Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Med Microbiol ; 314: 151598, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237287

RESUMO

Respiratory viral infections may have different impacts ranging from infection without symptoms to severe disease or even death though the reasons are not well characterized. A patient (age group 5-15 years) displaying symptoms of hemolytic uremic syndrome died one day after hospitalization. qPCR, next generation sequencing, virus isolation, antigenic characterization, resistance analysis was performed and virus replication kinetics in well-differentiated airway cells were determined. Autopsy revealed hemorrhagic pneumonia as major pathological manifestation. Lung samples harbored a large population of A(H1N1)pdm09 viruses with the polymorphism H456H/Y in PB1 polymerase. The H456H/Y viruses replicated much faster to high viral titers than upper respiratory tract viruses in vitro. H456H/Y-infected air-liquid interface cultures of differentiated airway epithelial cells did reflect a more pronounced loss of ciliated cells. A different pattern of virus quasispecies was found in the upper airway samples where substitution S263S/F (HA1) was observed. The data support the notion that viral quasispecies had evolved locally in the lung to support high replicative fitness. This change may have initiated further pathogenic processes leading to rapid dissemination of inflammatory mediators followed by development of hemorrhagic lung lesions and fatal outcome.


Assuntos
Síndrome Hemolítico-Urêmica , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Humanos , Pré-Escolar , Criança , Adolescente , Células Epiteliais , Pulmão , Influenza Humana/epidemiologia
2.
PLoS Biol ; 20(11): e3001871, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36383605

RESUMO

Epidemiological data demonstrate that Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) Alpha and Delta are more transmissible, infectious, and pathogenic than previous variants. Phenotypic properties of VOC remain understudied. Here, we provide an extensive functional study of VOC Alpha replication and cell entry phenotypes assisted by reverse genetics, mutational mapping of spike in lentiviral pseudotypes, viral and cellular gene expression studies, and infectivity stability assays in an enhanced range of cell and epithelial culture models. In almost all models, VOC Alpha spread less or equally efficiently as ancestral (B.1) SARS-CoV-2. B.1. and VOC Alpha shared similar susceptibility to serum neutralization. Despite increased relative abundance of specific sgRNAs in the context of VOC Alpha infection, immune gene expression in infected cells did not differ between VOC Alpha and B.1. However, inferior spreading and entry efficiencies of VOC Alpha corresponded to lower abundance of proteolytically cleaved spike products presumably linked to the T716I mutation. In addition, we identified a bronchial cell line, NCI-H1299, which supported 24-fold increased growth of VOC Alpha and is to our knowledge the only cell line to recapitulate the fitness advantage of VOC Alpha compared to B.1. Interestingly, also VOC Delta showed a strong (595-fold) fitness advantage over B.1 in these cells. Comparative analysis of chimeric viruses expressing VOC Alpha spike in the backbone of B.1, and vice versa, showed that the specific replication phenotype of VOC Alpha in NCI-H1299 cells is largely determined by its spike protein. Despite undetectable ACE2 protein expression in NCI-H1299 cells, CRISPR/Cas9 knock-out and antibody-mediated blocking experiments revealed that multicycle spread of B.1 and VOC Alpha required ACE2 expression. Interestingly, entry of VOC Alpha, as opposed to B.1 virions, was largely unaffected by treatment with exogenous trypsin or saliva prior to infection, suggesting enhanced resistance of VOC Alpha spike to premature proteolytic cleavage in the extracellular environment of the human respiratory tract. This property may result in delayed degradation of VOC Alpha particle infectivity in conditions typical of mucosal fluids of the upper respiratory tract that may be recapitulated in NCI-H1299 cells closer than in highly ACE2-expressing cell lines and models. Our study highlights the importance of cell model evaluation and comparison for in-depth characterization of virus variant-specific phenotypes and uncovers a fine-tuned interrelationship between VOC Alpha- and host cell-specific determinants that may underlie the increased and prolonged virus shedding detected in patients infected with VOC Alpha.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2/genética , Eliminação de Partículas Virais , Anticorpos Bloqueadores
3.
Sci Rep ; 12(1): 20608, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36446841

RESUMO

Influenza A virus (IAV) causes pandemics and annual epidemics of severe respiratory infections. A better understanding of the molecular regulation in tissue and cells upon IAV infection is needed to thoroughly understand pathogenesis. We analyzed IAV replication and gene expression induced by IAV strain H3N2 Panama in isolated primary human alveolar epithelial type II cells (AECIIs), the permanent A549 adenocarcinoma cell line, alveolar macrophages (AMs) and explanted human lung tissue by bulk RNA sequencing. Primary AECII exhibit in comparison to AM a broad set of strongly induced genes related to RIG-I and interferon (IFN) signaling. The response of AECII was partly mirrored in A549 cells. In human lung tissue, we observed induction of genes unlike in isolated cells. Viral RNA was used to correlate host cell gene expression changes with viral burden. While relative induction of key genes was similar, gene abundance was highest in AECII cells and AM, while weaker in the human lung (due to less IAV replication) and A549 cells (pointing to their limited suitability as a model). Correlation of host gene induction with viral burden allows a better understanding of the cell-type specific induction of pathways and a possible role of cellular crosstalk requiring intact tissue.


Assuntos
Vírus da Influenza A , Influenza Humana , Humanos , Células A549 , Transcriptoma , Vírus da Influenza A Subtipo H3N2 , Células Epiteliais Alveolares , Influenza Humana/genética
4.
Commun Biol ; 5(1): 1138, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302956

RESUMO

SARS-CoV-2 and its emerging variants of concern remain a major threat for global health. Here we introduce an infection model based upon polarized human Alveolar Epithelial Lentivirus immortalized (hAELVi) cells grown at the air-liquid interface to estimate replication and epidemic potential of respiratory viruses in the human lower respiratory tract. hAELVI cultures are highly permissive for different human coronaviruses and seasonal influenza A virus and upregulate various mediators following virus infection. Our analysis revealed a significantly reduced capacity of SARS-CoV-2 Omicron BA.1 and BA.2 variants to propagate in this human model compared to earlier D614G and Delta variants, which extends early risk assessments from epidemiological and animal studies suggesting a reduced pathogenicity of Omicron.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , SARS-CoV-2/genética , Pulmão , Células Epiteliais
5.
J Proteome Res ; 21(2): 459-469, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34982558

RESUMO

Severe acute respiratory syndrome (SARS)-CoV and SARS-CoV-2 infections are characterized by remarkable differences, including infectivity and case fatality rate. The underlying mechanisms are not well understood, illustrating major knowledge gaps of coronavirus biology. In this study, protein expression of the SARS-CoV- and SARS-CoV-2-infected human lung epithelial cell line Calu-3 was analyzed using data-independent acquisition-mass spectrometry. This resulted in a comprehensive map of infection-related proteome-wide expression changes in human cells covering the quantification of 7478 proteins across four time points. Most notably, the activation of interferon type-I response was observed, which is surprisingly absent in several proteome studies. The data reveal that SARS-CoV-2 triggers interferon-stimulated gene expression much stronger than SARS-CoV, which reflects the already described differences in interferon sensitivity. Potentially, this may be caused by the enhanced abundance of the viral M protein of SARS-CoV in comparison to SARS-CoV-2, which is a known inhibitor of type I interferon expression. This study expands the knowledge on the host response to SARS-CoV-2 infections on a global scale using an infection model, which seems to be well suited to analyze the innate immunity.


Assuntos
COVID-19 , Interferon Tipo I , Células Epiteliais , Expressão Gênica , Humanos , Imunidade Inata , Pulmão , Proteômica , SARS-CoV-2
6.
Allergy ; 77(7): 2080-2089, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34820854

RESUMO

BACKGROUND: The mRNA vaccine BNT162b2 (Comirnaty, BioNTech/Pfizer) and the vaccine candidate CVnCoV (Curevac) each encode a stabilized spike protein of SARS-CoV2 as antigen but differ with respect to the nature of the mRNA (modified versus unmodified nucleotides) and the mRNA amount (30 µg versus 12 µg RNA). This study characterizes antisera elicited by these two vaccines in comparison to convalescent sera. METHODS: Sera from BNT162b2 vaccinated healthcare workers, and sera from participants of a phase I trial vaccinated with 2, 4, 6, 8, or 12 µg CVnCoV and convalescent sera from hospitalized patients were analyzed by ELISA, neutralization tests, surface plasmon resonance (SPR), and peptide arrays. RESULTS: BNT162b2-elicited sera and convalescent sera have a higher titer of spike-RBD-specific antibodies and neutralizing antibodies as compared to the CVnCoV-elicited sera. For all analyzed sera a reduction in binding and neutralizing antibodies was found for the lineage B.1.351 variant of concern. SPR analyses revealed that the CVnCoV-elicited sera have a lower fraction of slow-dissociating antibodies. Accordingly, the CVnCoV sera almost fail to compete with the spike-ACE2 interaction. The significance of common VOC mutations K417N, E484K, or N501Y focused on linear epitopes was analyzed using a peptide array approach. The peptide arrays showed a strong difference between convalescent sera and vaccine-elicited sera. Specifically, the linear epitope at position N501 was affected by the mutation and elucidates the escape of viral variants to antibodies against this linear epitope. CONCLUSION: These data reveal differences in titer, neutralizing capacity, and affinity of the antibodies between BNT162b2- and CVnCoV-elicited sera, which could contribute to the apparent differences in vaccine efficacy.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/terapia , Ensaios Clínicos Fase I como Assunto , Epitopos , Humanos , Imunização Passiva , Peptídeos , RNA Mensageiro , RNA Viral , Vacinas Sintéticas , Vacinas de mRNA , Soroterapia para COVID-19
7.
Nat Commun ; 11(1): 4355, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859915

RESUMO

The genome of influenza A viruses (IAV) is encoded in eight distinct viral ribonucleoproteins (vRNPs) that consist of negative sense viral RNA (vRNA) covered by the IAV nucleoprotein. Previous studies strongly support a selective packaging model by which vRNP segments are bundling to an octameric complex, which is integrated into budding virions. However, the pathway(s) generating a complete genome bundle is not known. We here use a multiplexed FISH assay to monitor all eight vRNAs in parallel in human lung epithelial cells. Analysis of 3.9 × 105 spots of colocalizing vRNAs provides quantitative insights into segment composition of vRNP complexes and, thus, implications for bundling routes. The complexes rarely contain multiple copies of a specific segment. The data suggest a selective packaging mechanism with limited flexibility by which vRNPs assemble into a complete IAV genome. We surmise that this flexibility forms an essential basis for the development of reassortant viruses with pandemic potential.


Assuntos
Vírus da Influenza A/genética , Vírus da Influenza A/fisiologia , RNA Viral/genética , Montagem de Vírus/genética , Montagem de Vírus/fisiologia , Células A549 , Células Epiteliais/virologia , Evolução Molecular , Humanos , Hibridização In Situ , Vírus da Influenza A Subtipo H3N2 , Influenza Humana/virologia , Pulmão , Modelos Teóricos , Ribonucleoproteínas/metabolismo
8.
EMBO Mol Med ; 12(5): e10938, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32163240

RESUMO

The current seasonal inactivated influenza vaccine protects only against a narrow range of virus strains as it triggers a dominant antibody response toward the hypervariable hemagglutinin (HA) head region. The discovery of rare broadly protective antibodies against conserved regions in influenza virus proteins has propelled research on distinct antigens and delivery methods to efficiently induce broad immunity toward drifted or shifted virus strains. Here, we report that adeno-associated virus (AAV) vectors expressing influenza virus HA or chimeric HA protected mice against homologous and heterologous virus challenges. Unexpectedly, immunization even with wild-type HA induced antibodies recognizing the HA-stalk and activating FcγR-dependent responses indicating that AAV-vectored expression balances HA head- and HA stalk-specific humoral responses. Immunization with AAV-HA partially protected also ferrets against a harsh virus challenge. Results from this study provide a rationale for further clinical development of AAV vectors as influenza vaccine platform, which could benefit from their approved use in human gene therapy.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Dependovirus/genética , Furões , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Influenza Humana/prevenção & controle , Camundongos , Infecções por Orthomyxoviridae/prevenção & controle
10.
PLoS One ; 13(9): e0203788, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30199549

RESUMO

BACKGROUND: Acute lower respiratory tract infection (ALRI) is a leading cause of childhood morbidity and mortality in developing countries. Globally, human respiratory syncytial virus (HRSV) is the most common pathogen of ALRI in infants and children. However, age-stratified HRSV disease burden data are largely absent from Africa, which is a key gap in informing an evidence-based recommendation for the introduction of an HRSV vaccine by the WHO. METHODS: This study investigated the presence of HRSV in respiratory specimens from 552 children <5 years old with ALRI from Accra, Ghana in 2006 and 2013-2014 by real-time PCR. Of HRSV-positive samples the second hypervariable region of the viral G protein gene was sequenced and analyzed for phylogeny, characteristic amino acid substitutions, and potential glycosylation patterns. Further, HRSV infections have been characterized by age, symptoms and timely occurrence. RESULTS: HRSV was observed in 23% (127/552) of the children with ALRI, with the highest incidence in infants younger than one year (33%, 97/295, p = 0.013). Within the observed seasonal circulation time of HRSV from June (mid-wet season) to December (beginning of the dry season) the incidence of ALRI due to HRSV was as high as 46% (125/273). HRSV disease was significantly associated with (broncho-) pneumonia, bronchiolitis, LRTI, and difficulty in breathing. Phylogenetic characterization of HRSV strains from Ghana identified the circulation of the currently worldwide prevailing genotypes ON1 and BA9, and shows evidence of an independent molecular evolution of ON1 and BA9 strains in Ghana resulting in potentially new subgenotypes within ON1 and BA9, provisionally named ON1.5, ON1.6, and BA9-IV. CONCLUSION: This study addresses important knowledge gaps in the forefront of introducing the HRSV vaccine by providing information on the molecular evolution and incidence of HRSV in Accra (Ghana, Africa).


Assuntos
Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/genética , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/virologia , Sequência de Aminoácidos , Pré-Escolar , DNA Viral/genética , Feminino , Genes Virais , Gana/epidemiologia , Humanos , Lactente , Recém-Nascido , Masculino , Epidemiologia Molecular , Filogenia , Estudos Prospectivos , Vírus Sincicial Respiratório Humano/classificação , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Proteínas Virais de Fusão/genética
11.
Int J Mol Sci ; 19(7)2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29949917

RESUMO

Virus infections induce sensitive antiviral responses within the host cell. The RNA helicase retinoic acid-inducible gene I (RIG-I) is a key sensor of influenza virus RNA that induces the expression of antiviral type I interferons. Recent evidence suggests a complex pattern of RIG-I regulation involving multiple interactions and cellular sites. In an approach employing affinity purification and quantitative mass spectrometry, we identified proteins with increased binding to RIG-I in response to influenza B virus infection. Among them was the RIG-I related RNA helicase DEAD box helicase 6 (DDX6), a known component of cytoplasmic mRNA-ribonucleoprotein (mRNP) granules like P-bodies and stress granules (SGs). RIG-I and DDX6 both localized to the cytosol and were detected in virus-induced SGs. Coimmunoprecipitation assays detected a basal level of complexes harboring RIG-I and DDX6 that increased after infection. Functionally, DDX6 augmented RIG-I mediated induction of interferon (IFN)-ß expression. Notably, DDX6 was found to bind viral RNA capable to stimulate RIG-I. These findings imply a novel function for DDX6 as an RNA co-sensor and signaling enhancer for RIG-I.


Assuntos
Antivirais/metabolismo , Proteína DEAD-box 58/metabolismo , RNA Helicases DEAD-box/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Células A549 , Grânulos Citoplasmáticos/metabolismo , Proteína DEAD-box 58/química , Regulação da Expressão Gênica , Células HeLa , Humanos , Interferon beta/genética , Interferon beta/metabolismo , Ligação Proteica , Domínios Proteicos , Transporte Proteico , RNA Viral/metabolismo , Receptores Imunológicos
12.
Sci Rep ; 7(1): 8629, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28819179

RESUMO

In recent years genome-wide RNAi screens have revealed hundreds of cellular factors required for influenza virus infections in human cells. The long-term goal is to establish some of them as drug targets for the development of the next generation of antivirals against influenza. We found that several members of the polo-like kinases (PLK), a family of serine/threonine kinases with well-known roles in cell cycle regulation, were identified as hits in four different RNAi screens and we therefore studied their potential as drug target for influenza. We show that knockdown of PLK1, PLK3, and PLK4, as well as inhibition of PLK kinase activity by four different compounds, leads to reduced influenza virus replication, and we map the requirement of PLK activity to early stages of the viral replication cycle. We also tested the impact of the PLK inhibitor BI2536 on influenza virus replication in a human lung tissue culture model and observed strong inhibition of virus replication with no measurable toxicity. This study establishes the PLKs as potential drug targets for influenza and contributes to a more detailed understanding of the intricate interactions between influenza viruses and their host cells.


Assuntos
Vírus da Influenza A/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Replicação Viral/efeitos dos fármacos , Células A549 , Animais , Antimitóticos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cães , Glicina/análogos & derivados , Glicina/farmacologia , Células HEK293 , Humanos , Vírus da Influenza A/fisiologia , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Pteridinas/farmacologia , Interferência de RNA , Sulfonas/farmacologia , Proteínas Supressoras de Tumor , Quinase 1 Polo-Like
13.
Mol Cell Proteomics ; 16(5): 728-742, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28289176

RESUMO

Influenza A virus (IAV) infections are a major cause for respiratory disease in humans, which affects all age groups and contributes substantially to global morbidity and mortality. IAV have a large natural host reservoir in avian species. However, many avian IAV strains lack adaptation to other hosts and hardly propagate in humans. While seasonal or pandemic IAV strains replicate efficiently in permissive human cells, many avian IAV cause abortive nonproductive infections in these hosts despite successful cell entry. However, the precise reasons for these differential outcomes are poorly defined. We hypothesized that the distinct course of an IAV infection with a given virus strain is determined by the differential interplay between specific host and viral factors. By using Spike-in SILAC mass spectrometry-based quantitative proteomics we characterized sets of cellular factors whose abundance is specifically up- or downregulated in the course of permissive versus nonpermissive IAV infection, respectively. This approach allowed for the definition and quantitative comparison of about 3500 proteins in human lung epithelial cells in response to seasonal or low-pathogenic avian H3N2 IAV. Many identified proteins were similarly regulated by both virus strains, but also 16 candidates with distinct changes in permissive versus nonpermissive infection were found. RNAi-mediated knockdown of these differentially regulated host factors identified Vpr binding protein (VprBP) as proviral host factor because its downregulation inhibited efficient propagation of seasonal IAV whereas overexpression increased viral replication of both seasonal and avian IAV. These results not only show that there are similar differences in the overall changes during permissive and nonpermissive influenza virus infections, but also provide a basis to evaluate VprBP as novel anti-IAV drug target.


Assuntos
Proteínas de Transporte/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Vírus da Influenza A Subtipo H3N2/fisiologia , Influenza Humana/virologia , Proteômica/métodos , Células A549 , Análise por Conglomerados , Endocitose , Células Epiteliais/patologia , Células HEK293 , Humanos , Marcação por Isótopo , Pulmão/patologia , Espectrometria de Massas , Proteínas Serina-Treonina Quinases , Proteoma/metabolismo , RNA Interferente Pequeno/metabolismo , Ubiquitina-Proteína Ligases , Replicação Viral
14.
J Clin Invest ; 126(4): 1566-80, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26999599

RESUMO

Influenza A viruses (IAV) can cause lung injury and acute respiratory distress syndrome (ARDS), which is characterized by accumulation of excessive fluid (edema) in the alveolar airspaces and leads to hypoxemia and death if not corrected. Clearance of excess edema fluid is driven mostly by the alveolar epithelial Na,K-ATPase and is crucial for survival of patients with ARDS. We therefore investigated whether IAV infection alters Na,K-ATPase expression and function in alveolar epithelial cells (AECs) and the ability of the lung to clear edema. IAV infection reduced Na,K-ATPase in the plasma membrane of human and murine AECs and in distal lung epithelium of infected mice. Moreover, induced Na,K-ATPase improved alveolar fluid clearance (AFC) in IAV-infected mice. We identified a paracrine cell communication network between infected and noninfected AECs and alveolar macrophages that leads to decreased alveolar epithelial Na,K-ATPase function and plasma membrane abundance and inhibition of AFC. We determined that the IAV-induced reduction of Na,K-ATPase is mediated by a host signaling pathway that involves epithelial type I IFN and an IFN-dependent elevation of macrophage TNF-related apoptosis-inducing ligand (TRAIL). Our data reveal that interruption of this cellular crosstalk improves edema resolution, which is of biologic and clinical importance to patients with IAV-induced lung injury.


Assuntos
Vírus da Influenza A/imunologia , Interferon Tipo I/imunologia , Macrófagos Alveolares/imunologia , Infecções por Orthomyxoviridae/imunologia , Comunicação Parácrina/imunologia , Edema Pulmonar/imunologia , Mucosa Respiratória/imunologia , Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Animais , Humanos , Macrófagos Alveolares/patologia , Camundongos , Infecções por Orthomyxoviridae/patologia , Alvéolos Pulmonares/patologia , Edema Pulmonar/patologia , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/patologia , Mucosa Respiratória/patologia , ATPase Trocadora de Sódio-Potássio/imunologia
15.
PLoS Pathog ; 11(5): e1004924, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26024522

RESUMO

Influenza A virus (IAV) defective RNAs are generated as byproducts of error-prone viral RNA replication. They are commonly derived from the larger segments of the viral genome and harbor deletions of various sizes resulting in the generation of replication incompatible viral particles. Furthermore, small subgenomic RNAs are known to be strong inducers of pattern recognition receptor RIG-I-dependent type I interferon (IFN) responses. The present study identifies a novel IAV-induced defective RNA derived from the PB2 segment of A/Thailand/1(KAN-1)/2004 (H5N1). It encodes a 10 kDa protein (PB2∆) sharing the N-terminal amino acid sequence of the parental PB2 protein followed by frame shift after internal deletion. PB2∆ induces the expression of IFNß and IFN-stimulated genes by direct interaction with the cellular adapter protein MAVS, thereby reducing viral replication of IFN-sensitive viruses such as IAV or vesicular stomatitis virus. This induction of IFN is completely independent of the defective RNA itself that usually serves as pathogen-associated pattern and thus does not require the cytoplasmic sensor RIG-I. These data suggest that not only defective RNAs, but also some defective RNA-encoded proteins can act immunostimulatory. In this particular case, the KAN-1-induced defective RNA-encoded protein PB2∆ enhances the overwhelming immune response characteristic for highly pathogenic H5N1 viruses, leading to a more severe phenotype in vivo.


Assuntos
Vírus da Influenza A/fisiologia , Interferon Tipo I/metabolismo , Infecções por Orthomyxoviridae/metabolismo , RNA Viral/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/metabolismo , Animais , Northern Blotting , Western Blotting , Testes de Hemaglutinação , Imunoprecipitação , Interferon Tipo I/genética , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/virologia , RNA Mensageiro/genética , RNA Polimerase Dependente de RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Células Tumorais Cultivadas , Proteínas Virais/genética , Replicação Viral
16.
Nat Commun ; 5: 5645, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25487526

RESUMO

The type I interferon (IFN) response represents the first line of defence to invading pathogens. Internalized viral ribonucleoproteins (vRNPs) of negative-strand RNA viruses induce an early IFN response by interacting with retinoic acid inducible gene I (RIG-I) and its recruitment to mitochondria. Here we employ three-dimensional stochastic optical reconstruction microscopy (STORM) to visualize incoming influenza A virus (IAV) vRNPs as helical-like structures associated with mitochondria. Unexpectedly, an early IFN induction in response to vRNPs is not detected. A distinct amino-acid motif in the viral polymerases, PB1/PA, suppresses early IFN induction. Mutation of this motif leads to reduced pathogenicity in vivo, whereas restoration increases it. Evolutionary dynamics in these sequences suggest that completion of the motif, combined with viral reassortment can contribute to pandemic risks. In summary, inhibition of the immediate anti-viral response is 'pre-packaged' in IAV in the sequences of vRNP-associated polymerase proteins.


Assuntos
RNA Helicases DEAD-box/química , Vírus da Influenza A/patogenicidade , Interferon Tipo I/imunologia , Mitocôndrias/virologia , Vírion/química , Motivos de Aminoácidos , Animais , Linhagem Celular Tumoral , Proteína DEAD-box 58 , Evolução Molecular , Feminino , Humanos , Imageamento Tridimensional , Pulmão/imunologia , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Vírus de RNA/patogenicidade , Receptores Imunológicos , Carga Viral , Proteínas Virais/química , Virulência
17.
Bioorg Med Chem Lett ; 24(17): 4312-7, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25096296

RESUMO

The constant risk of emerging new influenza virus strains that are resistant to established inhibitors like oseltamivir leaves influenza neuraminidase (NA) a prominent target for drug design. The inhibitory activity of several flavonoid derivatives was experimentally tested in comparison to oseltamivir for the NA expressed by the seasonal influenza virus strains A/California/7/09 (A(H1N1)pdm09), A/Perth/16/09 (A(H3N2)), and B/Brisbane/60/08. IC50 values of polyphenols confirmed moderate inhibition in the µM range. Structurally, the amount and site of glycosylation of tested flavonoids have no significant influence on their inhibitory potency. In a pharmacophore-based docking approach the structure-activity relationship was evaluated. Molecular dynamics simulations revealed highly flexible parts of the enzyme and the contribution of salt bridges to the structural stability of NA. The findings of this study elucidate the impact of flavonoids on viral neuraminidase activity and the analysis of their modes of action provide valuable information about the mechanism of NA inhibition.


Assuntos
Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Vírus da Influenza A/enzimologia , Vírus da Influenza B/enzimologia , Neuraminidase/antagonistas & inibidores , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Flavonoides/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Neuraminidase/metabolismo , Relação Estrutura-Atividade
18.
J Virol ; 88(19): 11215-28, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25031344

RESUMO

UNLABELLED: During the budding process, influenza A viruses (IAVs) incorporate multiple host cell membrane proteins. However, for most of them, their significance in viral morphogenesis and infectivity remains unknown. We demonstrate here that the expression of annexin V (A5) is upregulated at the cell surface upon IAV infection and that a substantial proportion of the protein is present in lipid rafts, the site of virus budding. Western blotting and immunogold analysis of highly purified IAV particles showed the presence of A5 in the virion. Significantly, gamma interferon (IFN-γ)-induced Stat phosphorylation and IFN-γ-induced 10-kDa protein (IP-10) production in macrophage-derived THP-1 cells was inhibited by purified IAV particles. Disruption of the IFN-γ signaling pathway was A5 dependent since downregulation of its expression or its blockage reversed the inhibition and resulted in decreased viral replication in vitro. The functional significance of these results was also observed in vivo. Thus, IAVs can subvert the IFN-γ antiviral immune response by incorporating A5 into their envelope during the budding process. IMPORTANCE: Many enveloped viruses, including influenza A viruses, bud from the plasma membrane of their host cells and incorporate cellular surface proteins into viral particles. However, for the vast majority of these proteins, only the observation of their incorporation has been reported. We demonstrate here that the host protein annexin V is specifically incorporated into influenza virus particles during the budding process. Importantly, we showed that packaged annexin V counteracted the antiviral activity of gamma interferon in vitro and in vivo. Thus, these results showed that annexin V incorporated in the viral envelope of influenza viruses allow viral escape from immune surveillance. Understanding the role of host incorporated protein into virions may reveal how enveloped RNA viruses hijack the host cell machinery for their own purposes.


Assuntos
Anexina A5/genética , Vírus da Influenza A/genética , Transdução de Sinais/genética , Vírion/genética , Replicação Viral , Animais , Anexina A5/metabolismo , Linhagem Celular Tumoral , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Cães , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A/metabolismo , Interferon gama/antagonistas & inibidores , Interferon gama/metabolismo , Interferon gama/farmacologia , Células Madin Darby de Rim Canino , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Camundongos , Monócitos/metabolismo , Monócitos/virologia , Transporte Proteico , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Carga Viral , Vírion/química , Vírion/metabolismo , Liberação de Vírus
19.
Cell Microbiol ; 16(12): 1854-74, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25052580

RESUMO

The non-structural protein 1 (NS1) of influenza A viruses (IAV) encodes several src homology (SH) binding motifs (bm) (one SH2bm, up to two SH3bm), which mediate interactions with host cell proteins. In contrast to NS1 of human IAV, NS1 of avian strains possess the second SH3bm (SH3(II)bm) consensus sequence. Since our former studies demonstrated an NS1-CRK interaction, mediated by this motif, here, we addressed the regulatory properties of this SH3bm for cellular signalling. Initially, we observed a reduced basal CRK phosphorylation upon infection with avian IAV harbouring an NS1 with an SH3(II)bm in contrast to human IAV. Reduced activity of the tyrosine kinase c-Abl was identified to be responsible for reduced CRK phosphorylation. Further, binding of NS1 to c-Abl was determined, and mutational manipulation of the SH3(II)bm illustrated the necessity of this motif for c-Abl inhibition. Interestingly, Abl kinase inhibition resulted in impaired avian IAV propagation and pathogenicity and mutational analysis linked the pronounced inhibition of c-Abl to cytopathogenic cell alterations upon avian IAV infections. Taken together, NS1 proteins of avian IAV interfere with the kinase activity of c-Abl, a major cellular signalling integrator that controls multiple signalling processes and cell fate regulations apparently including IAV infections.


Assuntos
Interações Hospedeiro-Patógeno , Vírus da Influenza A/fisiologia , Influenza Aviária/virologia , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Animais , Aves , Linhagem Celular , Humanos , Vírus da Influenza A/isolamento & purificação , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA