Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Int J Mol Sci ; 24(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37373007

RESUMO

Canine osteosarcoma (OS) is an aggressive bone tumor with high metastatic potential and poor prognosis, mainly due to metastatic disease. Nanomedicine-based agents can be used to improve both primary and metastatic tumor treatment. Recently, gold nanoparticles were shown to inhibit different stages of the metastatic cascade in various human cancers. Here, we assessed the potential inhibitory effect of the glutathione-stabilized gold nanoparticles (Au-GSH NPs) on canine OS cells extravasation, utilizing the ex ovo chick embryo chorioallantoic membrane (CAM) model. The calculation of cells extravasation rates was performed using wide-field fluorescent microscopy. Transmission electron microscopy and Microwave Plasma Atomic Emission Spectroscopy revealed Au-GSH NPs absorption by OS cells. We demonstrated that Au-GSH NPs are non-toxic and significantly inhibit canine OS cells extravasation rates, regardless of their aggressiveness phenotype. The results indicate that Au-GSH NPs can act as a possible anti metastatic agent for OS treatment. Furthermore, the implemented CAM model may be used as a valuable preclinical platform in veterinary medicine, such as testing anti-metastatic agents.


Assuntos
Neoplasias Ósseas , Nanopartículas Metálicas , Osteossarcoma , Embrião de Galinha , Animais , Cães , Humanos , Galinhas , Ouro/farmacologia , Ouro/química , Membrana Corioalantoide/patologia , Nanopartículas Metálicas/química , Neoplasias Ósseas/patologia , Glutationa , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia
2.
Biomater Adv ; 139: 213006, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35882153

RESUMO

A topical application of antibiotic-loaded wound dressings is recommended only for chronically infected wounds with poor vascularization. Thus, more often dressing materials loaded with antibacterial metal ions are produced. In turn, gentamicin sponges are commonly used to prevent surgical site infections. The aim of this study was to produce curdlan-based biomaterials enriched with gentamicin and zinc (Zn)-doped nano-hydroxyapatite to prevent wound and surgical site infections. Developed biomaterials were subjected to basic microstructural characterization, cytotoxicity test against human skin fibroblasts (BJ cell line), and comprehensive microbiological experiments using Staphylococcus aureus and Pseudomonas aeruginosa strains. To evaluate the in vivo healing capacity of the developed biomaterials, severely infected chronic wound in a veterinary patient was treated with the use of gentamicin-loaded dressing. Fabricated biomaterials were characterized by a highly porous microstructure with high plasma absorption capacity (approx. 7 mL/g for Zn-loaded biomaterial and 13 mL/g for gentamicin-enriched dressing) and optimal water vapor transmission rate (approx. 1700 g/m2/day). Due to the presence of bioceramics, material containing Zn showed slightly higher compressive strength (0.37 MPa) and Young's modulus (3.33 MPa) values compared to gentamicin-loaded biomaterial (0.12 MPa and 1.29 MPa, respectively). Gentamicin-enriched biomaterial showed burst release of the drug within the first 5 h, while, the zinc-loaded biomaterial exhibited a constant gradual release of the zinc ions. Conducted assays showed that developed biomaterials were non-toxic against human skin fibroblasts (cell viability in the range of 71-95 %) and revealed strong bactericidal activity (99.9 % reduction in the number of viable bacterial CFUs in direct contact test) against S. aureus. In the case of P. aeruginosa, only gentamicin-loaded biomaterial exhibited bactericidal effect. Additionally, biomaterials had the ability to uptake, lock in, and kill bacteria within their gel structure, enabling the cleansing of the wound bed at every dressing change. Finally, the treatment of severely infected wound in veterinary patient confirmed the effectiveness of gentamicin-loaded biomaterial. Biomaterial enriched with gentamicin possesses great potential to be used as a dressing material or sponge for the treatment of chronically infected wounds and surgical site infections. In turn, the zinc-loaded biomaterial may be used as a wound dressing to reduce and prevent microbial contamination.


Assuntos
Materiais Biocompatíveis , Gentamicinas , Antibacterianos/farmacologia , Bandagens , Materiais Biocompatíveis/farmacologia , Durapatita/farmacologia , Gentamicinas/farmacologia , Humanos , Pseudomonas aeruginosa , Staphylococcus aureus , Infecção da Ferida Cirúrgica/tratamento farmacológico , Zinco/farmacologia , beta-Glucanas
3.
Biomater Adv ; 139: 213011, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35882155

RESUMO

Development of bone scaffolds that are nontoxic to eukaryotic cells, while revealing bactericidal activity still remains a huge challenge for the scientific community. It should be noted that only bacteriostatic (the ability of the biomaterial to inhibit the growth of bacteria) and bactericidal (the ability to kill >99.9 % bacteria) activities have clinical importance. Unfortunately, many material scientists are confused with the microbiological definition of antibacterial action and consider biomaterials causing reduction in colony-forming units (CFUs) by 50-80 % as promising antibacterial implants. The aim of this study was to synthesize three variants of Zn-doped hydroxyapatite (HA) nanopowder, which were characterized by different content of Zn2+ and served as a powder phase for the production of novel macroporous chitosan/agarose/nanoHA biomaterials with high antibacterial activity. Within this study, it was proven that the scaffold with a low zinc content (doping level 0.03 mol for 1 mol of HA; 0.2 wt%) revealed the gradual and slow release of the Zn2+ ions, preventing against accumulation of high and toxic concentration of therapeutic agents and providing prolonged antibacterial activity. Moreover, developed biomaterial was nontoxic to human osteoblasts and showed anti-biofilm properties, bactericidal activity (> 99.9 % of bacteria killed) against Staphylococcus epidermidis and Escherichia coli, significant antibacterial activity against Staphylococcus aureus (98.5 % of bacteria killed), and also bacteriostatic activity against Pseudomonas aeruginosa. Thus, the developed Zn-doped HA-based bone scaffold has excellent antibacterial properties without toxicity against eukaryotic cells, being a promising biomaterial for biomedical applications to repair bone defects and prevent post-surgery infections.


Assuntos
Antibacterianos , Zinco , Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia , Biofilmes , Durapatita/farmacologia , Escherichia coli , Humanos , Staphylococcus epidermidis , Zinco/farmacologia
4.
Pancreatology ; 22(5): 644-650, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35589512

RESUMO

BACKGROUND: Current guidelines provide weak recommendations to treat small (<2 cm) non-functional pancreatic neuroendocrine tumors with low Ki-67 proliferation index either by resection or clinical follow-up. However, there is a lack of consensus regarding the minimal size of pNET, which allows EUS-guided biopsy with high enough diagnostic accuracy for stratification. METHODS: We conducted a retrospective, bicentric analysis of patients who had undergone EUS-guided pNET sampling in two tertiary care Endoscopy Units in Germany and Poland. Using a recursive partitioning of the tree-aided model, we aimed to stratify the probability of successful EUS-guided biopsy of pNET lesions according to their size and location. RESULTS: In our pNET cohort, successful histological confirmation of a pNET diagnosis was achieved in 59/69 (85.5%) cases at the initial EUS-guided biopsy. In 41 patients with a pNET size less than 18.5 mm, the EUS-guided first biopsy was successful in 90.2%. In 16 of these patients with smaller lesions, EUS-guided sampling was 100% in very small (less than 11 mm) and extremely small lesions (less than 8 mm). The biopsy success rate was 100% in tail lesions in the size range between ≥5.95 and <8.1 mm but only 33.3% independent of the investigator in pancreatic head or body, with an error rate of 11.2% CONCLUSION: Using a recursive partitioning of the tree-aided stratification model, we demonstrate for the first time that in balancing risks and benefits, very small pNETs (<1 cm) in the tail of the pancreas should be sampled under EUS-guidance.


Assuntos
Tumores Neuroectodérmicos Primitivos , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Aspiração por Agulha Fina Guiada por Ultrassom Endoscópico , Humanos , Tumores Neuroendócrinos/patologia , Neoplasias Pancreáticas/patologia , Estudos Retrospectivos
5.
Cancers (Basel) ; 14(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35205647

RESUMO

Silver salts and azole derivatives are well known for their antimicrobial properties. Recent evidence has demonstrated also their cytotoxic and genotoxic potential toward both normal and cancer cells. Still, little is known about the action of complexes of azoles with silver(I) salts. Thus, the goal of the study was to compare the chemical, cytotoxic and antimicrobial properties of metronidazole complexes with silver(I) nitrate and silver(I) sulfate to metronidazole and pure silver(I) salts. We synthetized a novel complex, [Ag(MTZ)2]2SO4, and confirmed its chemical structure and properties using 1H and 13C NMR spectroscopy and X-Ray, IR and elemental analysis. To establish the stability of complexes [Ag(MTZ)2NO3] and [Ag(MTZ)2]2SO4, they were exposed to daylight and UV-A rays and were visually assessed. Their cytotoxicity toward human cancer cells (HepG2, Caco-2) and mice normal fibroblasts (Balb/c 3T3 clone A31) was determined by MTT, NRU, TPC and LDH assays. The micro-dilution broth method was used to evaluate their antimicrobial properties against Gram-positive and Gram-negative bacteria. A biofilm eradication study was also performed using the crystal violet method and confocal laser scanning microscopy. The photo-stability of the complexes was higher than silver(I) salts. In human cancer cells, [Ag(MTZ)2]2SO4 was more cytotoxic than Ag2SO4 and, in turn, AgNO3 was more cytotoxic than [Ag(MTZ)2NO3]. For Balb/c 3T3 cells, Ag2SO4 was more cytotoxic than [Ag(MTZ)2]2SO4, while the cytotoxicity of AgNO3 and [Ag(MTZ)2NO3] was similar. Metronidazole in the tested concentration range was non-cytotoxic for both normal and cancer cells. The complexes showed increased bioactivity against aerobic and facultative anaerobic bacteria when compared to metronidazole. For the majority of the tested bacterial strains, the silver(I) salts and complexes showed a higher antibacterial activity than MTZ; however, some bacterial strains presented the reverse effect. Our results showed that silver(I) complexes present higher photo-stability, cytotoxicity and antimicrobial activity in comparison to MTZ and, to a certain extent, to silver(I) salts.

6.
Molecules ; 26(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201296

RESUMO

Osteosarcoma (OSA) is the most common malignant bone neoplasia in humans and dogs. In dogs, treatment consists of surgery in combination with chemotherapy (mostly carboplatin and/or doxorubicin (Dox)). Chemotherapy is often rendered ineffective by multidrug resistance. Previous studies have revealed that Dox conjugated with 4 nm glutathione-stabilized gold nanoparticles (Au-GSH-Dox) enhanced the anti-tumor activity and cytotoxicity of Dox in Dox-resistant feline fibrosarcoma cell lines exhibiting high P-glycoprotein (P-gp) activity. The present study investigated the influence of Au-GSH-Dox on the canine OSA cell line D17 and its relationship with P-gp activity. A human Dox-sensitive OSA cell line, U2OS, served as the negative control. Au-GSH-Dox, compared to free Dox, presented a greater cytotoxic effect on D17 (IC50 values for Au-GSH-Dox and Dox were 7.9 µg/mL and 15.2 µg/mL, respectively) but not on the U2OS cell line. All concentrations of Au-GSH (ranging from 10 to 1000 µg/mL) were non-toxic in both cell lines. Inhibition of the D17 cell line with 100 µM verapamil resulted in an increase in free Dox but not in intracellular Au-GSH-Dox. The results indicate that Au-GSH-Dox may act as an effective drug in canine OSA by bypassing P-gp.


Assuntos
Doxorrubicina/química , Doxorrubicina/farmacologia , Glutationa/química , Ouro/química , Nanopartículas Metálicas/química , Osteossarcoma/tratamento farmacológico , Adolescente , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Criança , Cães , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos
7.
Mater Sci Eng C Mater Biol Appl ; 124: 112068, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33947561

RESUMO

Effective management of chronic wounds with excessive exudate may be challenging for medical doctors. Over the years, there has been an increasing interest in the engineering of biomaterials, focusing on the development of polymer-based wound dressings to accelerate the healing of exuding wounds. The aim of this study was to use curdlan, which is known to support wound healing, as a base for the production of superabsorbent hybrid biomaterials (curdlan/agarose and curdlan/chitosan) with the intended use as wound dressings for highly exuding wound management. To evaluate the biomedical potential of the fabricated curdlan-based biomaterials, they were subjected to a comprehensive assessment of their microstructural, physicochemical, and biological properties. The obtained results showed that foam-like biomaterials with highly porous structure (66-77%) transform into soft gel after contact with the wound fluid, acting as typical hydrocolloid dressings. Novel biomaterials have the superabsorbent ability (1 g of the biomaterial absorbs approx. 15 ml of exudate) with horizontal wicking direction while keeping dry edges, and show water vapor transmission rate of approx. 1700-1800 g/m2/day which is recommended for optimal wound healing. Moreover, they are stable in the presence of collagenases, but prone to biodegradation in lysozyme solution (simulated infected wound environment). Importantly, the developed biomaterials are non-toxic and their surface hinders fibroblast attachment, which is essential during dressing changes to avoid damage to newly formed tissues in the wound bed. All mentioned features make the developed biomaterials promising candidates to be used as the wound dressings for the management of chronic wounds with moderate to high exudate.


Assuntos
Bandagens , beta-Glucanas , Coloides , Exsudatos e Transudatos
9.
Mater Sci Eng C Mater Biol Appl ; 119: 111634, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33321672

RESUMO

Modern bone tissue engineering is based on the use of implants in the form of biomaterials, which are used as scaffolds for osteoprogenitor or stem cells. The task of the scaffolds is to temporarily sustain the function, proliferation and differentiation of bone tissue to enable its regeneration. The aim of this work is to use the macro ATR-FTIR spectroscopic imaging for analysis of the ceramic-based biomaterial (chitosan/ß-1,3-glucan/hydroxyapatite). Specifically, during long-term culture of mesenchymal cells derived from adipose tissue (ADSCs) and bone marrow (BMDSCs) on the surface of scaffold. Infrared spectroscopy allows the acquisition of information on both the organic and inorganic parts of the tested composite. This innovative spectroscopic approach proved to be very suitable for studying the formation of new bone tissue and ECM components, sample staining and demineralization are not required and consequently the approach is rapid and cost-effective. The novelty of this study focuses on the innovatory use of ATR-FTIR imaging to evaluate the molecular structure and maturity of collagen as well as mineral matrix formation and crystallization in the context of bone regenerative medicine. Our research has shown that the biomaterial investigated on this work facilitates the formation of valid bone ECM of the stem cells types studied, as a result of the synthesis of type I collagen and mineral content deposition. Nevertheless, ADSC cells have been proven to produce a greater amount of collagen with a lower content of helical secondary structures, at the same time showing a higher mineralization intensity compared to BMDSC cells. Considering the above results, it could be stated that the developed scaffold is a promising material for biomedical applications, including modification of bone implants to increase their biocompatibility.


Assuntos
Durapatita , Células-Tronco Mesenquimais , Osso e Ossos , Diferenciação Celular , Células Cultivadas , Colágeno , Humanos , Osteogênese , Espectroscopia de Infravermelho com Transformada de Fourier , Engenharia Tecidual , Alicerces Teciduais
10.
Int J Mol Sci ; 21(13)2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32635182

RESUMO

Low-temperature atmospheric pressure plasma was demonstrated to have an ability to generate different reactive oxygen and nitrogen species (RONS), showing wide biological actions. Within this study, mesoporous silica nanoparticles (NPs) and FexOy/NPs catalysts were produced and embedded in the polysaccharide matrix of chitosan/curdlan/hydroxyapatite biomaterial. Then, basic physicochemical and structural characterization of the NPs and biomaterials was performed. The primary aim of this work was to evaluate the impact of the combined action of cold nitrogen plasma and the materials produced on proliferation and osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells (ADSCs), which were seeded onto the bone scaffolds containing NPs or FexOy/NPs catalysts. Incorporation of catalysts into the structure of the biomaterial was expected to enhance the formation of plasma-induced RONS, thereby improving stem cell behavior. The results obtained clearly demonstrated that short-time (16s) exposure of ADSCs to nitrogen plasma accelerated proliferation of cells grown on the biomaterial containing FexOy/NPs catalysts and increased osteocalcin production by the cells cultured on the scaffold containing pure NPs. Plasma activation of FexOy/NPs-loaded biomaterial resulted in the formation of appropriate amounts of oxygen-based reactive species that had positive impact on stem cell proliferation and at the same time did not negatively affect their osteogenic differentiation. Therefore, plasma-activated FexOy/NPs-loaded biomaterial is characterized by improved biocompatibility and has great clinical potential to be used in regenerative medicine applications to improve bone healing process.


Assuntos
Substitutos Ósseos/química , Células-Tronco Mesenquimais/citologia , Alicerces Teciduais/química , Células 3T3 , Animais , Técnicas de Cultura de Células/métodos , Proliferação de Células , Células Cultivadas , Compostos Férricos , Humanos , Teste de Materiais , Camundongos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Nanopartículas/ultraestrutura , Nitrogênio , Osteoblastos/citologia , Osteogênese , Gases em Plasma , Dióxido de Silício , Engenharia Tecidual
11.
Cells ; 9(5)2020 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-32397594

RESUMO

The treatment of chronic wounds is still a meaningful challenge to physicians. The aim of this work was to produce vitamin C-enriched chitosan/agarose (CHN/A) film that could serve as potential artificial skin substitute for chronic wound treatment. The biomaterial was fabricated by a newly developed and simplified method via mixing acidic chitosan solution with alkaline agarose solution that allowed to obtain slightly acidic pH (5.97) of the resultant material, which is known to support skin regeneration. Vitamin C was immobilized within the matrix of the film by entrapment method during production process. Produced films (CHN/A and CHN/A + vit C) were subjected to comprehensive evaluation of cellular response with the use of human skin fibroblasts, epidermal keratinocytes, and macrophages. It was demonstrated that novel biomaterials support adhesion and growth of human skin fibroblasts and keratinocytes, have ability to slightly reduce transforming growth factor-beta 1 (TGF-ß1) (known to be present at augmented levels in the epidermis of chronic wounds), and increase platelet-derived growth factor-BB (PDGF-BB) secretion by the cells. Nevertheless, addition of vitamin C to the biomaterial formulation does not significantly improve its biological properties due to burst vitamin release profile. Obtained results clearly demonstrated that produced CHN/A film has great potential to be used as cellular dermal, epidermal, or dermo-epidermal graft pre-seeded with human skin cells for chronic wound treatment.


Assuntos
Ácido Ascórbico/farmacologia , Quitosana/química , Sefarose/química , Pele Artificial , Cicatrização/efeitos dos fármacos , Materiais Biocompatíveis/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colágeno Tipo I/metabolismo , Liberação Controlada de Fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Fibroblastos/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/enzimologia , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Metaloproteinases da Matriz/metabolismo
12.
Int J Med Sci ; 17(6): 824-833, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32218704

RESUMO

Due to the high toxicity of currently used chemotherapeutics, novel methods of cancer treatment are needed. Gold nanoparticles (AuNPs) seem to be an interesting alternative due to penetration through biological membranes and systemic barriers. AuNPs as carriers of chemotherapeutics allow for reduced concentrations whilst maintaining the expected effect, and thus reducing the costs of therapy and adverse effects. We synthesized AuNPs stabilized with reduced glutathione (GSH) and conjugated with doxorubicin (DOX), gemcitabine (GEM) or cytarabine (CTA). This is the first study in which cytarabine-AuNPs were synthesized and characterized. Transmission electron microscopy (TEM), thermogravimetric analysis (TGA), nuclear magnetic resonance spectroscopy (NMR) and high-performance liquid chromatography (HPLC) were used to chemically characterize obtained nanoparticles. Antitumor activity and safety of application were assessed by MTT assay in in vitro model (human osteosarcoma cells -143B, human osteoblast- hFOB1.19, breast cancer cells - MCF7, breast epithelial cells - MCF10A, pancreatic cancer cells - PANC-1, and pancreatic cells - hTERT-HPNE cells). We have shown that cellular response varies according to the type and concentration of AuNPs. At some concentrations, we were able to show selective cytotoxicity of our AuNPs conjugates only to cancer cell lines. Synthesized nanoparticles were more cytotoxic to tumor cell lines than chemotherapeutics alone.


Assuntos
Glutationa/farmacologia , Ouro/química , Nanopartículas Metálicas/química , Neoplasias/tratamento farmacológico , Cromatografia Líquida de Alta Pressão , Citarabina/química , Citarabina/farmacologia , Desoxicitidina/análogos & derivados , Desoxicitidina/química , Desoxicitidina/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacologia , Glutationa/química , Ouro/efeitos adversos , Humanos , Células MCF-7 , Nanopartículas Metálicas/efeitos adversos , Microscopia Eletrônica de Transmissão , Neoplasias/genética , Neoplasias/patologia , Osteoblastos/efeitos dos fármacos , Telomerase/química , Gencitabina
13.
HLA ; 92 Suppl 2: 42-46, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30168290

RESUMO

HLA are functional in cancer immunosurveillance in adaptive and innate immunity pathways. In unrelated hematopoietic stem cell transplantation (HSCT) in 688 patients with hematological malignancies we compared antitumor efficacy of transplant in three models including the level of: (a) donor-recipient HLA class I mismatch, (b) KIR-ligand mismatch, (c) post-transplant cognate HLA:KIR pairing. The effects were directly compared in multivariate models with backward elimination including all three effects in initial model. In final multivariate model HLA mismatch and KIR-ligand mismatch levels were eliminated and HLA:KIR-dependent NK cell licensing effect remained independent prognostic factor for DFS, relapse/progression incidence, and overall survival (OS). These results suggested that NK cell licensing via cognate HLA:KIR pairs is primarily functional in cancer immunosurveillance in HSCT.


Assuntos
Doença Enxerto-Hospedeiro/diagnóstico , Neoplasias Hematológicas/diagnóstico , Transplante de Células-Tronco Hematopoéticas/mortalidade , Antígenos de Histocompatibilidade Classe I/imunologia , Modelos Imunológicos , Receptores KIR/imunologia , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Expressão Gênica , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/mortalidade , Doença Enxerto-Hospedeiro/patologia , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/mortalidade , Neoplasias Hematológicas/patologia , Antígenos de Histocompatibilidade Classe I/genética , Teste de Histocompatibilidade , Humanos , Lactente , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Masculino , Pessoa de Meia-Idade , Agonistas Mieloablativos/uso terapêutico , Receptores KIR/genética , Recidiva , Análise de Sobrevida , Condicionamento Pré-Transplante/métodos , Transplante Homólogo , Doadores não Relacionados
14.
Int J Mol Sci ; 19(4)2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29596317

RESUMO

Feline injection site sarcomas (FISS) are malignant skin tumors with high recurrence rates despite the primary treatment of radical surgical resections. Adjunctive radiotherapy or chemotherapy with doxorubicin is mostly ineffective. Cellular and molecular causes of multidrug resistance, specific physio-chemical properties of solid tumors impairing drug transport, and the tumor microenvironment have been indicated for causing standard chemotherapy failure. Gold nanoparticles are promising imaging tools, nanotherapeutics, and drug delivery systems (DDS) for chemotherapeutics, improving drug transport within solid tumors. This study was conducted to assess the distribution of 4-nm glutathione-stabilized gold nanoparticles in FISS and their influence on kidney and liver parameters in nude mice. The role of gold nanoparticles as a doxorubicin DDS in FISS was examined to determine the potential reasons for failure to translate results from in vitro to in vivo studies. Grade III tumors characterized by a large area of necrosis at their core displayed positive immuneexpression of tumor-associated macrophages (TAM) at both the periphery and within the tumor core near the area of necrosis. Gold nanoparticles did not cause necrosis at the injection site and had no negative effect on liver and kidney parameters in nude mice. Gold nanoparticles accumulated in the tumor core and at the periphery and co-internalized with TAM-an important observation and potential therapeutic target warranting further investigation. The large area of necrosis and high immunoexpression of TAM, indicating "pro-tumor macrophages", may be responsible for FISS tumor progression and therapeutic failure. However, further studies are required to test this hypothesis.


Assuntos
Antibióticos Antineoplásicos , Doxorrubicina , Sistemas de Liberação de Medicamentos/métodos , Glutationa , Ouro , Nanopartículas Metálicas , Sarcoma , Neoplasias Cutâneas , Animais , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Glutationa/química , Glutationa/farmacocinética , Glutationa/farmacologia , Ouro/química , Ouro/farmacologia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos , Camundongos Nus , Sarcoma/tratamento farmacológico , Sarcoma/metabolismo , Sarcoma/patologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Oncotarget ; 9(4): 4675-4697, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29435134

RESUMO

Pancreatic ductal adenocarcinoma, with the high resistance to chemotherapeutic agents, remains the fourth leading cause of cancer-death in the world. Due to the wide range of biological activity and unique properties, silver nanoparticles (AgNPs) are indicated as agents with potential to overcome barriers involved in chemotherapy failure. Therefore, in our study we decided to assess the ability of AgNPs to kill pancreatic cancer cells, and then to identify the molecular mechanism underlying this effect. Moreover, we evaluated the cytotoxicity of AgNPs against non-tumor cell of the same tissue (hTERT-HPNE cells) for comparison. Our results indicated that AgNPs with size of 2.6 and 18 nm decreased viability, proliferation and caused death of pancreatic cancer cells in a size- and concentration-dependent manner. Ultrastructural analysis identified that cellular uptake of AgNPs resulted in apoptosis, autophagy, necroptosis and mitotic catastrophe. These alterations were associated with increased pro-apoptotic protein Bax and decreased level of anti-apoptotic protein Bcl-2. Moreover, AgNPs significantly elevated the level of tumor suppressor p53 protein as well as necroptosis- and autophagy-related proteins: RIP-1, RIP-3, MLKL and LC3-II, respectively. In addition, we found that PANC-1 cells were more vulnerable to AgNPs-induced cytotoxicity compared to pancreatic non-tumor cells. In conclusion, AgNPs by inducing mixed type of programmed cell death in PANC-1 cells, could provide a new therapeutic strategy to overcome chemoresistance in one of the deadliest human cancer.

16.
ACS Nano ; 11(9): 9084-9092, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28742318

RESUMO

Cells can sense and respond to changes in the topographical, chemical, and mechanical information in their environment. Engineered substrates are increasingly being developed that exploit these physical attributes to direct cell responses (most notably mesenchymal stem cells) and therefore control cell behavior toward desired applications. However, there are very few methods available for robust and accurate modeling that can predict cell behavior prior to experimental evaluations, and this typically means that many cell test iterations are needed to identify best material features. Here, we developed a unifying computational framework to create a multicomponent cell model, called the "virtual cell model" that has the capability to predict changes in whole cell and cell nucleus characteristics (in terms of shape, direction, and even chromatin conformation) on a range of cell substrates. Modeling data were correlated with cell culture experimental outcomes in order to confirm the applicability of the virtual cell model and demonstrating the ability to reflect the qualitative behavior of mesenchymal stem cells. This may provide a reliable, efficient, and fast high-throughput approach for the development of optimized substrates for a broad range of cellular applications including stem cell differentiation.


Assuntos
Simulação por Computador , Células-Tronco Mesenquimais/citologia , Modelos Biológicos , Materiais Biocompatíveis/química , Fenômenos Biomecânicos , Técnicas de Cultura de Células , Forma Celular , Elasticidade , Humanos , Propriedades de Superfície , Alicerces Teciduais/química
17.
Molecules ; 22(2)2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28208720

RESUMO

Feline injection-site sarcomas are malignant skin tumours with a high local recurrence rate, ranging from 14% to 28%. The treatment of feline injection-site sarcomas includes radical surgery, radiotherapy and/or chemotherapy. In our previous study it has been demonstrated that doxorubicin conjugated to glutathione-stabilized gold nanoparticles (Au-GSH-Dox) has higher cytotoxic effects than free doxorubicin for feline fibrosarcoma cell lines with high glycoprotein P activity (FFS1, FFS3). The aim of the present study was to assess the effectiveness of intratumoural injection of Au-GSH-Dox on the growth of tumours from the FFS1 and FFS3 cell lines on chick embryo chorioallantoic membrane. This model has been utilized both in human and veterinary medicine for preclinical oncological studies. The influence of intratumoural injections of Au-GSH-Dox, glutathione-stabilized gold nanoparticles and doxorubicin alone on the Ki-67 proliferation marker was also checked. We demonstrated that the volume ratio of tumours from the FFS1 and FFS3 cell lines was significantly (p < 0.01) decreased after a single intratumoural injection of Au-GSH-Dox, which confirms the positive results of in vitro studies and indicates that Au-GSH-Dox may be a potent new therapeutic agent for feline injection-site sarcomas.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Membrana Corioalantoide/patologia , Doxorrubicina/administração & dosagem , Glutationa , Ouro , Nanopartículas Metálicas , Sarcoma/patologia , Animais , Biomarcadores , Gatos , Linhagem Celular Tumoral , Embrião de Galinha , Modelos Animais de Doenças , Glutationa/química , Ouro/química , Injeções Intralesionais , Nanopartículas Metálicas/química , Sarcoma/tratamento farmacológico , Sarcoma/metabolismo , Carga Tumoral/efeitos dos fármacos
18.
J Cell Sci ; 130(1): 177-189, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27505896

RESUMO

The importance of context in regulation of gene expression is now an accepted principle; yet the mechanism by which the microenvironment communicates with the nucleus and chromatin in healthy tissues is poorly understood. A functional role for nuclear and cytoskeletal architecture is suggested by the phenotypic differences observed between epithelial and mesenchymal cells. Capitalizing on recent advances in cryogenic techniques, volume electron microscopy and super-resolution light microscopy, we studied human mammary epithelial cells in three-dimensional (3D) cultures forming growth-arrested acini. Intriguingly, we found deep nuclear invaginations and tunnels traversing the nucleus, encasing cytoskeletal actin and/or intermediate filaments, which connect to the outer nuclear envelope. The cytoskeleton is also connected both to other cells through desmosome adhesion complexes and to the extracellular matrix through hemidesmosomes. This finding supports a physical and/or mechanical link from the desmosomes and hemidesmosomes to the nucleus, which had previously been hypothesized but now is visualized for the first time. These unique structures, including the nuclear invaginations and the cytoskeletal connectivity to the cell nucleus, are consistent with a dynamic reciprocity between the nucleus and the outside of epithelial cells and tissues.


Assuntos
Técnicas de Cultura de Células/métodos , Estruturas do Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Imageamento Tridimensional , Actinas/metabolismo , Biomimética , Mama/citologia , Adesão Celular , Comunicação Celular , Pontos de Checagem do Ciclo Celular , Estruturas do Núcleo Celular/ultraestrutura , Citoesqueleto/ultraestrutura , Desmossomos/metabolismo , Desmossomos/ultraestrutura , Células Epiteliais/ultraestrutura , Espaço Extracelular/metabolismo , Feminino , Humanos , Queratinas/metabolismo , Microscopia de Fluorescência , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestrutura
20.
PLoS One ; 10(4): e0124955, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25928423

RESUMO

BACKGROUND: Feline injection-site sarcomas are malignant skin tumors of mesenchymal origin, the treatment of which is a challenge for veterinary practitioners. Methods of treatment include radical surgery, radiotherapy and chemotherapy. The most commonly used cytostatic drugs are cyclophosphamide, doxorubicin and vincristine. However, the use of cytostatics as adjunctive treatment is limited due to their adverse side-effects, low biodistribution after intravenous administration and multidrug resistance. Colloid gold nanoparticles are promising drug delivery systems to overcome multidrug resistance, which is a main cause of ineffective chemotherapy treatment. The use of colloid gold nanoparticles as building blocks for drug delivery systems is preferred due to ease of surface functionalization with various molecules, chemical stability and their low toxicity. METHODS: Stability and structure of the glutathione-stabilized gold nanoparticles non-covalently modified with doxorubicin (Au-GSH-Dox) was confirmed using XPS, TEM, FT-IR, SAXRD and SAXS analyses. MTT assay, Annexin V and Propidium Iodide Apoptosis assay and Rhodamine 123 and Verapamil assay were performed on 4 feline fibrosarcoma cell lines (FFS1WAW, FFS1, FFS3, FFS5). Statistical analyses were performed using Graph Pad Prism 5.0 (USA). RESULTS: A novel approach, glutathione-stabilized gold nanoparticles (4.3 +/- 1.1 nm in diameter) non-covalently modified with doxorubicin (Au-GSH-Dox) was designed and synthesized. A higher cytotoxic effect (p<0.01) of Au-GSH-Dox than that of free doxorubicin has been observed in 3 (FFS1, FFS3, FFS1WAW) out of 4 feline fibrosarcoma cell lines. The effect has been correlated to the activity of glycoprotein P (main efflux pump responsible for multidrug resistance). CONCLUSIONS: The results indicate that Au-GSH-Dox may be a potent new therapeutic agent to increase the efficacy of the drug by overcoming the resistance to doxorubicin in feline fibrosarcoma cell lines. Moreover, as doxorubicin is non-covalently attached to glutathione coated nanoparticles the synthesized system is potentially suitable to a wealth of different drug molecules.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Ouro , Nanopartículas Metálicas , Nanoconjugados , Animais , Antibióticos Antineoplásicos/química , Apoptose/efeitos dos fármacos , Gatos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Fibrossarcoma , Glutationa/química , Ouro/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Nanoconjugados/química , Nanoconjugados/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA