Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Cancer Genomics Proteomics ; 21(4): 361-367, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38944426

RESUMO

BACKGROUND/AIM: Breast cancer (BC) is the most common malignant disease worldwide. Localized stages of BC can be successfully treated by surgery. However, local recurrence occurs in about 4-10% of patients, requiring systemic treatments that impair the patients' quality of life and shortens life expectancy. Therefore, new therapeutic options are needed, which can be used intraoperatively and contribute to the complete removal of residual tumor cells in the surgical area. In the present study, we describe a cysteine-modified variant of the anti-HER2 antibody trastuzumab, that was coupled to the silicon phthalocyanine photosensitizer dye WB692-CB1 for the photoimmunotherapy (PIT) of BC. MATERIALS AND METHODS: The cysteine modified trastuzumab variant was cloned and expressed in Expi293F cells. After purification via immobilized affinity chromatography, the antibody was coupled to the dye. Cell binding of the antibody and the antibody dye conjugate was measured by flow cytometry. After incubation of BC cells with the conjugate and activation of the dye by irradiation with red light, cell viability was determined. RESULTS: The antibody and the conjugate showed specific binding to HER2-expressing BC cells. Treatment of the HER2high BC cell line SK-BR-3 with the conjugate followed by irradiation with a red light dose of 32 J/cm2 led to complete cell killing within 24 h. CONCLUSION: Our novel antibody dye conjugate represents a promising candidate for intraoperative treatment of localized BC, aiming to eliminate residual tumor cells in the surgical area and potentially reduce local recurrence, thereby improving recovery prospects for BC patients.


Assuntos
Neoplasias da Mama , Imunoterapia , Receptor ErbB-2 , Trastuzumab , Humanos , Neoplasias da Mama/terapia , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Receptor ErbB-2/metabolismo , Imunoterapia/métodos , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Fototerapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Linhagem Celular Tumoral
2.
Nat Commun ; 15(1): 4513, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802361

RESUMO

Urothelial bladder cancer (UC) has a wide tumor biological spectrum with challenging prognostic stratification and relevant therapy-associated morbidity. Most molecular classifications relate only indirectly to the therapeutically relevant protein level. We improve the pre-analytics of clinical samples for proteome analyses and characterize a cohort of 434 samples with 242 tumors and 192 paired normal mucosae covering the full range of UC. We evaluate sample-wise tumor specificity and rank biomarkers by target relevance. We identify robust proteomic subtypes with prognostic information independent from histopathological groups. In silico drug prediction suggests efficacy of several compounds hitherto not in clinical use. Both in silico and in vitro data indicate predictive value of the proteomic clusters for these drugs. We underline that proteomics is relevant for personalized oncology and provide abundance and tumor specificity data for a large part of the UC proteome ( www.cancerproteins.org ).


Assuntos
Biomarcadores Tumorais , Proteômica , Neoplasias da Bexiga Urinária , Humanos , Proteômica/métodos , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/genética , Biomarcadores Tumorais/metabolismo , Proteoma/metabolismo , Feminino , Masculino , Urotélio/patologia , Urotélio/metabolismo , Idoso , Prognóstico , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais
3.
Anticancer Res ; 44(6): 2343-2348, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38821609

RESUMO

BACKGROUND/AIM: The standard treatment for localized prostate cancer involves surgical removal of the prostate with curative intent. However, when tumor cells persist in the operation site, there is high risk of local recurrence and tumor spread, leading to stressful follow-up treatments, impaired quality of life, and reduced overall survival. This study examined photoimmunotherapy (PIT) as a new treatment option for prostate cancer cells. MATERIALS AND METHODS: We generated conjugates consisting of either a humanized antibody or Fab fragments thereof targeting the prostate specific membrane antigen (PSMA), along with our silicon phthalocyanine photosensitizer dye WB692-CB1. PSMA-expressing prostate cancer cells were incubated with the antibody dye or Fab dye conjugates and cell binding was measured using flow cytometry. Cells were irradiated with varying doses of red light for dye activation, and cytotoxicity was determined by erythrosin B staining and subsequent analysis using a Neubauer counting chamber. RESULTS: Specific cytotoxicity was induced with the antibody dye conjugate in the prostate cancer cells in a light dose-dependent manner. Treatment of the cells with the Fab dye conjugate resulted in lower cytotoxicity, which could be attributed to a reduced binding affinity and a reduced dye uptake of the Fab fragment. CONCLUSION: Our new antibody dye and Fab dye conjugates offer potential for future intraoperative PIT in patients with localized prostate cancer, with the aim to ensure complete removal of tumor cells from the surgical area, to avoid local recurrence, and to improve clinical outcome.


Assuntos
Antígenos de Superfície , Fragmentos Fab das Imunoglobulinas , Imunoterapia , Neoplasias da Próstata , Humanos , Masculino , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/farmacologia , Neoplasias da Próstata/terapia , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/patologia , Imunoterapia/métodos , Linhagem Celular Tumoral , Antígenos de Superfície/imunologia , Antígenos de Superfície/metabolismo , Glutamato Carboxipeptidase II/imunologia , Glutamato Carboxipeptidase II/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fototerapia/métodos , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico
4.
J Exp Med ; 221(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38722309

RESUMO

SYNTAXIN-11 (STX11) is a SNARE protein that mediates the fusion of cytotoxic granules with the plasma membrane at the immunological synapses of CD8 T or NK cells. Autosomal recessive inheritance of deleterious STX11 variants impairs cytotoxic granule exocytosis, causing familial hemophagocytic lymphohistiocytosis type 4 (FHL-4). In several FHL-4 patients, we also observed hypogammaglobulinemia, elevated frequencies of naive B cells, and increased double-negative DN2:DN1 B cell ratios, indicating a hitherto unrecognized role of STX11 in humoral immunity. Detailed analysis of Stx11-deficient mice revealed impaired CD4 T cell help for B cells, associated with disrupted germinal center formation, reduced isotype class switching, and low antibody avidity. Mechanistically, Stx11-/- CD4 T cells exhibit impaired membrane fusion leading to reduced CD107a and CD40L surface mobilization and diminished IL-2 and IL-10 secretion. Our findings highlight a critical role of STX11 in SNARE-mediated membrane trafficking and vesicle exocytosis in CD4 T cells, important for successful CD4 T cell-B cell interactions. Deficiency in STX11 impairs CD4 T cell-dependent B cell differentiation and humoral responses.


Assuntos
Linfócitos B , Linfócitos T CD4-Positivos , Proteínas Qa-SNARE , Animais , Proteínas Qa-SNARE/metabolismo , Proteínas Qa-SNARE/genética , Linfócitos B/imunologia , Linfócitos B/metabolismo , Camundongos , Humanos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfo-Histiocitose Hemofagocítica/imunologia , Linfo-Histiocitose Hemofagocítica/genética , Linfo-Histiocitose Hemofagocítica/metabolismo , Camundongos Knockout , Camundongos Endogâmicos C57BL , Feminino , Masculino , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Imunidade Humoral , Exocitose
5.
Anticancer Res ; 44(5): 1837-1844, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677753

RESUMO

BACKGROUND/AIM: Although there are curative treatment options for non-muscle-invasive bladder cancer, the recurrence of this tumor is high. Therefore, novel targeted therapies are needed for the complete removal of bladder cancer cells in stages of localized disease, in order to avoid local recurrence, to spare bladder cancer patients from stressful and expensive treatment procedures and to increase their quality of life and life expectancy. This study tested a new approach for the photoimmunotherapy (PIT) of bladder cancer. MATERIALS AND METHODS: We generated a cysteine modified recombinant version of the antibody cetuximab targeting the epidermal growth factor receptor (EGFR) on the surface of bladder cancer cells. Then, we coupled the novel photoactivatable phthalocyanine dye WB692-CB1 via a maleimide linker to the free cysteines of the antibody. PIT was performed by incubating bladder cancer cells with the antibody dye conjugate followed by irradiation with visible red light. RESULTS: The conjugate was able to induce specific cytotoxicity in EGFR-positive bladder cancer cells in a light dose-dependent manner. Enhanced cytotoxicity in RT112 bladder cancer cells was evoked by addition of a second antibody dye conjugate targeting HER2 or by repeated cycles of PIT. CONCLUSION: Our new antibody dye conjugate targeting EGFR-expressing bladder cancer cells is a promising candidate for the future PIT of bladder cancer patients.


Assuntos
Receptores ErbB , Imunoconjugados , Imunoterapia , Receptor ErbB-2 , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/terapia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Receptores ErbB/imunologia , Receptores ErbB/antagonistas & inibidores , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Receptor ErbB-2/antagonistas & inibidores , Imunoterapia/métodos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Linhagem Celular Tumoral , Cetuximab/farmacologia , Cetuximab/uso terapêutico , Cetuximab/química , Fototerapia/métodos
6.
J Cancer ; 14(16): 3039-3049, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37859824

RESUMO

Treatment of advanced prostate cancer lacks specificity and curative intent. Therefore, the need for new targeted therapeutic approaches is high. In the present study, we generated the new targeted toxin EGF-PE24mutΔREDLK binding to the epidermal growth factor receptor (EGFR) on the surface of prostate cancer cells. It consists of the human epidermal growth factor (EGF) as binding domain and a de-immunized variant of Pseudomonas Exotoxin A (PE), called PE24mutΔREDLK, as toxin domain. The toxin domain contains a deletion of the C-terminal KDEL-like motif REDLK to prevent its transport from sorting endosomes via the KDEL receptor mediated pathway into the cytosol, where it can inhibit cellular protein biosynthesis and induce apoptosis. Indeed, REDLK deletion resulted in a strong decrease in cytotoxicity of the targeted toxin in prostate cancer cells compared to the parental targeted toxin EGF-PE24mut. However, addition of the plant glycosylated triterpenoid SO1861, which is known to mediate the release of biomolecules from endolysosomal compartments into the cytosol, resulted in an up to almost 7,000-fold enhanced synergistic cytotoxicity. Moreover, combination of PE24mutΔREDLK with SO1861 led to a cytotoxicity that was even 16- to 300-fold enhanced compared to that of EGF-PE24mut. Endolysosomal entrapment of the non-toxic targeted toxin EGF-PE24mutΔREDLK followed by activation through enhanced endosomal escape therefore represents a new promising approach for the future treatment of advanced prostate cancer with high efficacy and diminished side effects.

7.
Front Pharmacol ; 14: 1211824, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484018

RESUMO

Immunotoxins consist of an antibody or antibody fragment that binds to a specific cell surface structure and a cytotoxic domain that kills the cell after cytosolic uptake. Pseudomonas Exotoxin A (PE) based immunotoxins directed against a variety of tumor entities have successfully entered the clinic. PE possesses a KDEL-like motif (REDLK) that enables the toxin to travel from sorting endosomes via the KDEL-receptor pathway to the endoplasmic reticulum (ER), from where it is transported into the cytosol. There, it ADP-ribosylates the eukaryotic elongation factor 2, resulting in ribosome inhibition and finally apoptosis. One major problem of immunotoxins is their lysosomal degradation causing the need for much more immunotoxin molecules than finally required for induction of cell death. The resulting dose limitations and substantially increased side effects require new strategies to achieve improved cytosolic uptake. Here we generated an immunotoxin consisting of a humanized single chain variable fragment (scFv) targeting the prostate specific membrane antigen (PSMA) and the de-immunized PE variant PE24mut. This immunotoxin, hD7-1(VL-VH)-PE24mut, showed high and specific cytotoxicity in PSMA-expressing prostate cancer cells. We deleted the REDLK sequence to prevent transport to the ER and achieve endosomal entrapment. The cytotoxicity of this immunotoxin, hD7-1(VL-VH)-PE24mutΔREDLK, was greatly reduced. To restore activity, we added the endosomal escape enhancer SO1861 and observed an up to 190,000-fold enhanced cytotoxicity corresponding to a 57-fold enhancement compared to the initial immunotoxin with the REDLK sequence. A biodistribution study with different routes of administration clearly showed that the subcutaneous injection of hD7-1(VL-VH)-PE24mutΔREDLK in mice resulted in the highest tumor uptake. Treatment of mice bearing prostate tumors with a combination of hD7-1(VL-VH)-PE24mutΔREDLK plus SO1861 resulted in inhibition of tumor growth and enhanced overall survival compared to the monotherapies. The endosomal entrapment of non-toxic anti-PSMA immunotoxins followed by enhanced endosomal escape by SO1861 provides new therapeutic options in the future management of prostate cancer.

8.
Front Oncol ; 13: 1124600, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845731

RESUMO

Evasion from apoptosis is a hallmark of cancer. Inhibitor of apoptosis proteins (IAPs) contribute to this hallmark by suppressing the induction of cell death. IAPs were found to be overexpressed in cancerous tissues and to contribute to therapeutic resistance. The present review focuses on the IAP members cIAP1, cIAP2, XIAP, Survivin and Livin and their importance as potential therapeutic targets in bladder cancer.

9.
Front Oncol ; 12: 935715, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875084

RESUMO

Despite decades of research and successful improvements in diagnosis and therapy, prostate cancer (PC) remains a major challenge. In recent years, it has become clear that PC stem cells (PCSCs) are the driving force in tumorigenesis, relapse, metastasis, and therapeutic resistance of PC. In this minireview, we discuss the impact of PCSCs in the clinical practice. Moreover, new therapeutic approaches to combat PCSCs are presented with the aim to achieve an improved outcome for patients with PC.

10.
Biochim Biophys Acta Mol Cell Res ; 1869(10): 119317, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35752202

RESUMO

In multicellular organisms the regulated cell death apoptosis is critically important for both ontogeny and homeostasis. Mitochondria are indispensable for stress-induced apoptosis. The BCL-2 protein family controls mitochondrial apoptosis and initiates cell death through the pro-apoptotic activities of BAX and BAK at the outer mitochondrial membrane (OMM). Cellular survival is ensured by the retrotranslocation of mitochondrial BAX and BAK into the cytosol by anti-apoptotic BCL-2 proteins. BAX/BAK-dependent OMM permeabilization releases the mitochondrial cytochrome c (cyt c), which initiates activation of caspase-9. The caspase cascade leads to cell shrinkage, plasma membrane blebbing, chromatin condensation, and apoptotic body formation. Although it is clear that ultimately complexes of active BAX and BAK commit the cell to apoptosis, the nature of these complexes is still enigmatic. Excessive research has described a range of complexes, varying from a few molecules to several 10,000, in different systems. BAX/BAK complexes potentially form ring-like structures that could expose the inner mitochondrial membrane. It has been suggested that these pores allow the efflux of small proteins and even mitochondrial DNA. Here we summarize the current state of knowledge for mitochondrial BAX/BAK complexes and the interactions between these proteins and the membrane.


Assuntos
Membranas Mitocondriais , Proteína Killer-Antagonista Homóloga a bcl-2 , Proteínas Reguladoras de Apoptose/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
11.
Biology (Basel) ; 11(3)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35336786

RESUMO

The regulated cell death apoptosis enables redundant or compromised cells in ontogeny and homeostasis to remove themselves receptor-dependent after extrinsic signaling or after internal stress by BCL-2 proteins on the outer mitochondrial membrane (OMM). Mitochondrial BCL-2 proteins are also often needed for receptor-mediated signaling in apoptosis. Then, the truncated BH3-only protein BID (tBID) blocks retrotranslocation of the pro-apoptotic BCL-2 proteins BAX and BAK from the mitochondria into the cytosol. BAX and BAK in turn permeabilize the OMM. Although the BCL-2 proteins are controlled by a complex regulatory network, a specific mechanism for the inhibition of tBID remained unknown. Curiously, it was suggested that hexokinases, which channel glucose into the metabolism, have an intriguing function in the regulation of apoptosis. Recent analysis of transient hexokinase interactions with BAX revealed its participation in the inhibition of BAX and also BAK by retrotranslocation from mitochondria to the cytosol. In contrast to general apoptosis inhibition by anti-apoptotic BCL-2 proteins, hexokinase I and hexokinase 2 specifically inhibit tBID and thus the mitochondrial apoptosis pathway in response to death receptor signaling. Mitochondrial hexokinase localization and BH3 binding of cytosolic hexokinase domains are prerequisites for protection against receptor-mediated cell death, whereas glucose metabolism is not. This mechanism protects cells from apoptosis induced by cytotoxic T cells.

12.
Small ; 18(14): e2106093, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35191181

RESUMO

Understanding phase transitions of ultrathin metal silicides is crucial for the development of nanoscale silicon devices. Here, the phase transition of ultrathin (3.6 nm) Ni silicides on Si(100) substrates is investigated using an in situ synthesis and characterization approach, supplemented with ex situ transmission electron microscopy and nano-beam electron diffraction. First, an ultrathin epitaxial layer and ordered structures at the interface are observed upon room-temperature deposition. At 290 °C, this structure is followed by formation of an orthorhombic δ-Ni2 Si phase exhibiting long-range order and extending to the whole film thickness. An unprecedented direct transition from this δ-Ni2 Si phase to the final NiSi2- x phase is observed at 290 °C, skipping the intermediate monosilicide phase. Additionally, the NiSi2- x phase is found epitaxial on the substrate. This transition process substantially differs from observations for thicker films. Furthermore, considering previous studies, the long-range ordered orthorhombic δ-Ni2 Si phase is suggested to occur regardless of the initial Ni thickness. The thickness of this ordered δ-Ni2 Si layer is, however, limited due to the competition of different orientations of the δ-Ni2 Si crystal. Whether the formed δ-Ni2 Si layer consumes all deposited nickel is expected to determine whether the monosilicide phase appears before the transition to the final NiSi2- x phase.

13.
Chembiochem ; 23(6): e202100340, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-34699123

RESUMO

Fine-tuning of G protein-coupled receptor (GPCR) signaling is important to maintain cellular homeostasis. Recent studies demonstrated that lateral GPCR interactions in the cell membrane can impact signaling profiles. Here, we report on a one-step labeling method of multiple membrane-embedded GPCRs. Based on short peptide tags, complementary probes transfer the cargo (e. g. a fluorescent dye) by an acyl transfer reaction with high spatial and temporal resolution within 5 min. We applied this approach to four receptors of the cardiovascular system: the endothelin receptor A and B (ETA R and ETB R), angiotensin II receptor type 1, and apelin. Wild type-like G protein activation after N-terminal modification was demonstrated for all receptor species. Using FRET-competent dyes, a constitutive proximity between hetero-receptors was limited to ETA R/ETB R. Further, we demonstrate, that ETA R expression regulates the signaling of co-expressed ETB R. Our orthogonal peptide-templated labeling of different GPCRs provides novel insight into the regulation of GPCR signaling.


Assuntos
Proteínas de Ligação ao GTP , Transdução de Sinais , Proteínas de Ligação ao GTP/metabolismo , Peptídeos/metabolismo , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/metabolismo , Transdução de Sinais/fisiologia
14.
Biomedicines ; 9(8)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34440190

RESUMO

Prostate cancer is the second most common cancer and the fifth leading cause of cancer deaths worldwide. Despite improvements in diagnosis and treatment, new treatment options are urgently needed for advanced stages of the disease. Targeted toxins are chemical conjugates or fully recombinant proteins consisting of a binding domain directed against a target antigen on the surface of cancer cells and a toxin domain, which is transported into the cell for the induction of apoptosis. In the last decades, targeted toxins against prostate cancer have been developed. Several challenges, however, became apparent that prevented their direct clinical use. They comprise immunogenicity, low target antigen binding, endosomal entrapment, and lysosomal/proteasomal degradation of the targeted toxins. Moreover, their efficacy is impaired by prostate tumors, which are marked by a dense microenvironment, low target antigen expression, and apoptosis resistance. In this review, current findings in the development of targeted toxins against prostate cancer in view of effective targeting, reduction of immunogenicity, improvement of intracellular trafficking, and overcoming apoptosis resistance are discussed. There are promising approaches that should lead to the clinical use of targeted toxins as therapeutic alternatives for advanced prostate cancer in the future.

15.
Nat Rev Urol ; 18(9): 556-571, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34239139

RESUMO

Chimeric antigen receptor (CAR) T cell immunotherapy involves the genetic modification of the patient's own T cells so that they specifically recognize and destroy tumour cells. Considerable clinical success has been achieved using this technique in patients with lymphoid malignancies, but clinical studies that investigated treating solid tumours using this emerging technology have been disappointing. A number of developments might be able to increase the efficacy of CAR T cell therapy for treatment of prostate cancer, including improved trafficking to the tumour, techniques to overcome the immunosuppressive tumour microenvironment, as well as methods to enhance CAR T cell persistence, specificity and safety. Furthermore, CAR T cell therapy has the potential to be combined with other treatment modalities, such as androgen deprivation therapy, radiotherapy or chemotherapy, and could be applied as focal CAR T cell therapy for prostate cancer.


Assuntos
Adenocarcinoma/terapia , Antagonistas de Androgênios/uso terapêutico , Antineoplásicos/uso terapêutico , Imunoterapia Adotiva/métodos , Neoplasias da Próstata/terapia , Radioterapia , Receptores de Antígenos Quiméricos , Adenocarcinoma/imunologia , Terapia Combinada , Humanos , Masculino , Neoplasias da Próstata/imunologia , Microambiente Tumoral/imunologia
16.
Anticancer Res ; 41(8): 3741-3746, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34281832

RESUMO

BACKGROUND/AIM: Reports on over-expression of the epidermal growth factor receptor (EGFR) in bladder cancer and its function in tumorigenesis have suggested to target this antigen. MATERIALS AND METHODS: We generated the targeted toxin EGF-PE40 consisting of the human epidermal growth factor (EGF) as the binding domain and PE40, a truncated version of Pseudomonas Exotoxin A, as the toxin domain. EGF-PE40 was tested on EGFR-expressing bladder cancer cells in view of binding via flow cytometry, and cytotoxicity via WST viability assay. Induction of apoptosis was examined by western blot. RESULTS: The targeted toxin specifically triggered cytotoxicity in the bladder cancer cells with 50% inhibitory concentration (IC50) values in the low nanomolar or picomolar range, and was about 1,250- to 1,500-fold more cytotoxic than the EGFR inhibitor erlotinib. Cytotoxicity of EGF-PE40 was based on the induction of apoptosis. CONCLUSION: EGF-PE40 represents a promising candidate for the future treatment of bladder cancer.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Fator de Crescimento Epidérmico/química , Neoplasias da Bexiga Urinária/tratamento farmacológico , ADP Ribose Transferases/química , Animais , Toxinas Bacterianas/química , Células CHO , Linhagem Celular Tumoral , Cricetulus , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Exotoxinas/química , Humanos , Fatores de Virulência/química , Exotoxina A de Pseudomonas aeruginosa
17.
Cell Mol Life Sci ; 78(17-18): 6265-6281, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34241650

RESUMO

Tight regulation of cytokines is essential for the initiation and resolution of inflammation. Chemerin, a mediator of innate immunity, mainly acts on chemokine-like receptor 1 (CMKLR1) to induce the migration of macrophages and dendritic cells. The role of the second chemerin receptor, G protein-coupled receptor 1 (GPR1), is still unclear. Here we demonstrate that GPR1 shows ligand-induced arrestin3 recruitment and internalization. The chemerin C-terminus triggers this activation by folding into a loop structure, binding to aromatic residues in the extracellular loops of GPR1. While this overall binding mode is shared between GPR1 and CMKLR1, differences in their respective extracellular loop 2 allowed for the design of the first GPR1-selective peptide. However, our results suggest that ligand-induced arrestin recruitment is not the only mode of action of GPR1. This receptor also displays constitutive internalization, which allows GPR1 to internalize inactive peptides efficiently by an activation-independent pathway. Our results demonstrate that GPR1 takes a dual role in regulating chemerin activity: as a signaling receptor for arrestin-based signaling on one hand, and as a scavenging receptor with broader ligand specificity on the other.


Assuntos
Ligantes , Receptores Acoplados a Proteínas G/metabolismo , Arrestinas/metabolismo , Sítios de Ligação , Quimiocinas/química , Quimiocinas/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Imunidade Inata , Microscopia Confocal , Simulação de Acoplamento Molecular , Mutagênese , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de Quimiocinas/química , Receptores de Quimiocinas/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética
18.
Chembiochem ; 22(10): 1717-1732, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33428317

RESUMO

Fluorescence microscopy imaging enables receptor proteins to be investigated within their biological context. A key challenge is to site-specifically incorporate reporter moieties into proteins without interfering with biological functions or cellular networks. Small peptide tags offer the opportunity to combine inducible labeling with small tag sizes that avoid receptor perturbation. Herein, we review the current state of live-cell labeling of peptide-tagged cell-surface proteins. Considering their importance as targets in medicinal chemistry, we focus on membrane receptors such as G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). We discuss peptide tags that i) are subject to enzyme-mediated modification reactions, ii) guide the complementation of reporter proteins, iii) form coiled-coil complexes, and iv) interact with metal complexes. Given our own contributions in the field, we place emphasis on peptide-templated labeling chemistry.


Assuntos
Peptídeos/química , Receptores Proteína Tirosina Quinases/química , Receptores Acoplados a Proteínas G/química , Animais , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Humanos , Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Peptídeos/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Coloração e Rotulagem/métodos
19.
Nat Chem ; 13(1): 15-23, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33288896

RESUMO

DNA nanotechnology is an emerging field that promises fascinating opportunities for the manipulation and imaging of proteins on a cell surface. The key to progress is the ability to create a nucleic acid-protein junction in the context of living cells. Here we report a covalent labelling reaction that installs a biostable peptide nucleic acid (PNA) tag. The reaction proceeds within minutes and is specific for proteins carrying a 2 kDa coiled-coil peptide tag. Once installed, the PNA label serves as a generic landing platform that enables the recruitment of fluorescent dyes via nucleic acid hybridization. We demonstrate the versatility of this approach by recruiting different fluorophores, assembling multiple fluorophores for increased brightness and achieving reversible labelling by way of toehold-mediated strand displacement. Additionally, we show that labelling can be carried out using two different coiled-coil systems, with epidermal growth factor receptor and endothelin receptor type B, on both HEK293 and CHO cells. Finally, we apply the method to monitor internalization of epidermal growth factor receptor on CHO cells.


Assuntos
Receptores ErbB/metabolismo , Microscopia de Fluorescência , Ácidos Nucleicos Peptídicos/química , Receptor de Endotelina B/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Cricetinae , Cricetulus , Receptores ErbB/química , Receptores ErbB/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Hibridização de Ácido Nucleico , Ácidos Nucleicos Peptídicos/síntese química , Ácidos Nucleicos Peptídicos/metabolismo , Peptídeos/síntese química , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Receptor de Endotelina B/química , Receptor de Endotelina B/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação
20.
Toxins (Basel) ; 12(12)2020 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260619

RESUMO

The epidermal growth factor receptor (EGFR) was found to be a valuable target on prostate cancer (PCa) cells. However, EGFR inhibitors mostly failed in clinical studies with patients suffering from PCa. We therefore tested the targeted toxins EGF-PE40 and EGF-PE24mut consisting of the natural ligand EGF as binding domain and PE40, the natural toxin domain of Pseudomonas Exotoxin A, or PE24mut, the de-immunized variant thereof, as toxin domains. Both targeted toxins were expressed in the periplasm of E.coli and evoked an inhibition of protein biosynthesis in EGFR-expressing PCa cells. Concentration- and time-dependent killing of PCa cells was found with IC50 values after 48 and 72 h in the low nanomolar or picomolar range based on the induction of apoptosis. EGF-PE24mut was found to be about 11- to 120-fold less toxic than EGF-PE40. Both targeted toxins were more than 600 to 140,000-fold more cytotoxic than the EGFR inhibitor erlotinib. Due to their high and specific cytotoxicity, the EGF-based targeted toxins EGF-PE40 and EGF-PE24mut represent promising candidates for the future treatment of PCa.


Assuntos
ADP Ribose Transferases/uso terapêutico , Toxinas Bacterianas/uso terapêutico , Exotoxinas/uso terapêutico , Imunotoxinas/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Fatores de Virulência/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Células CHO , Linhagem Celular Tumoral , Sobrevivência Celular , Cricetulus , Receptores ErbB/antagonistas & inibidores , Humanos , Masculino , Células PC-3 , Proteínas Recombinantes de Fusão/uso terapêutico , Exotoxina A de Pseudomonas aeruginosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA