Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Diabetologia ; 61(10): 2215-2224, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30046852

RESUMO

AIMS/HYPOTHESIS: Islet amyloid deposits contribute to beta cell dysfunction and death in most individuals with type 2 diabetes but non-invasive methods to determine the presence of these pathological protein aggregates are currently not available. Therefore, we examined whether florbetapir, a radiopharmaceutical agent used for detection of amyloid-ß deposits in the brain, also allows identification of islet amyloid in the pancreas. METHODS: Saturation binding assays were used to determine the affinity of florbetapir for human islet amyloid polypeptide (hIAPP) aggregates in vitro. Islet amyloid-prone transgenic mice that express hIAPP in their beta cells and amyloid-free non-transgenic control mice were used to examine the ability of florbetapir to detect islet amyloid deposits in vitro, in vivo and ex vivo. Mice or mouse pancreases were subjected to autoradiographic, histochemical and/or positron emission tomography (PET) analyses to assess the utility of florbetapir in identifying islet amyloid. RESULTS: In vitro, florbetapir bound synthetic hIAPP fibrils with a dissociation constant of 7.9 nmol/l. Additionally, florbetapir bound preferentially to amyloid-containing hIAPP transgenic vs amyloid-free non-transgenic mouse pancreas sections in vitro, as determined by autoradiography (16,475 ± 5581 vs 5762 ± 575 density/unit area, p < 0.05). In hIAPP transgenic and non-transgenic mice fed a high-fat diet for 1 year, intravenous administration of florbetapir followed by PET scanning showed that the florbetapir signal was significantly higher in amyloid-laden hIAPP transgenic vs amyloid-free non-transgenic pancreases in vivo during the first 5 min of the scan (36.83 ± 2.22 vs 29.34 ± 2.03 standardised uptake value × min, p < 0.05). Following PET, pancreases were excised and florbetapir uptake was determined ex vivo by γ counting. Pancreatic uptake of florbetapir was significantly correlated with the degree of islet amyloid deposition, the latter assessed by histochemistry (r = 0.74, p < 0.001). CONCLUSIONS/INTERPRETATION: Florbetapir binds to islet amyloid deposits in a specific and quantitative manner. In the future, florbetapir may be useful as a non-invasive tool to identify islet amyloid deposits in humans.


Assuntos
Amiloide/química , Compostos de Anilina/farmacologia , Etilenoglicóis/farmacologia , Ilhotas Pancreáticas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Animais , Composição Corporal , Calorimetria Indireta , Radioisótopos de Flúor/farmacologia , Regulação da Expressão Gênica , Técnica Clamp de Glucose , Teste de Tolerância a Glucose , Hipotálamo/metabolismo , Insulina/metabolismo , Resistência à Insulina , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Reação em Cadeia da Polimerase , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Transdução de Sinais
2.
Am J Physiol Regul Integr Comp Physiol ; 303(12): R1231-40, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23115121

RESUMO

CCK is hypothesized to inhibit meal size by acting at CCK1 receptors (CCK1R) on vagal afferent neurons that innervate the gastrointestinal tract and project to the hindbrain. Earlier studies have shown that obese Otsuka Long-Evans Tokushima Fatty (OLETF) rats, which carry a spontaneous null mutation of the CCK1R, are hyperphagic and obese. Recent findings show that rats with CCK1R-null gene on a Fischer 344 background (Cck1r(-/-)) are lean and normophagic. In this study, the metabolic phenotype of this rat strain was further characterized. As expected, the CCK1R antagonist, devazepide, failed to stimulate food intake in the Cck1r(-/-) rats. Both Cck1r(+/+) and Cck1r(-/-) rats became diet-induced obese (DIO) when maintained on a high-fat diet relative to chow-fed controls. Cck1r(-/-) rats consumed larger meals than controls during the dark cycle and smaller meals during the light cycle. These effects were accompanied by increased food intake, total spontaneous activity, and energy expenditure during the dark cycle and an apparent reduction in respiratory quotient during the light cycle. To assess whether enhanced responsiveness to anorexigenic factors may contribute to the lean phenotype, we examined the effects of melanotan II (MTII) on food intake and body weight. We found an enhanced effect of MTII in Cck1r(-/-) rats to suppress food intake and body weight following both central and peripheral administration. These results suggest that the lean phenotype is potentially driven by increases in total spontaneous activity and energy expenditure.


Assuntos
Metabolismo Energético/fisiologia , Atividade Motora/fisiologia , Fenótipo , Receptor de Colecistocinina A/deficiência , Magreza/fisiopatologia , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Devazepida/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Deleção de Genes , Masculino , Modelos Animais , Peptídeos Cíclicos/farmacologia , Ratos , Ratos Endogâmicos F344 , Ratos Mutantes , Receptor de Colecistocinina A/antagonistas & inibidores , Receptor de Colecistocinina A/genética , Deleção de Sequência/genética , alfa-MSH/análogos & derivados , alfa-MSH/farmacologia
3.
Am J Physiol Endocrinol Metab ; 302(1): E134-44, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22008455

RESUMO

Growing evidence suggests that oxytocin plays an important role in the regulation of energy balance and that central oxytocin administration induces weight loss in diet-induced obese (DIO) animals. To gain a better understanding of how oxytocin mediates these effects, we examined feeding and neuronal responses to oxytocin in animals rendered obese following exposure to either a high-fat (HFD) or low-fat diet (LFD). Our findings demonstrate that peripheral administration of oxytocin dose-dependently reduces food intake and body weight to a similar extent in rats maintained on either diet. Moreover, the effect of oxytocin to induce weight loss remained intact in leptin receptor-deficient Koletsky (fa(k)/fa(k)) rats relative to their lean littermates. To determine whether systemically administered oxytocin activates hindbrain areas that regulate meal size, we measured neuronal c-Fos induction in the nucleus of the solitary tract (NTS) and area postrema (AP). We observed a robust neuronal response to oxytocin in these hindbrain areas that was unexpectedly increased in rats rendered obese on a HFD relative to lean, LFD-fed controls. Finally, we report that repeated daily peripheral administration of oxytocin in DIO animals elicited a sustained reduction of food intake and body weight while preventing the reduction of energy expenditure characteristic of weight-reduced animals. These findings extend recent evidence suggesting that oxytocin circumvents leptin resistance and induces weight-loss in DIO animals through a mechanism involving activation of neurons in the NTS and AP, key hindbrain areas for processing satiety-related inputs.


Assuntos
Depressores do Apetite/uso terapêutico , Gorduras na Dieta/efeitos adversos , Obesidade/tratamento farmacológico , Ocitocina/uso terapêutico , Redução de Peso/efeitos dos fármacos , Animais , Depressores do Apetite/administração & dosagem , Área Postrema/efeitos dos fármacos , Área Postrema/metabolismo , Área Postrema/patologia , Terapia Combinada , Cruzamentos Genéticos , Relação Dose-Resposta a Droga , Injeções Intraperitoneais , Leptina/sangue , Masculino , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Obesidade/sangue , Obesidade/dietoterapia , Ocitocina/administração & dosagem , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Mutantes , Ratos Sprague-Dawley , Receptores para Leptina/genética , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/uso terapêutico , Núcleo Solitário/efeitos dos fármacos , Núcleo Solitário/metabolismo , Núcleo Solitário/patologia
4.
Exp Gerontol ; 45(2): 106-12, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19854259

RESUMO

Interleukin-15 (IL-15) is a skeletal muscle-derived cytokine with favorable effects on muscle mass and body composition. Modulation of IL-15 levels has been suggested as a treatment for sarcopenia and age-associated increases in adiposity. However, it is unclear whether IL-15 levels change during aging, as measurement of IL-15 at physiological concentrations in mice has been technically difficult, and translational regulation of IL-15 is complex. Moreover, the IL-15 receptor alpha (IL-15Ralpha) can comprise part of a membrane-associated receptor complex, or appear as a soluble form which stabilizes IL-15 and facilitates IL-15 secretion. Here, we report measurement of physiological levels of murine IL-15, and determine that muscle and serum IL-15 levels decline progressively with age. However, expression of IL-15 mRNA and membrane-associated subunits of the IL-15 receptor did not change with age in muscle. Expression of soluble IL-15Ralpha (sIL-15Ralpha) mRNA declined 5-fold with age, and serum IL-15 levels correlated highly with muscle sIL-15 mRNA expression, suggesting declines in sIL-15Ralpha expression lead to decreased circulating IL-15 levels during aging. These findings complement studies which described several single-nucleotide polymorphisms in the human IL-15Ralpha gene which impact muscularity and adiposity, and provide a technical basis for further investigation of IL-15 and the sIL-15Ralpha in determining body composition in aging mice, as a model for humans.


Assuntos
Envelhecimento/metabolismo , Subunidade alfa de Receptor de Interleucina-15/sangue , Interleucina-15/sangue , Músculo Quadríceps/metabolismo , Sarcopenia/metabolismo , Animais , Composição Corporal , Peso Corporal/fisiologia , Expressão Gênica/fisiologia , Interleucina-15/genética , Subunidade alfa de Receptor de Interleucina-15/genética , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Modelos Animais , Neoplasias/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais/fisiologia
5.
Am J Physiol Regul Integr Comp Physiol ; 294(5): R1453-60, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18337314

RESUMO

Unintentional weight loss may occur spontaneously in older humans and animals. Further weight losses after surgery or illness in the older patients result in increased morbidity, mortality, and hospital readmission rate. A growing body of work has shown increased appetite and weight gain in response to administration of ghrelin, the "hunger hormone." We conducted two studies in senescent male Brown Norway rats to assess the ability of peripheral administration of ghrelin to increase body weight and food intake. One study assessed the effect of 2 wk of daily subcutaneous ghrelin administration (1 mg.kg(-1).day(-1)) to senescent rats in a baseline condition; a second study used the same administration protocol in an interventional experiment with aged rats subjected to a surgery with 10-15% blood loss as a model of elective surgery. In both studies, animals receiving ghrelin maintained their body weights, whereas control animals lost weight. Body weight stability was achieved in ghrelin-treated animals despite a lack of increase in daily or cumulative food intake in both experiments. Hormone and proinflammatory cytokine levels were measured before surgery and after 14 days of treatment. Ghrelin treatment appeared to blunt declining ghrelin levels and also to blunt cytokine increases seen in the surgical control group. The ability of peripheral ghrelin treatment to maintain body weights of senescent rats without concomitant increases in food intake may be due to its known ability to decrease sympathetic activity and metabolic rate, perhaps by limiting cytokine-driven inflammation.


Assuntos
Envelhecimento/fisiologia , Peso Corporal/efeitos dos fármacos , Grelina/farmacologia , Procedimentos Cirúrgicos Operatórios/efeitos adversos , Animais , Composição Corporal/efeitos dos fármacos , Composição Corporal/fisiologia , Citocinas/sangue , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Grelina/sangue , Hormônios/sangue , Insulina/sangue , Fator de Crescimento Insulin-Like I/metabolismo , Leptina/sangue , Masculino , Ratos , Ratos Endogâmicos BN
6.
Physiol Behav ; 88(3): 267-76, 2006 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-16781740

RESUMO

Aging is associated with a loss of the ability to maintain homeostasis in response to physiologic and environmental disturbances. Age-related dysregulation of food intake and energy balance appears to be the result of impaired responsiveness of hypothalamic integrative circuitry to metabolic cues, which can lead to lack of appropriate food intake (the anorexia of aging) and thus to inappropriate weight loss in response to acute or chronic illness or other stressors. Using the Brown Norway (BN) male rat model, we have shown that old animals fail to appropriately increase food intake after the metabolic challenge of a 72 h fast, resulting in the failure to re-gain lost body weight upon refeeding. Leptin levels increase with adiposity and age, and remain elevated above levels of young animals even after a 72 h fast, suggesting that hyperleptinemia may be influencing the energy balance dysregulation. It is unclear whether this age-related response is due to a failure of the network of hypothalamic neurons to appropriately integrate hormonal and neural inputs, or due to a failure of the neurons to produce the appropriate neuropeptides. We hypothesize that sequential, age-related alterations in the expression patterns of neuropeptides that maintain melanocortinergic tone, and in the hormone mediators that inform the system of the state of energy balance, result in a diminished ability to maintain energy homeostasis with increasing age. We have undertaken a number of interventional approaches to test this hypothesis, including manipulations of the hormones ghrelin, insulin and testosterone, and direct application of neuropeptides to the central nervous system in these animals.


Assuntos
Envelhecimento/fisiologia , Anorexia/fisiopatologia , Regulação do Apetite/fisiologia , Ingestão de Energia/fisiologia , Hipotálamo/fisiologia , Animais , Peso Corporal/fisiologia , Ingestão de Alimentos/fisiologia , Grelina , Homeostase/fisiologia , Insulina/fisiologia , Leptina/fisiologia , Modelos Anatômicos , Estado Nutricional , Hormônios Peptídicos/fisiologia , Ratos , Testosterona/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA