-level Podxl expression at steady state, Vav-Cre deletion of Podxl did not markedly alter peripheral blood cell levels. A G-CSF challenge in Podxl-KO mice, in contrast, hyperelevated peripheral blood neutrophil and monocyte levels. Podxl-KO also substantially heightened neutrophil levels after 5-fluorouracil myeloablation. These loss-of-function phenotypes were selective, and Podxl-KO did not alter lymphocyte, basophil, or eosinophil levels. Within bone marrow (and after G-CSF challenge), Podxl deletion moderately decreased colony forming units-granulocytes, eyrthrocytes, monocyte/macrophages, megakaryocytes and CD16/32posCD11bpos progenitors but did not affect Gr-1pos cell populations. Notably, Podxl-KO did significantly heighten peripheral blood neutrophil migration capacities. To interrogate Podxl's action mechanisms, a co-immunoprecipitation plus liquid chromatography-mass spectrometry approach was applied using hematopoietic progenitors from G-CSF-challenged mice. Rap1a, a Ras-related small GTPase, was a predominant co-retrieved Podxl partner. In bone marrow human progenitor cells, Podxl-KO led to heightened G-CSF activation of Rap1aGTP, and Rap1aGTP inhibition attenuated Podxl-KO neutrophil migration. Studies have revealed novel roles for Podxl as an important modulator of neutrophil and monocyte formation and of Rap1a activation during stress hematopoiesis.


Assuntos
Mielopoese , Neutrófilos/fisiologia , Sialoglicoproteínas/genética , Estresse Fisiológico , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Ordem dos Genes , Loci Gênicos , Fator Estimulador de Colônias de Granulócitos/farmacologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Camundongos Knockout , Mielopoese/genética , Sialoglicoproteínas/metabolismo , Estresse Fisiológico/genética , Proteínas rap1 de Ligação ao GTP
6.
Exp Hematol ; 49: 48-55.e5, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28062363

RESUMO

In response to anemia, the heightened production of erythropoietin (EPO) can sharply promote erythroid progenitor cell (EPC) formation. Specific mediators of such EPO- accelerated erythropoiesis, however, are not well understood. Presently, we first report that the expression of Trib3 in adult bone marrow EPCs in vivo is nominal at steady state, but strongly activated on EPO challenge. In a knockout mouse model, Trib3 disruption modestly increased steady-state erythrocyte numbers and decreased mean corpuscular volume. Following 5-fluorouracil myeloablation, however, rebound red blood cell production and hemoglobin levels were substantially (and selectively) compromised in Trib3-/- mice versus Trib3+/+ congenic controls. Erythrocytes from 5-fluorouracil-treated Trib3-/- mice additionally were more prone to lysis and exhibited elevated peroxide-induced reactive oxygen species. Ex vivo, the development of CD71posTer119pos erythroblasts from Trib3-/- bone marrow progenitors was attenuated, and this was associated with heightened EPO-dependent Erk1/2 activation and moderately increased Akt activation. For developmentally staged EPCs, gene profiling provided further initial insight into candidate mediators of EPO-induced Trib3 gene expression, including Cebp-beta, Atf4, Egr-1, and Nab1. Overall, Trib3 is indicated to act as a novel EPC-intrinsic governor of stress erythropoiesis.


Assuntos
Medula Óssea/metabolismo , Proteínas de Ciclo Celular/biossíntese , Células Precursoras Eritroides/metabolismo , Eritropoese , Estresse Fisiológico , Animais , Proteínas de Ciclo Celular/genética , Eritrócitos/metabolismo , Eritropoetina/farmacologia , Fluoruracila/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Camundongos , Camundongos Knockout , Proteína Quinase 3 Ativada por Mitógeno/metabolismo
7.
Exp Hematol ; 44(8): 765-769.e1, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27174804

RESUMO

Erythropoiesis-stimulating agents (ESAs) that exert long-acting antianemia effects have been developed recently, but their mechanisms are poorly understood. Analyses reveal unique erythropoietin receptor (EPOR)-binding properties for one such ESA, the synthetic EPOR agonist peginesatide. Compared with recombinant human EPO and darbepoietin, peginesatide exhibited a slow on rate, but sustained EPOR residency and resistant displacement. In EPO-dependent human erythroid progenitor UT7epo cells, culture in peginesatide unexpectedly upmodulated endogenous cell surface EPOR levels with parallel increases in full-length EPOR-68K levels. These unique properties are suggested to contribute to the durable activity of this (and perhaps additional) dimeric peptide hematopoietic growth factor receptor agonist.


Assuntos
Eritropoese , Eritropoetina/metabolismo , Peptídeos/metabolismo , Receptores da Eritropoetina/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Eritropoese/efeitos dos fármacos , Eritropoetina/química , Eritropoetina/farmacologia , Humanos , Cinética , Peptídeos/química , Peptídeos/farmacologia , Ligação Proteica , Multimerização Proteica , Receptores da Eritropoetina/genética , Transdução de Sinais
8.
Expert Opin Ther Targets ; 20(3): 287-301, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26419263

RESUMO

INTRODUCTION: Recombinant human erythropoietin (rhEPO) is a first-line therapeutic for the anemia of chronic kidney disease, cancer chemotherapy, AIDS (Zidovudine therapy), and lower-risk myelodysplastic syndrome. However, rhEPO frequently elevates hypertension, is costly, and may affect cancer progression. Potentially high merit therefore exists for defining new targets for anti-anemia agents within erythropoietin (EPO) and EPO receptor (EPOR) regulatory circuits. AREAS COVERED: EPO production by renal interstitial fibroblasts is subject to modulation by several regulators of hypoxia-inducible factor 2a (HIF2a) including Iron Response Protein-1, prolyl hydroxylases, and HIF2a acetylases, each of which holds potential as anti-anemia drug targets. The cell surface receptor for EPO (EPOR) preassembles as a homodimer, together with Janus Kinase 2 (JAK2), and therefore it remains attractive to develop novel agents that trigger EPOR complex activation (activating antibodies, mimetics, small-molecule agonists). Additionally, certain downstream transducers of EPOR/JAK2 signaling may be druggable, including Erythroferrone (a hepcidin regulator), a cytoprotective Spi2a serpin, and select EPOR-associated protein tyrosine phosphatases. EXPERT OPINION: While rhEPO (and biosimilars) are presently important mainstay erythropoiesis-stimulating agents (ESAs), impetus exists for studies of novel ESAs that fortify HIF2a's effects, act as EPOR agonists, and/or bolster select downstream EPOR pathways to erythroid cell formation. Such agents could lessen rhEPO dosing, side effects, and/or costs.


Assuntos
Anemia/tratamento farmacológico , Desenho de Fármacos , Hematínicos/uso terapêutico , Anemia/etiologia , Anemia/fisiopatologia , Animais , Eritropoese/efeitos dos fármacos , Eritropoetina/farmacologia , Eritropoetina/uso terapêutico , Hematínicos/efeitos adversos , Hematínicos/farmacologia , Humanos , Terapia de Alvo Molecular , Receptores da Eritropoetina/efeitos dos fármacos , Receptores da Eritropoetina/metabolismo , Proteínas Recombinantes
9.
Blood ; 125(23): 3536-41, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-25887776

RESUMO

As essential mediators of red cell production, erythropoietin (EPO) and its cell surface receptor (EPO receptor [EPOR]) have been intensely studied. Early investigations defined basic mechanisms for hypoxia-inducible factor induction of EPO expression, and within erythroid progenitors EPOR engagement of canonical Janus kinase 2/signal transducer and activator of transcription 5 (JAK2/STAT5), rat sarcoma/mitogen-activated protein kinase/extracellular signal-regulated kinase (RAS/MEK/ERK), and phosphatidylinositol 3-kinase (PI3K) pathways. Contemporary genetic, bioinformatic, and proteomic approaches continue to uncover new clinically relevant modulators of EPO and EPOR expression, and EPO's biological effects. This Spotlight review highlights such factors and their emerging roles during erythropoiesis and anemia.


Assuntos
Células Precursoras Eritroides/metabolismo , Eritropoese/fisiologia , Eritropoetina/biossíntese , Regulação da Expressão Gênica/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Receptores da Eritropoetina/biossíntese , Anemia/genética , Anemia/metabolismo , Animais , Células Precursoras Eritroides/citologia , Eritropoetina/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Receptores da Eritropoetina/genética , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
10.
Stem Cells ; 32(9): 2550-6, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24964278

RESUMO

Prime regulation over hematopoietic progenitor cell (HPC) production is exerted by hematopoietins (HPs) and their Janus kinase-coupled receptors (HP-Rs). For HP/HP-R studies, one central challenge in determining specific effects involves the delineation of nonredundant signal transduction factors and their lineage restricted actions. Via loss-of-function studies, we define roles for an HP-regulated Serpina3g/Spi2A intracellular serpin during granulomyelocytic, B-cell, and hematopoietic stem cell (HSC) formation. In granulomyelocytic progenitors, granulocyte macrophage colony stimulating factor (GMCSF) strongly induced Serpina3g expression with Stat5 dependency. Spi2A-knockout (KO) led to 20-fold decreased CFU-GM formation, limited GMCSF-dependent granulocyte formation, and compromised neutrophil survival upon tumor necrosis factor alpha (TNF-α) exposure. In B-cell progenitors, Serpina3g was an interleukin-7 (IL7) target. Spi2A-KO elevated CFU-preB greater than sixfold and altered B-cell formation in competitive bone marrow transplant (BMT), and CpG challenge experiments. In HSCs, Serpina3g/Spi2A expression was also elevated. Spi2A-KO compromised LT-HSC proliferation (as well as lineage(neg) Sca1(pos) Kit(pos) (LSK) cell lysosomal integrity), and skewed LSK recovery post 5-FU. Spi2A therefore functions to modulate HP-regulated immune cell and HSC formation post-5-FU challenge.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Serpinas/metabolismo , Animais , Camundongos
11.
BMC Res Notes ; 7: 345, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24906443

RESUMO

BACKGROUND: DAPK2 is a pro-apoptotic protein kinase that associates with TGFß receptors. The homolog DAPK1 has been shown to mediate apoptosis in kidney injury. Expression databases indicate that DAPK2 is expressed in the kidney, and in this work we investigate the localization of renal DAPK2 expression and its role in the kidney. RESULTS: Immunostaining demonstrates DAPK2 expression in interstitial cells of the renal cortex including PDGFRß-positive pericytes and the CD73-positive erythropoietin-expressing fibroblast population. Tubulointerstitial fibrosis in experimental CKD arises directly from resident interstitial cells, and we therefore evaluated the expression of DAPK2 in the expanded interstitium of mice with kidney disease induced by chronic cisplatin administration. Expanded renal interstitium in these animals was negative for DAPK2 expression, but healthy areas of the kidney in which the tubular interstitium had not expanded expressed DAPK2 at levels similar to the uninjured control. Dapk2 null mice were generated to evaluate if DAPK2 is required for formation of the kidney, or its maintenance in the adult. Kidneys of Dapk2 null mice did not show overt malformations or age-related degeneration, but did show a slight increase in the number of interstitial fibroblasts. Differences were seen between Dapk2 null mice and wild type controls in the response to tubulointerstitial fibrosis caused by chronic cisplatin administration. Although mutant and wild type mice displayed comparable levels of alpha smooth muscle actin, interstitial proliferation and SMAD2 signaling, Dapk2 null mice showed reduced interstitial collagen accumulation. CONCLUSIONS: In the kidney, DAPK2 is strongly and specifically expressed in interstitial cells of the cortex, providing a useful marker for this important cell population. Dapk2 null mice are phenotypically normal under steady state conditions, but display some resistance to extracellular matrix deposition in experimental renal fibrosis indicating that DAPK2 plays a profibrotic role in kidney injury.


Assuntos
Proteínas Quinases Associadas com Morte Celular/metabolismo , Rim/enzimologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/toxicidade , Apoptose , Cisplatino/administração & dosagem , Cisplatino/toxicidade , Proteínas Quinases Associadas com Morte Celular/genética , Rim/citologia , Rim/efeitos dos fármacos , Camundongos , Camundongos Knockout
12.
J Exp Med ; 210(2): 225-32, 2013 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-23319700

RESUMO

Erythropoietin (EPO) and its cell surface receptor (EPOR) are essential for red blood cell production and exert important cytoprotective effects on select vascular, immune, and cancer cells. To discover novel EPO action modes, we profiled the transcriptome of primary erythroid progenitors. We report Serpina3g/Spi2A as a major new EPO/EPOR target for the survival of erythroid progenitors. In knockout mice, loss of Spi2A worsened anemia caused by hemolysis, radiation, or transplantation. EPO-induced erythropoiesis also was compromised. In particular, maturing erythroblasts required Spi2A for cytoprotection, with iron and reactive oxygen species as cytotoxic agents. Spi2A defects were ameliorated by cathepsin-B/L inhibition, and by genetic co-deletion of lysosomal cathepsin B. Pharmacological inhibition of cathepsin B/L enhanced EPO-induced red cell formation in normal mice. Overall, we define an unexpected EPO action mode via an EPOR-Spi2A serpin-cathepsin axis in maturing erythroblasts, with lysosomal cathepsins as novel therapeutic targets.


Assuntos
Catepsinas/antagonistas & inibidores , Eritroblastos/citologia , Eritroblastos/metabolismo , Eritropoese/fisiologia , Eritropoetina/fisiologia , Anemia/genética , Anemia/metabolismo , Animais , Catepsina B/antagonistas & inibidores , Catepsina B/deficiência , Catepsina B/genética , Catepsina L/antagonistas & inibidores , Eritropoese/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos , Camundongos Knockout , Receptores da Eritropoetina/fisiologia , Serpinas/deficiência , Serpinas/genética , Serpinas/fisiologia , Transdução de Sinais , Transcriptoma
13.
PLoS One ; 7(7): e38530, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22808010

RESUMO

Certain concepts concerning EPO/EPOR action modes have been challenged by in vivo studies: Bcl-x levels are elevated in maturing erythroblasts, but not in their progenitors; truncated EPOR alleles that lack a major p85/PI3K recruitment site nonetheless promote polycythemia; and Erk1 disruption unexpectedly bolsters erythropoiesis. To discover novel EPO/EPOR action routes, global transcriptome analyses presently are applied to interrogate EPO/EPOR effects on primary bone marrow-derived CFUe-like progenitors. Overall, 160 EPO/EPOR target transcripts were significantly modulated 2-to 21.8-fold. A unique set of EPO-regulated survival factors included Lyl1, Gas5, Pim3, Pim1, Bim, Trib3 and Serpina 3g. EPO/EPOR-modulated cell cycle mediators included Cdc25a, Btg3, Cyclin-d2, p27-kip1, Cyclin-g2 and CyclinB1-IP-1. EPO regulation of signal transduction factors was also interestingly complex. For example, not only Socs3 plus Socs2 but also Spred2, Spred1 and Eaf1 were EPO-induced as negative-feedback components. Socs2, plus five additional targets, further proved to comprise new EPOR/Jak2/Stat5 response genes (which are important for erythropoiesis during anemia). Among receptors, an atypical TNF-receptor Tnfr-sf13c was up-modulated >5-fold by EPO. Functionally, Tnfr-sf13c ligation proved to both promote proerythroblast survival, and substantially enhance erythroblast formation. The EPOR therefore engages a sophisticated set of transcriptome response circuits, with Tnfr-sf13c deployed as one novel positive regulator of proerythroblast formation.


Assuntos
Eritroblastos/metabolismo , Eritropoese/genética , Isoformas de Proteínas/genética , RNA Mensageiro/genética , Receptores da Eritropoetina/genética , Receptores do Fator de Necrose Tumoral/genética , Transcriptoma , Animais , Medula Óssea/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Eritroblastos/citologia , Eritropoetina/metabolismo , Eritropoetina/farmacologia , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Camundongos , Camundongos Transgênicos , Isoformas de Proteínas/metabolismo , Receptores da Eritropoetina/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais
14.
Blood ; 119(23): 5522-31, 2012 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-22508938

RESUMO

Sprouty proteins are established modifiers of receptor tyrosine kinase (RTK) signaling and play important roles in vasculogenesis, bone morphogenesis, and renal uteric branching. Little is understood, however, concerning possible roles for these molecular adaptors during hematopoiesis. Within erythroid lineage, Spry1 was observed to be selectively and highly expressed at CFU-e to erythroblast stages. In analyses of possible functional roles, an Mx1-Cre approach was applied to conditionally delete Spry1. At steady state, Spry1 deletion selectively perturbed erythroid development and led to reticulocytosis plus heightened splenic erythropoiesis. When challenged by hemolysis, Spry1-null mice exhibited worsened anemia and delayed recovery. During short-term marrow transplantation, Spry1-null donor marrow also failed to efficiently rescue the erythron. In each anemia model, however, hyperexpansion of erythroid progenitors was observed. Spry function depends on phosphorylation of a conserved N-terminal PY motif. Through an LC-MS/MS approach, Spry1 was discovered to be regulated via the erythropoietin receptor (EPOR), with marked EPO-induced Spry1-PY53 phosphorylation observed. When EPOR signaling pathways were analyzed within Spry1-deficient erythroid progenitors, hyperactivation of not only Erk1,2 but also Jak2 was observed. Studies implicate Spry1 as a novel regulator of erythropoiesis during anemia, transducer of EPOR signals, and candidate suppressor of Jak2 activity.


Assuntos
Eritropoese , Eritropoetina/metabolismo , Janus Quinase 2/metabolismo , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Receptores da Eritropoetina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Anemia/genética , Anemia/metabolismo , Animais , Transplante de Medula Óssea , Células Cultivadas , Ativação Enzimática , Eritroblastos/citologia , Eritroblastos/metabolismo , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfoproteínas/genética , Reticulócitos/citologia , Reticulócitos/metabolismo
15.
Exp Hematol ; 40(7): 575-87, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22406924

RESUMO

Peginesatide is a synthetic, PEGylated, peptide-based erythropoiesis-stimulating agent that is designed and engineered to stimulate specifically the erythropoietin receptor dimer that governs erythropoiesis. Peginesatide has a unique structure that consists of a synthetic peptide dimer (with no sequence similarity to erythropoietin) conjugated to a 40-kDa PEG moiety. Peginesatide is being developed for the treatment of anemia associated with chronic kidney disease in dialysis patients. To compare signaling effects of peginesatide to recombinant human erythropoietin (rHuEPO), dose-dependent effects on protein phosphorylation and gene expression were evaluated using phosphoproteomics, quantitative signal transduction analyses, and gene profiling. After stimulation with peginesatide or rHuEPO, cell lysates were prepared from UT-7/EPO cells. Liquid chromatography-tandem mass spectrometry and MesoScale arrays were used to quantify phosphorylation events. Transcriptional changes were analyzed using microarrays and quantitative reverse transcription polymerase chain reaction. Peginesatide and rHuEPO were found to regulate the tyrosine phosphorylation of an essentially equivalent set of protein substrates, and modulate the expression of a similar set of target genes. Consistent with their roles in stimulating erythropoiesis, peginesatide and rHuEPO regulate similar cellular pathways.


Assuntos
Eritropoetina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Peptídeos/farmacologia , Receptores da Eritropoetina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Eritropoese/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Fosforilação/efeitos dos fármacos
16.
PLoS One ; 7(1): e29064, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22253704

RESUMO

Erythropoietin (EPO) and its cell surface receptor (EPOR) are essential for erythropoiesis; can modulate non-erythroid target tissues; and have been reported to affect the progression of certain cancers. Basic studies of EPOR expression and trafficking, however, have been hindered by low-level EPOR occurrence, and the limited specificity of anti-EPOR antibodies. Consequently, these aspects of EPOR biology are not well defined, nor are actions of polycythemia- associated mutated EPOR alleles. Using novel rabbit monoclonal antibodies to intracellular, PY- activated and extracellular EPOR domains, the following properties of the endogenous hEPOR in erythroid progenitors first are unambiguously defined. 1) High- Mr EPOR forms become obviously expressed only when EPO is limited. 2) EPOR-68K plus -70K species sequentially accumulate, and EPOR-70K comprises an apparent cell surface EPOR population. 3) Brefeldin A, N-glycanase and associated analyses point to EPOR-68K as a core-glycosylated intracellular EPOR pool (of modest size). 4) In contrast to recent reports, EPOR inward trafficking is shown (in UT7epo cells, and primary proerythroblasts) to be sharply ligand-dependent. Beyond this, when C-terminal truncated hEPOR-T mutant alleles as harbored by polycythemia patients are co-expressed with the wild-type EPOR in EPO-dependent erythroid progenitors, several specific events become altered. First, EPOR-T alleles are persistently activated upon EPO- challenge, yet are also subject to apparent turn-over (to low-Mr EPOR products). Furthermore, during exponential cell growth EPOR-T species become both over-represented, and hyper-activated. Interestingly, EPOR-T expression also results in an EPO dose-dependent loss of endogenous wild-type EPOR's (and, therefore, a squelching of EPOR C-terminal- mediated negative feedback effects). New knowledge concerning regulated EPOR expression and trafficking therefore is provided, together with new insight into mechanisms via which mutated EPOR-T polycythemia alleles dysregulate the erythron. Notably, specific new tools also are characterized for studies of EPOR expression, activation, action and metabolism.


Assuntos
Alelos , Policitemia/genética , Receptores da Eritropoetina/genética , Receptores da Eritropoetina/metabolismo , Sequência de Aminoácidos , Brefeldina A/farmacologia , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Células Precursoras Eritroides/efeitos dos fármacos , Células Precursoras Eritroides/metabolismo , Células Precursoras Eritroides/patologia , Eritropoetina/farmacologia , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Ligantes , Modelos Biológicos , Dados de Sequência Molecular , Peso Molecular , Mutação/genética , Fenótipo , Transporte Proteico/efeitos dos fármacos , Receptores da Eritropoetina/química
17.
Blood ; 116(24): 5334-46, 2010 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-20810925

RESUMO

Investigations of bone marrow (BM) erythroblast development are important for clinical concerns but are hindered by progenitor cell and tissue availability. We therefore sought to more specifically define dynamics, and key regulators, of the formation of developing BM erythroid cell cohorts. A unique Kit(-)CD71(high)Ter119(-) "stage E2" proerythroblast pool first is described, which (unlike its Kit(+) "stage E1" progenitors, or maturing Ter119(+) "stage E3" progeny) proved to selectively expand ∼ 7-fold on erythropoietin challenge. During short-term BM transplantation, stage E2 proerythroblasts additionally proved to be a predominantly expanded progenitor pool within spleen. This E1→E2→E3 erythroid series reproducibly formed ex vivo, enabling further characterizations. Expansion, in part, involved E1 cell hyperproliferation together with rapid E2 conversion plus E2 stage restricted BCL2 expression. Possible erythropoietin/erythropoietin receptor proerythroblast stage specific events were further investigated in mice expressing minimal erythropoietin receptor alleles. For a hypomorphic erythropoietin receptor-HM allele, major defects in erythroblast development occurred selectively at stage E2. In addition, stage E2 cells proved to interact productively with primary BM stromal cells in ways that enhanced both survival and late-stage development. Overall, findings reveal a novel transitional proerythroblast compartment that deploys unique expansion devices.


Assuntos
Anemia , Proliferação de Células , Eritroblastos/citologia , Células Precursoras Eritroides/citologia , Eritropoetina/farmacologia , Alelos , Animais , Transplante de Medula Óssea , Comunicação Celular/fisiologia , Eritropoese , Camundongos , Camundongos Endogâmicos C57BL , Receptores da Eritropoetina/genética , Baço/citologia , Células Estromais
18.
Curr Opin Hematol ; 17(3): 169-76, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20173635

RESUMO

PURPOSE OF REVIEW: In 1985-1989, erythropoietin (EPO), its receptor (EPOR), and janus kinase 2 were cloned; established to be essential for definitive erythropoiesis; and initially intensely studied. Recently, new impetus, tools, and model systems have emerged to re-examine EPO/EPOR actions, and are addressed in this review. Impetus includes indications that EPO affects significantly more than standard erythroblast survival pathways, the development of novel erythropoiesis-stimulating agents, increasing evidence for EPO/EPOR cytoprotection of ischemically injured tissues, and potential EPO-mediated worsening of tumorigenesis. RECENT FINDINGS: New findings are reviewed in four functional contexts: (pro)erythroblast survival mechanisms, new candidate EPO/EPOR effects on erythroid cell development and new EPOR responses, EPOR downmodulation and trafficking, and novel erythropoiesis-stimulating agents. SUMMARY: As Current Opinion, this monograph seeks to summarize, and provoke, new EPO/EPOR action concepts. Specific problems addressed include: beyond (and before) BCL-XL, what key survival factors are deployed in early-stage proerythroblasts? Are distinct EPO/EPOR signals transduced in stage-selective fashions? Is erythroblast proliferation also modulated by EPO/EPOR signals? What functions are subserved by new noncanonical EPO/EPOR response factors (e.g. podocalyxin like-1, tribbles 3, reactive oxygen species, and nuclear factor kappa B)? What key regulators mediate EPOR inhibition and trafficking? And for emerging erythropoiesis-stimulating agents, to what extent do activities parallel EPOs (or differ in advantageous, potentially complicating ways, or both)?


Assuntos
Eritroblastos/fisiologia , Eritropoetina/metabolismo , Receptores da Eritropoetina/metabolismo , Transdução de Sinais , Animais , Humanos
19.
J Cell Biochem ; 109(2): 363-74, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19950207

RESUMO

The signals that direct pluripotent stem cell differentiation into lineage-specific cells remain largely unknown. Here, we investigated the roles of BMP on vascular progenitor development from human embryonic stem cells (hESCs). In a serum-free condition, hESCs sequentially differentiated into CD34+CD31-, CD34+CD31+, and then CD34-CD31+ cells during vascular cell development. CD34+CD31+ cells contained vascular progenitor population that gives rise to endothelial cells and smooth muscle cells. BMP4 promoted hESC differentiation into CD34+CD31+ cells at an early stage. In contrast, TGFbeta suppressed BMP4-induced CD34+CD31+ cell development, and promoted CD34+CD31- cells that failed to give rise to either endothelial or smooth muscle cells. The BMP-Smad inhibitor, dorsomorphin, inhibited phosphorylation of Smad1/5/8, and blocked hESC differentiation to CD34+CD31+ progenitor cells, suggesting that BMP Smad-dependent signaling is critical for CD34+CD31+ vascular progenitor development. Our findings provide new insight into how pluripotent hESCs differentiate into vascular cells.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula , Células-Tronco Embrionárias/citologia , Neovascularização Fisiológica , Proteínas Smad/metabolismo , Antígenos CD34 , Proteína Morfogenética Óssea 4/antagonistas & inibidores , Proteína Morfogenética Óssea 4/farmacologia , Diferenciação Celular/fisiologia , Linhagem Celular , Meios de Cultura Livres de Soro , Células-Tronco Embrionárias/metabolismo , Células Endoteliais/citologia , Humanos , Músculo Liso Vascular/citologia , Fosforilação , Molécula-1 de Adesão Celular Endotelial a Plaquetas , Pirazóis/farmacologia , Pirimidinas/farmacologia , Transdução de Sinais , Fator de Crescimento Transformador beta/farmacologia
20.
Blood ; 113(20): 4955-62, 2009 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19264917

RESUMO

Anemia as associated with numerous clinical conditions can be debilitating, but frequently can be treated via administration of epoetin-alfa, darbepoietin-alfa, or methoxy-PEG epoetin-beta. Despite the complexity of EPO-EPO receptor interactions, the development of interesting EPO mimetic peptides (EMPs) also has been possible. CNTO 530 is one such novel MIMETIBODY Fc-domain dimeric EMP fusion protein. In a mouse model, single-dose CNTO 530 (unlike epoetin-alfa or darbepoietin-alfa) bolstered red cell production for up to 1 month. In 5-fluorouracil and carboplatin-paclitaxel models, CNTO 530 also protected against anemia with unique efficiency. These actions were not fully accounted for by half-life estimates, and CNTO 530 signaling events therefore were studied. Within primary bone marrow erythroblasts, kinetics of STAT5, ERK, and AKT activation were similar for CNTO 530 and epoetin-alfa. p70S6K activation by CNTO 530, however, was selectively sustained. In vivo, CNTO 530 uniquely stimulated the enhanced formation of PODXL(high)CD71(high) (pro)erythroblasts at frequencies multifold above epoetin-alfa or darbepoietin-alfa. CNTO 530 moreover supported the sustained expansion of a bone marrow-resident Kit(neg)CD71(high)Ter119(neg) progenitor pool. Based on these distinct erythropoietic and EPOR signaling properties, CNTO 530 holds excellent promise as a new EPO mimetic.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Eritroblastos/efeitos dos fármacos , Eritropoetina/análogos & derivados , Hematínicos/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Anemia/patologia , Animais , Células da Medula Óssea/fisiologia , Contagem de Células , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Eritroblastos/fisiologia , Eritropoese/efeitos dos fármacos , Eritropoetina/química , Feminino , Hematínicos/química , Camundongos , Camundongos Endogâmicos C57BL , Mimetismo Molecular , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/química , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA