Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 9(12)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38912581

RESUMO

Plasmacytoid dendritic cells (pDCs) are first responders to tissue injury, where they prime naive T cells. The role of pDCs in physiologic wound repair has been examined, but little is known about pDCs in diabetic wound tissue and their interactions with naive CD4+ T cells. Diabetic wounds are characterized by increased levels of inflammatory IL-17A cytokine, partly due to increased Th17 CD4+ cells. This increased IL-17A cytokine, in excess, impairs tissue repair. Here, using human tissue and murine wound healing models, we found that diabetic wound pDCs produced excess IL-6 and TGF-ß and that these cytokines skewed naive CD4+ T cells toward a Th17 inflammatory phenotype following cutaneous injury. Further, we identified that increased IL-6 cytokine production by diabetic wound pDCs is regulated by a histone demethylase, Jumonji AT-rich interactive domain 1C histone demethylase (JARID1C). Decreased JARID1C increased IL-6 transcription in diabetic pDCs, and this process was regulated upstream by an IFN-I/TYK2/JAK1,3 signaling pathway. When inhibited in nondiabetic wound pDCs, JARID1C skewed naive CD4+ T cells toward a Th17 phenotype and increased IL-17A production. Together, this suggests that diabetic wound pDCs are epigenetically altered to increase IL-6 expression that then affects T cell phenotype. These findings identify a therapeutically manipulable pathway in diabetic wounds.


Assuntos
Células Dendríticas , Interleucina-6 , Células Th17 , Cicatrização , Animais , Feminino , Humanos , Masculino , Camundongos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Camundongos Endogâmicos C57BL , Células Th17/imunologia , Células Th17/metabolismo , Cicatrização/imunologia
2.
Diabetes ; 73(9): 1462-1472, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38869447

RESUMO

Macrophage (Mφ) plasticity is critical for normal wound repair; however, in type 2 diabetic wounds, Mφs persist in a low-grade inflammatory state that prevents the resolution of wound inflammation. Increased NLRP3 inflammasome activity has been shown in diabetic wound Mφs; however, the molecular mechanisms regulating NLRP3 expression and activity are unclear. Here, we identified that diabetic wound keratinocytes induce Nlrp3 gene expression in wound Mφs through IL-1 receptor-mediated signaling, resulting in enhanced inflammasome activation in the presence of pathogen-associated molecular patterns and damage-associated molecular patterns. We found that IL-1α is increased in human and murine wound diabetic keratinocytes compared with nondiabetic controls and directly induces Mφ Nlrp3 expression through IL-1 receptor signaling. Mechanistically, we report that the histone demethylase, JMJD3, is increased in wound Mφs late post-injury and is induced by IL-1α from diabetic wound keratinocytes, resulting in Nlrp3 transcriptional activation through an H3K27me3-mediated mechanism. Using genetically engineered mice deficient in JMJD3 in myeloid cells (Jmjd3f/flyz2Cre+), we demonstrate that JMJD3 controls Mφ-mediated Nlrp3 expression during diabetic wound healing. Thus, our data suggest a role for keratinocyte-mediated IL-1α/IL-1R signaling in driving enhanced NLRP3 inflammasome activity in wound Mφs. These data also highlight the importance of cell cross-talk in wound tissues and identify JMJD3 and the IL-1R signaling cascade as important upstream therapeutic targets for Mφ NLRP3 inflammasome hyperactivity in nonhealing diabetic wounds.


Assuntos
Inflamassomos , Histona Desmetilases com o Domínio Jumonji , Queratinócitos , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Receptores de Interleucina-1 , Transdução de Sinais , Cicatrização , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Queratinócitos/metabolismo , Animais , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Macrófagos/metabolismo , Camundongos , Transdução de Sinais/fisiologia , Humanos , Cicatrização/fisiologia , Receptores de Interleucina-1/metabolismo , Receptores de Interleucina-1/genética , Inflamassomos/metabolismo , Interleucina-1alfa/metabolismo , Interleucina-1alfa/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Masculino , Camundongos Endogâmicos C57BL
3.
Cell Mol Immunol ; 19(11): 1251-1262, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36127466

RESUMO

Macrophage plasticity is critical for normal tissue repair following injury. In pathologic states such as diabetes, macrophage plasticity is impaired, and macrophages remain in a persistent proinflammatory state; however, the reasons for this are unknown. Here, using single-cell RNA sequencing of human diabetic wounds, we identified increased JMJD3 in diabetic wound macrophages, resulting in increased inflammatory gene expression. Mechanistically, we report that in wound healing, JMJD3 directs early macrophage-mediated inflammation via JAK1,3/STAT3 signaling. However, in the diabetic state, we found that IL-6, a cytokine increased in diabetic wound tissue at later time points post-injury, regulates JMJD3 expression in diabetic wound macrophages via the JAK1,3/STAT3 pathway and that this late increase in JMJD3 induces NFκB-mediated inflammatory gene transcription in wound macrophages via an H3K27me3 mechanism. Interestingly, RNA sequencing of wound macrophages isolated from mice with JMJD3-deficient myeloid cells (Jmjd3f/fLyz2Cre+) identified that the STING gene (Tmem173) is regulated by JMJD3 in wound macrophages. STING limits inflammatory cytokine production by wound macrophages during healing. However, in diabetic mice, its role changes to limit wound repair and enhance inflammation. This finding is important since STING is associated with chronic inflammation, and we found STING to be elevated in human and murine diabetic wound macrophages at late time points. Finally, we demonstrate that macrophage-specific, nanoparticle inhibition of JMJD3 in diabetic wounds significantly improves diabetic wound repair by decreasing inflammatory cytokines and STING. Taken together, this work highlights the central role of JMJD3 in tissue repair and identifies cell-specific targeting as a viable therapeutic strategy for nonhealing diabetic wounds.


Assuntos
Diabetes Mellitus Experimental , Camundongos , Humanos , Animais , Camundongos Endogâmicos C57BL , Macrófagos/metabolismo , Cicatrização , Inflamação/metabolismo , Citocinas/metabolismo
4.
JCI Insight ; 7(9)2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35358091

RESUMO

Wound repair following acute injury requires a coordinated inflammatory response. Type I IFN signaling is important for regulating the inflammatory response after skin injury. IFN-κ, a type I IFN, has recently been found to drive skin inflammation in lupus and psoriasis; however, the role of IFN-κ in the context of normal or dysregulated wound healing is unclear. Here, we show that Ifnk expression is upregulated in keratinocytes early after injury and is essential for normal tissue repair. Under diabetic conditions, IFN-κ was decreased in wound keratinocytes, and early inflammation was impaired. Furthermore, we found that the histone methyltransferase mixed-lineage leukemia 1 (MLL1) is upregulated early following injury and regulates Ifnk expression in diabetic wound keratinocytes via an H3K4me3-mediated mechanism. Using a series of in vivo studies with a geneticall y engineered mouse model (Mll1fl/fl K14cre-) and human wound tissues from patients with T2D, we demonstrate that MLL1 controls wound keratinocyte-mediated Ifnk expression and that Mll1 expression is decreased in T2D keratinocytes. Importantly, we found the administration of IFN-κ early following injury improves diabetic tissue repair through increasing early inflammation, collagen deposition, and reepithelialization. These findings have significant implications for understanding the complex role type I IFNs play in keratinocytes in normal and diabetic wound healing. Additionally, they suggest that IFN may be a viable therapeutic target to improve diabetic wound repair.


Assuntos
Diabetes Mellitus Tipo 2 , Interferon Tipo I , Animais , Humanos , Inflamação/metabolismo , Camundongos , Cicatrização/fisiologia
5.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34479991

RESUMO

COVID-19 induces a robust, extended inflammatory "cytokine storm" that contributes to an increased morbidity and mortality, particularly in patients with type 2 diabetes (T2D). Macrophages are a key innate immune cell population responsible for the cytokine storm that has been shown, in T2D, to promote excess inflammation in response to infection. Using peripheral monocytes and sera from human patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and a murine hepatitis coronavirus (MHV-A59) (an established murine model of SARS), we identified that coronavirus induces an increased Mφ-mediated inflammatory response due to a coronavirus-induced decrease in the histone methyltransferase, SETDB2. This decrease in SETDB2 upon coronavirus infection results in a decrease of the repressive trimethylation of histone 3 lysine 9 (H3K9me3) at NFkB binding sites on inflammatory gene promoters, effectively increasing inflammation. Mφs isolated from mice with a myeloid-specific deletion of SETDB2 displayed increased pathologic inflammation following coronavirus infection. Further, IFNß directly regulates SETDB2 in Mφs via JaK1/STAT3 signaling, as blockade of this pathway altered SETDB2 and the inflammatory response to coronavirus infection. Importantly, we also found that loss of SETDB2 mediates an increased inflammatory response in diabetic Mϕs in response to coronavirus infection. Treatment of coronavirus-infected diabetic Mφs with IFNß reversed the inflammatory cytokine production via up-regulation of SETDB2/H3K9me3 on inflammatory gene promoters. Together, these results describe a potential mechanism for the increased Mφ-mediated cytokine storm in patients with T2D in response to COVID-19 and suggest that therapeutic targeting of the IFNß/SETDB2 axis in T2D patients may decrease pathologic inflammation associated with COVID-19.


Assuntos
Coronavirus/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/virologia , Macrófagos/metabolismo , Animais , COVID-19/imunologia , Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Síndrome da Liberação de Citocina , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/genética , Feminino , Histona-Lisina N-Metiltransferase/genética , Humanos , Inflamação/metabolismo , Inflamação/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , SARS-CoV-2/metabolismo , Transdução de Sinais
6.
Semin Cell Dev Biol ; 119: 111-118, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34183242

RESUMO

Non-healing wounds in Type 2 Diabetes (T2D) patients represent the most common cause of amputation in the US, with an associated 5-year mortality of nearly 50%. Our lab has examined tissue from both T2D murine models and human wounds in order to explore mechanisms contributing to impaired wound healing. Current published data in the field point to macrophage function serving a pivotal role in orchestrating appropriate wound healing. Wound macrophages in mice and patients with T2D are characterized by a persistent inflammatory state; however, the mechanisms that control this persistent inflammatory state are unknown. Current literature demonstrates that gene regulation through histone modifications, DNA modifications, and microRNA can influence macrophage plasticity during wound healing. Further, accumulating studies reveal the importance of cells such as adipocytes, infiltrating immune cells (PMNs and T cells), and keratinocytes secrete factors that may help drive macrophage polarization. This review will examine the role of macrophages in the wound healing process, along with their function and interactions with other cells, and how it is perturbed in T2D. We also explore epigenetic factors that regulate macrophage polarization in wounds, while highlighting the emerging role of other cell types that may influence macrophage phenotype following tissue injury.


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Cicatrização/imunologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos
7.
J Exp Med ; 218(6)2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33779682

RESUMO

Abdominal aortic aneurysms (AAAs) are a life-threatening disease for which there is a lack of effective therapy preventing aortic rupture. During AAA formation, pathological vascular remodeling is driven by macrophage infiltration, and the mechanisms regulating macrophage-mediated inflammation remain undefined. Recent evidence suggests that an epigenetic enzyme, JMJD3, plays a critical role in establishing macrophage phenotype. Using single-cell RNA sequencing of human AAA tissues, we identified increased JMJD3 in aortic monocyte/macrophages resulting in up-regulation of an inflammatory immune response. Mechanistically, we report that interferon-ß regulates Jmjd3 expression via JAK/STAT and that JMJD3 induces NF-κB-mediated inflammatory gene transcription in infiltrating aortic macrophages. In vivo targeted inhibition of JMJD3 with myeloid-specific genetic depletion (JMJD3f/fLyz2Cre+) or pharmacological inhibition in the elastase or angiotensin II-induced AAA model preserved the repressive H3K27me3 on inflammatory gene promoters and markedly reduced AAA expansion and attenuated macrophage-mediated inflammation. Together, our findings suggest that cell-specific pharmacologic therapy targeting JMJD3 may be an effective intervention for AAA expansion.


Assuntos
Aneurisma da Aorta Abdominal/metabolismo , Histona Desmetilases/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Macrófagos/metabolismo , Angiotensina II/farmacologia , Animais , Modelos Animais de Doenças , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
8.
JCI Insight ; 5(17)2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32879137

RESUMO

Macrophages are a primary immune cell involved in inflammation, and their cell plasticity allows for transition from an inflammatory to a reparative phenotype and is critical for normal tissue repair following injury. Evidence suggests that epigenetic alterations play a critical role in establishing macrophage phenotype and function during normal and pathologic wound repair. Here, we find in human and murine wound macrophages that cyclooxygenase 2/prostaglandin E2 (COX-2/PGE2) is elevated in diabetes and regulates downstream macrophage-mediated inflammation and host defense. Using single-cell RNA sequencing of human wound tissue, we identify increased NF-κB-mediated inflammation in diabetic wounds and show increased COX-2/PGE2 in diabetic macrophages. Further, we identify that COX-2/PGE2 production in wound macrophages requires epigenetic regulation of 2 key enzymes in the cytosolic phospholipase A2/COX-2/PGE2 (cPLA2/COX-2/PGE2) pathway. We demonstrate that TGF-ß-induced miRNA29b increases COX-2/PGE2 production via inhibition of DNA methyltransferase 3b-mediated hypermethylation of the Cox-2 promoter. Further, we find mixed-lineage leukemia 1 (MLL1) upregulates cPLA2 expression and drives COX-2/PGE2. Inhibition of the COX-2/PGE2 pathway genetically (Cox2fl/fl Lyz2Cre+) or with a macrophage-specific nanotherapy targeting COX-2 in tissue macrophages reverses the inflammatory macrophage phenotype and improves diabetic tissue repair. Our results indicate the epigenetically regulated PGE2 pathway controls wound macrophage function, and cell-targeted manipulation of this pathway is feasible to improve diabetic wound repair.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus/fisiopatologia , Dinoprostona/farmacologia , Epigênese Genética , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/prevenção & controle , Macrófagos/efeitos dos fármacos , Cicatrização , Idoso , Animais , Ciclo-Oxigenase 2/metabolismo , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Ocitócicos/farmacologia , Fenótipo , Pseudomonas aeruginosa/efeitos dos fármacos , Transdução de Sinais
9.
Eur J Immunol ; 50(12): 1929-1940, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32662520

RESUMO

Chronic macrophage inflammation is a hallmark of type 2 diabetes (T2D) and linked to the development of secondary diabetic complications. T2D is characterized by excess concentrations of saturated fatty acids (SFA) that activate innate immune inflammatory responses, however, mechanism(s) by which SFAs control inflammation is unknown. Using monocyte-macrophages isolated from human blood and murine models, we demonstrate that palmitate (C16:0), the most abundant circulating SFA in T2D, increases expression of the histone demethylase, Jmjd3. Upregulation of Jmjd3 results in removal of the repressive histone methylation (H3K27me3) mark on NFκB-mediated inflammatory gene promoters driving macrophage-mediated inflammation. We identify that the effects of palmitate are fatty acid specific, as laurate (C12:0) does not regulate Jmjd3 and the associated inflammatory profile. Further, palmitate-induced Jmjd3 expression is controlled via TLR4/MyD88-dependent signaling mechanism, where genetic depletion of TLR4 (Tlr4-/- ) or MyD88 (MyD88-/- ) negated the palmitate-induced changes in Jmjd3 and downstream NFκB-induced inflammation. Pharmacological inhibition of Jmjd3 using a small molecule inhibitor (GSK-J4) reduced macrophage inflammation and improved diabetic wound healing. Together, we conclude that palmitate contributes to the chronic Jmjd3-mediated activation of macrophages in diabetic peripheral tissue and a histone demethylase inhibitor-based therapy may represent a novel treatment for nonhealing diabetic wounds.


Assuntos
Histona Desmetilases/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Macrófagos/metabolismo , Palmitatos/metabolismo , Receptor 4 Toll-Like/metabolismo , Cicatrização/fisiologia , Animais , Diabetes Mellitus Tipo 2 , Humanos , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/fisiologia , Regulação para Cima/fisiologia
10.
J Immunol ; 204(9): 2503-2513, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32205424

RESUMO

Macrophages are critical for the initiation and resolution of the inflammatory phase of wound healing. In diabetes, macrophages display a prolonged inflammatory phenotype preventing tissue repair. TLRs, particularly TLR4, have been shown to regulate myeloid-mediated inflammation in wounds. We examined macrophages isolated from wounds of patients afflicted with diabetes and healthy controls as well as a murine diabetic model demonstrating dynamic expression of TLR4 results in altered metabolic pathways in diabetic macrophages. Further, using a myeloid-specific mixed-lineage leukemia 1 (MLL1) knockout (Mll1f/fLyz2Cre+ ), we determined that MLL1 drives Tlr4 expression in diabetic macrophages by regulating levels of histone H3 lysine 4 trimethylation on the Tlr4 promoter. Mechanistically, MLL1-mediated epigenetic alterations influence diabetic macrophage responsiveness to TLR4 stimulation and inhibit tissue repair. Pharmacological inhibition of the TLR4 pathway using a small molecule inhibitor (TAK-242) as well as genetic depletion of either Tlr4 (Tlr4-/- ) or myeloid-specific Tlr4 (Tlr4f/fLyz2Cre+) resulted in improved diabetic wound healing. These results define an important role for MLL1-mediated epigenetic regulation of TLR4 in pathologic diabetic wound repair and suggest a target for therapeutic manipulation.


Assuntos
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/imunologia , Epigênese Genética/genética , Macrófagos/fisiologia , Receptor 4 Toll-Like/genética , Cicatrização/genética , Idoso , Animais , Epigênese Genética/imunologia , Feminino , Histonas/genética , Histonas/imunologia , Humanos , Inflamação/genética , Inflamação/imunologia , Mediadores da Inflamação/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/imunologia , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/imunologia , Receptor 4 Toll-Like/imunologia , Cicatrização/imunologia
11.
JCI Insight ; 5(5)2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32069267

RESUMO

A critical component of wound healing is the transition from the inflammatory phase to the proliferation phase to initiate healing and remodeling of the wound. Macrophages are critical for the initiation and resolution of the inflammatory phase during wound repair. In diabetes, macrophages display a sustained inflammatory phenotype in late wound healing characterized by elevated production of inflammatory cytokines, such as TNF-α. Previous studies have shown that an altered epigenetic program directs diabetic macrophages toward a proinflammatory phenotype, contributing to a sustained inflammatory phase. Males absent on the first (MOF) is a histone acetyltransferase (HAT) that has been shown be a coactivator of TNF-α signaling and promote NF-κB-mediated gene transcription in prostate cancer cell lines. Based on MOF's role in TNF-α/NF-κB-mediated gene expression, we hypothesized that MOF influences macrophage-mediated inflammation during wound repair. We used myeloid-specific Mof-knockout (Lyz2Cre Moffl/fl) and diet-induced obese (DIO) mice to determine the function of MOF in diabetic wound healing. MOF-deficient mice exhibited reduced inflammatory cytokine gene expression. Furthermore, we found that wound macrophages from DIO mice had elevated MOF levels and higher levels of acetylated histone H4K16, MOF's primary substrate of HAT activity, on the promoters of inflammatory genes. We further identified that MOF expression could be stimulated by TNF-α and that treatment with etanercept, an FDA-approved TNF-α inhibitor, reduced MOF levels and improved wound healing in DIO mice. This report is the first to our knowledge to define an important role for MOF in regulating macrophage-mediated inflammation in wound repair and identifies TNF-α inhibition as a potential therapy for the treatment of chronic inflammation in diabetic wounds.


Assuntos
Diabetes Mellitus Experimental/imunologia , Histona Acetiltransferases/metabolismo , Macrófagos/imunologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Diabetes Mellitus Experimental/fisiopatologia , Etanercepte/farmacologia , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Cicatrização/fisiologia
12.
Methods Mol Biol ; 1382: 21-39, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26611576

RESUMO

Gene delivery using recombinant adeno-associated virus (rAAV) has emerged to the forefront demonstrating safe and effective phenotypic correction of diverse diseases including hemophilia B and Leber's congenital amaurosis. In addition to rAAV's high efficiency of transduction and the capacity for long-term transgene expression, the safety profile of rAAV remains unsoiled in humans with no deleterious vector-related consequences observed thus far. Despite these favorable attributes, rAAV vectors have a major disadvantage preventing widespread therapeutic applications; as the AAV capsid is the smallest described to date, it cannot package "large" genomes. Currently, the packaging capacity of rAAV has yet to be definitively defined but is approximately 5 kb, which has served as a limitation for large gene transfer. There are two main approaches that have been developed to overcome this limitation, split AAV vectors, and fragment AAV (fAAV) genome reassembly (Hirsch et al., Mol Ther 18(1):6-8, 2010). Split rAAV vector applications were developed based upon the finding that rAAV genomes naturally concatemerize in the cell post-transduction and are substrates for enhanced homologous recombination (HR) (Hirsch et al., Mol Ther 18(1):6-8, 2010; Duan et al., J Virol 73(1):161-169, 1999; Duan et al., J Virol 72(11):8568-8577, 1998; Duan et al., Mol Ther 4(4):383-391, 2001; Halbert et al., Nat Biotechnol 20(7):697-701, 2002). This method involves "splitting" the large transgene into two separate vectors and upon co-transduction, intracellular large gene reconstruction via vector genome concatemerization occurs via HR or nonhomologous end joining (NHEJ). Within the split rAAV approaches there currently exist three strategies: overlapping, trans-splicing, and hybrid trans-splicing (Duan et al., Mol Ther 4(4):383-391, 2001; Halbert et al., Nat Biotechnol 20(7):697-701, 2002; Ghosh et al., Mol Ther 16(1):124-130, 2008; Ghosh et al., Mol Ther 15(4):750-755, 2007). The other major strategy for AAV-mediated large gene delivery is the use of fragment AAV (fAAV) (Dong et al., Mol Ther 18(1):87-92, 2010; Hirsch et al., Mol Ther 21(12):2205-2216, 2013; Lai et al., Mol Ther 18(1):75-79, 2010; Wu et al., Mol Ther 18(1):80-86, 2010). This strategy developed following the observation that the attempted encapsidation of transgenic cassettes exceeding the packaging capacity of the AAV capsid results in the packaging of heterogeneous single-strand genome fragments (<5 kb) of both polarities (Dong et al., Mol Ther 18(1):87-92, 2010; Hirsch et al., Mol Ther 21(12):2205-2216, 2013; Lai et al., Mol Ther 18(1):75-79, 2010; Wu et al., Mol Ther 18(1):80-86, 2010). After transduction by multiple fAAV particles, the genome fragments can undergo opposite strand annealing, followed by host-mediated DNA synthesis to reconstruct the intended oversized genome within the cell. Although, there appears to be growing debate as to the most efficient method of rAAV-mediated large gene delivery, it remains possible that additional factors including the target tissue and the transgenomic sequence factor into the selection of a particular approach for a specific application (Duan et al., Mol Ther 4(4):383-391, 2001; Ghosh et al., Mol Ther 16(1):124-130, 2008; Hirsch et al., Mol Ther 21(12):2205-2216, 2013; Trapani et al., EMBO Mol Med 6(2):194-211, 2014; Ghosh et al., Hum Gene Ther 22(1):77-83, 2011). Herein we discuss the design, production, and verification of the leading rAAV large gene delivery strategies.


Assuntos
Dependovirus/genética , Técnicas de Transferência de Genes , Transgenes , Empacotamento do DNA , Vetores Genéticos/administração & dosagem , Células HEK293 , Humanos , Transdução Genética
13.
J Autoimmun ; 65: 38-48, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26305061

RESUMO

Systemic lupus erythematosus is clinically characterized by episodes of flare and remission. In patients, cutaneous exposure to ultraviolet light has been proposed as a flare trigger. However, induction of flare secondary to cutaneous exposure has been difficult to emulate in many murine lupus models. Here, we describe a system in which epidermal injury is able to trigger the development of a lupus nephritis flare in New Zealand Mixed (NZM) 2328 mice. 20-week old NZM2328 female mice underwent removal of the stratum corneum via duct tape, which resulted in rapid onset of proteinuria and death when compared to sham-stripped littermate control NZM2328 mice. This was coupled with a drop in serum C3 concentrations and dsDNA antibody levels and enhanced immune complex deposition in the glomeruli. Recruitment of CD11b(+)CD11c(+)F4/80(high) macrophages and CD11b(+)CD11c(+)F4/80(low) dendritic cells was noted prior to the onset of proteinuria in injured mice. Transcriptional changes within the kidney suggest a burst of type I IFN-mediated and inflammatory signaling which is followed by upregulation of CXCL13 following epidermal injury. Thus, we propose that tape stripping of lupus-prone NZM2328 mice is a novel model of lupus flare induction that will allow for the study of the role of cutaneous inflammation in lupus development and how crosstalk between dermal and systemic immune systems can lead to lupus flare.


Assuntos
Epiderme/lesões , Glomérulos Renais/imunologia , Nefrite Lúpica/imunologia , Animais , Anticorpos Antinucleares/sangue , Anticorpos Antinucleares/metabolismo , Quimiocina CXCL13/metabolismo , Complemento C3/análise , Complemento C3/metabolismo , DNA/imunologia , Células Dendríticas/imunologia , Modelos Animais de Doenças , Epiderme/imunologia , Feminino , Glomérulos Renais/metabolismo , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Proteinúria/etiologia , Proteinúria/imunologia , Exacerbação dos Sintomas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA