Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 325(1): C344-C361, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37125773

RESUMO

Kidney stones (KSs) are very common, excruciating, and associated with tremendous healthcare cost, chronic kidney disease (CKD), and kidney failure (KF). Most KSs are composed of calcium oxalate and small increases in urinary oxalate concentration significantly enhance the stone risk. Oxalate also potentially contributes to CKD progression, kidney disease-associated cardiovascular diseases, and poor renal allograft survival. This emphasizes the urgent need for plasma and urinary oxalate lowering therapies, which can be achieved by enhancing enteric oxalate secretion. We previously identified Oxalobacter formigenes (O. formigenes)-derived factors secreted in its culture-conditioned medium (CM), which stimulate oxalate transport by human intestinal Caco2-BBE (C2) cells and reduce urinary oxalate excretion in hyperoxaluric mice by enhancing colonic oxalate secretion. Given their remarkable therapeutic potential, we now identified Sel1-like proteins as the major O. formigenes-derived secreted factors using mass spectrometry and functional assays. Crystal structures for six proteins were determined to confirm structures and better understand functions. OxBSel1-14-derived small peptides P8 and P9 were identified as the major factors, with P8 + 9 closely recapitulating the CM's effects, acting through the oxalate transporters SLC26A2 and SLC26A6 and PKA activation. Besides C2 cells, P8 + 9 also stimulate oxalate transport by human ileal and colonic organoids, confirming that they work in human tissues. In conclusion, P8 and P9 peptides are identified as the major O. formigenes-derived secreted factors and they have significant therapeutic potential for hyperoxalemia, hyperoxaluria, and related disorders, impacting the outcomes of patients suffering from KSs, enteric hyperoxaluria, primary hyperoxaluria, CKD, KF, and renal transplant recipients.NEW & NOTEWORTHY We previously identified Oxalobacter formigenes-derived secreted factors stimulating oxalate transport by human intestinal epithelial cells in vitro and reducing urinary oxalate excretion in hyperoxaluric mice by enhancing colonic oxalate secretion. We now identified Sel1-like proteins and small peptides as the major secreted factors and they have significant therapeutic potential for hyperoxalemia and hyperoxaluria, impacting the outcomes of patients suffering from kidney stones, primary and secondary hyperoxaluria, chronic kidney disease, kidney failure, and renal transplant recipients.


Assuntos
Hiperoxalúria , Cálculos Renais , Transplante de Rim , Insuficiência Renal Crônica , Insuficiência Renal , Humanos , Camundongos , Animais , Oxalobacter formigenes/metabolismo , Células CACO-2 , Oxalatos/metabolismo , Hiperoxalúria/metabolismo , Cálculos Renais/metabolismo , Células Epiteliais/metabolismo , Peptídeos/metabolismo , Insuficiência Renal/metabolismo , Insuficiência Renal Crônica/metabolismo
2.
Cell Rep ; 37(7): 110004, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34788624

RESUMO

Polyphosphate (polyP) is a polymer of hundreds of phosphate residues present in all organisms. In mammals, polyP is involved in crucial physiological processes, including coagulation, inflammation, and stress response. However, after decades of research, the metabolic enzymes are still unknown. Here, we purify and identify Nudt3, a NUDIX family member, as the enzyme responsible for polyP phosphatase activity in mammalian cells. We show that Nudt3 shifts its substrate specificity depending on the cation; specifically, Nudt3 is active on polyP when Zn2+ is present. Nudt3 has in vivo polyP phosphatase activity in human cells, and importantly, we show that cells with altered polyP levels by modifying Nudt3 protein amount present reduced viability upon oxidative stress and increased DNA damage, suggesting that polyP and Nudt3 play a role in oxidative stress protection. Finally, we show that Nudt3 is involved in the early stages of embryo development in zebrafish.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Estresse Oxidativo/fisiologia , Polifosfatos/metabolismo , Hidrolases Anidrido Ácido/genética , Hidrolases Anidrido Ácido/fisiologia , Animais , Células HEK293 , Humanos , Masculino , Mamíferos/metabolismo , Oxirredução , Monoéster Fosfórico Hidrolases/fisiologia , Ratos , Ratos Sprague-Dawley , Especificidade por Substrato/fisiologia , Peixe-Zebra , Zinco/metabolismo
3.
PLoS One ; 15(3): e0228871, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32119684

RESUMO

Exosomes are extracellular vesicles (EVs) of ~20-200 nm diameter that shuttle DNAs, RNAs, proteins and other biomolecules between cells. The large number of biomolecules present in exosomes demands the frequent use of high-throughput analysis. This, in turn, requires technical replicates (TRs), and biological replicates (BRs) to produce accurate results. As the number and abundance of identified biomolecules varies between replicates (Rs), establishing the replicate variability predicted for the event under study is essential in determining the number of Rs required. Although there have been few reports of replicate variability in high throughput biological data, none of them focused on exosomes. Herein, we determined the replicate variability in protein profiles found in exosomes released from 3 lung adenocarcinoma cell lines, H1993, A549 and H1975. Since exosome isolates are invariably contaminated by a small percentage of ~200-300 nm microvesicles, we refer to our samples as exosome-enriched EVs (EE-EVs). We generated BRs of EE-EVs from each cell line, and divided each group into 3 TRs. All Rs were analyzed by liquid chromatography/mass spectrometry (LC/MS/MS) and customized bioinformatics and biostatistical workflows (raw data available via ProteomeXchange: PXD012798). We found that the variability among TRs as well as BRs, was largely qualitative (protein present or absent) and higher among BRs. By contrast, the quantitative (protein abundance) variability was low, save for the H1975 cell line where the quantitative variability was significant. Importantly, our replicate strategy identified 90% of the most abundant proteins, thereby establishing the utility of our approach.


Assuntos
Exossomos/química , Vesículas Extracelulares/química , Proteínas/análise , Proteômica/métodos , Células A549 , Biologia Computacional/métodos , Humanos
4.
Mol Oncol ; 13(9): 1927-1943, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31225926

RESUMO

Radioresistance is a major hurdle in the treatment of head and neck squamous cell carcinoma (HNSCC). Here, we report that concomitant treatment of HNSCCs with radiotherapy and mevalonate pathway inhibitors (statins) may overcome resistance. Proteomic profiling and comparison of radioresistant to radiosensitive HNSCCs revealed differential regulation of the mevalonate biosynthetic pathway. Consistent with this finding, inhibition of the mevalonate pathway by pitavastatin sensitized radioresistant SQ20B cells to ionizing radiation and reduced their clonogenic potential. Overall, this study reinforces the view that the mevalonate pathway is a promising therapeutic target in radioresistant HNSCCs.


Assuntos
Neoplasias de Cabeça e Pescoço/metabolismo , Proteínas de Neoplasias/biossíntese , Proteômica , Quinolinas/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Ácido Mevalônico , Radiação Ionizante , Estudos Retrospectivos , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia
5.
Exp Mol Med ; 51(4): 1-17, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30992425

RESUMO

CDK16 (also known as PCTAIRE1 or PCTK1) is an atypical member of the cyclin-dependent kinase (CDK) family that forms an active complex with cyclin Y (CCNY). Although both proteins have been recently implicated in cancer pathogenesis, it is still unclear how the CDK16/CCNY complex exerts its biological activity. To understand the CDK16/CCNY network, we used complementary proteomic approaches to identify potential substrates of this complex. We identified several candidates implicating the CDK16/CCNY complex in cytoskeletal dynamics, and we focused on the microtubule-associated protein regulator of cytokinesis (PRC1), an essential protein for cell division that organizes antiparallel microtubules and whose deregulation may drive genomic instability in cancer. Using analog-sensitive (AS) CDK16 generated by CRISPR-Cas9 mutagenesis in 293T cells, we found that specific inhibition of CDK16 induces PRC1 dephosphorylation at Thr481 and delocalization to the nucleus during interphase. The observation that CDK16 inhibition and PRC1 downregulation exhibit epistatic effects on cell viability confirms that these proteins can act through a single pathway. In conclusion, we identified PRC1 as the first substrate of the CDK16/CCNY complex and demonstrated that the proliferative function of CDK16 is mediated by PRC1 phosphorylation. As CDK16 is emerging as a critical node in cancer, our study reveals novel potential therapeutic targets.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Proteínas de Ciclo Celular/genética , Divisão Celular/genética , Divisão Celular/fisiologia , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Quinases Ciclina-Dependentes/genética , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Fosforilação , Ligação Proteica/genética , Ligação Proteica/fisiologia
6.
Cell Death Discov ; 3: 17075, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29090099

RESUMO

At their proliferative limit, normal cells arrest and undergo replicative senescence, displaying large cell size, flat morphology, and senescence-associated beta-galactosidase (SA-ß-Gal) activity. Normal or tumor cells exposed to genotoxic stress undergo therapy-induced senescence (TIS), displaying a similar phenotype. Senescence is considered a DNA damage response, but cellular heterogeneity has frustrated identification of senescence-specific markers and targets. To explore the senescent cell proteome, we treated tumor cells with etoposide and enriched SA-ß-GalHI cells by fluorescence-activated cell sorting (FACS). The enriched TIS cells were compared to proliferating or quiescent cells by label-free quantitative LC-MS/MS proteomics and systems analysis, revealing activation of multiple lipid metabolism pathways. Senescent cells accumulated lipid droplets and imported lipid tracers, while treating proliferating cells with specific lipids induced senescence. Senescent cells also displayed increased lipid aldehydes and upregulation of aldehyde detoxifying enzymes. These results place deregulation of lipid metabolism alongside genotoxic stress as factors regulating cellular senescence.

7.
J Biol Chem ; 291(53): 27239-27251, 2016 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-27836973

RESUMO

TGF-ß promotes excessive collagen deposition in fibrotic diseases such as idiopathic pulmonary fibrosis (IPF). The amino acid composition of collagen is unique due to its high (33%) glycine content. Here, we report that TGF-ß induces expression of glycolytic genes and increases glycolytic flux. TGF-ß also induces the expression of the enzymes of the de novo serine synthesis pathway (phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase 1 (PSAT1), and phosphoserine phosphatase (PSPH)) and de novo glycine synthesis (serine hydroxymethyltransferase 2 (SHMT2)). Studies in fibroblasts with genetic attenuation of PHGDH or SHMT2 and pharmacologic inhibition of PHGDH showed that these enzymes are required for collagen synthesis. Furthermore, metabolic labeling experiments demonstrated carbon from glucose incorporated into collagen. Lungs from humans with IPF demonstrated increased expression of PHGDH and SHMT2. These results indicate that the de novo serine synthesis pathway is necessary for TGF-ß-induced collagen production and suggest that this pathway may be a therapeutic target for treatment of fibrotic diseases including IPF.


Assuntos
Colágeno/metabolismo , Fibroblastos/metabolismo , Glicina Hidroximetiltransferase/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Fosfoglicerato Desidrogenase/metabolismo , Serina/biossíntese , Fator de Crescimento Transformador beta/farmacologia , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Glicina Hidroximetiltransferase/genética , Glicólise , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Pulmão/citologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Fosfoglicerato Desidrogenase/genética
8.
Arthritis Rheumatol ; 66(12): 3359-70, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25306868

RESUMO

OBJECTIVE: In lupus nephritis (LN), severe tubulointerstitial inflammation (TII) predicts progression to renal failure. Severe TII is associated with tertiary lymphoid neogenesis and in situ antigen-driven clonal B cell selection. The autoantigen(s) driving in situ B cell selection in TII are not known. This study was undertaken to identify the dominant driving autoantigen(s). METHODS: Single CD38+ or Ki-67+ B cells were laser captured from 7 biopsy specimens that were diagnostic for LN. Eighteen clonally expanded immunoglobulin heavy- and light-chain variable region pairs were cloned and expressed as monoclonal antibodies. Seven more antibodies were cloned from flow-sorted CD38+ cells from an eighth biopsy specimen. Antigen characterization was performed using a combination of confocal microscopy, enzyme-linked immunosorbent assay, screening protoarrays, immunoprecipitation, and mass spectrometry. Serum IgG titers to the dominant antigen in 48 LN and 35 non-nephritic lupus samples were determined using purified antigen-coated arrays. Autoantigen expression on normal and LN kidney was localized by immunohistochemistry and immunofluorescence. RESULTS: Eleven of 25 antibodies reacted with cytoplasmic structures, 4 reacted with nuclei, and none reacted with double-stranded DNA. Vimentin was the only autoantigen identified by both mass spectrometry and protoarray. Ten of the 11 anticytoplasmic TII antibodies directly bound vimentin. Vimentin was highly expressed by tubulointerstitial inflammatory cells, and the TII antibodies tested preferentially bound inflamed tubulointerstitium. Finally, high titers of serum antivimentin antibodies were associated with severe TII (P = 0.0001). CONCLUSION: Vimentin, an antigenic feature of inflammation, is a dominant autoantigen targeted in situ in LN TII. This adaptive autoimmune response likely feeds forward to worsen TII and renal damage.


Assuntos
Autoanticorpos/imunologia , Autoantígenos/imunologia , Rim/imunologia , Nefrite Lúpica/imunologia , Nefrite Intersticial/imunologia , Vimentina/imunologia , Adolescente , Adulto , Biópsia , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática , Humanos , Imunidade Humoral , Imuno-Histoquímica , Imunoprecipitação , Inflamação , Rim/patologia , Nefrite Lúpica/patologia , Espectrometria de Massas , Microscopia Confocal , Nefrite Intersticial/patologia , Índice de Gravidade de Doença , Adulto Jovem
9.
Mol Cancer Res ; 10(8): 1065-76, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22679108

RESUMO

GSK-3 is a serine/threonine kinase involved in a diverse range of cellular processes. GSK-3 exists in two isoforms, GSK-3α and GSK-3ß, which possess some functional redundancy but also play distinct roles depending on developmental and cellular context. In this article, we found that GSK-3 actively promoted cell growth and survival in melanoma cells, and blocking this activity with small-molecule inhibitor SB216763 or gene-specific siRNA decreased proliferation, increased apoptosis, and altered cellular morphology. These alterations coincided with loss of PAX3, a transcription factor implicated in proliferation, survival, and migration of developing melanoblasts. We further found that PAX3 directly interacted with and was phosphorylated in vitro on a number of residues by GSK-3ß. In melanoma cells, direct inhibition of PAX3 lead to cellular changes that paralleled the response to GSK-3 inhibition. Maintenance of PAX3 expression protected melanoma cells from the anti-tumor effects of SB216763. These data support a model wherein GSK-3 regulates proliferation and morphology of melanoma through phosphorylation and increased levels of PAX3.


Assuntos
Quinase 3 da Glicogênio Sintase , Melanoma , Fatores de Transcrição Box Pareados , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Indóis/farmacologia , Maleimidas/farmacologia , Melanoma/genética , Melanoma/metabolismo , Fator de Transcrição PAX3 , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Interferência de RNA , Transdução de Sinais
10.
Sci Signal ; 4(182): ra46, 2011 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-21775285

RESUMO

Signaling through the kinase Akt regulates many biological functions. Akt is activated during growth factor stimulation through a process that requires binding of Akt to phosphatidylinositol 3,4,5-trisphosphate (PIP(3)), which promotes membrane localization and phosphorylation of Akt by the upstream kinase PDK1 (phosphoinositide-dependent protein kinase 1). We show that Akt and PDK1 are acetylated at lysine residues in their pleckstrin homology domains, which mediate PIP(3) binding. Acetylation blocked binding of Akt and PDK1 to PIP(3), thereby preventing membrane localization and phosphorylation of Akt. Deacetylation by SIRT1 enhanced binding of Akt and PDK1 to PIP(3) and promoted their activation. Mice injected with cells expressing a mutant that mimicked a constitutively acetylated form of Akt developed smaller tumors than those injected with cells expressing wild-type Akt. Furthermore, impaired Akt activation in the hearts of SIRT1-deficient mice was associated with reduced cardiac hypertrophy in response to physical exercise and angiotensin II. These findings uncover a key posttranslational modification of Akt that is important for its oncogenic and hypertrophic activities.


Assuntos
Cardiomegalia/metabolismo , Membrana Celular/metabolismo , Transformação Celular Neoplásica/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirtuína 1/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Acetilação , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Membrana Celular/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Ativação Enzimática/genética , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Mutação , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilação/genética , Ligação Proteica/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Sirtuína 1/genética
11.
Mol Cell Biol ; 31(11): 2349-63, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21444723

RESUMO

Like phosphorylation, acetylation of lysine residues within a protein is considered a biologically relevant modification that controls the activity of target proteins. During stress of cells, massive protein acetylation takes place. Here, we show that p38 mitogen-activated protein kinase (MAPK), which controls many biological functions during stress, is reversibly acetylated by PCAF/p300 and HDAC3. We identified two acetylated lysine residues, K152 and K53, located in the substrate binding domain and in the ATP-binding pocket of p38, respectively. Acetylation of lysine 53 enhanced the activity of p38 by increasing its affinity for ATP binding. The enhanced acetylation and activation of p38 were found to be in parallel with reduced intracellular ATP levels in cardiomyocytes under stress, as well as in vivo models of cardiac hypertrophy. Thus, our data show, for the first time, that p38 activity is critically regulated by, in addition to phosphorylation, reversible acetylation of a lysine residue, which is conserved in other kinases, implying the possibility of a similar mechanism regulating their activity.


Assuntos
Miócitos Cardíacos/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Quinases p38 Ativadas por Mitógeno/química , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Acetilação , Acetiltransferases , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Células HEK293 , Células HeLa , Histona Desacetilases/metabolismo , Humanos , Hipertrofia , Espectrometria de Massas , Camundongos , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologia , Ratos , Estresse Fisiológico , Fatores de Transcrição de p300-CBP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA