Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5796, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987243

RESUMO

Metabolite extraction is the critical first-step in metabolomics experiments, where it is generally regarded to inactivate and remove proteins. Here, arising from efforts to improve extraction conditions for polar metabolomics, we discover a proteomic landscape of over 1000 proteins within metabolite extracts. This is a ubiquitous feature across several common extraction and sample types. By combining post-resuspension stable isotope addition and enzyme inhibitors, we demonstrate in-extract metabolite interconversions due to residual transaminase activity. We extend these findings with untargeted metabolomics where we observe extensive protein-mediated metabolite changes, including in-extract formation of glutamate dipeptide and depletion of total glutathione. Finally, we present a simple extraction workflow that integrates 3 kDa filtration for protein removal as a superior method for polar metabolomics. In this work, we uncover a previously unrecognized, protein-mediated source of observer effects in metabolomics experiments with broad-reaching implications across all research fields using metabolomics and molecular metabolism.


Assuntos
Metabolômica , Proteoma , Proteômica , Proteoma/metabolismo , Metabolômica/métodos , Proteômica/métodos , Humanos , Animais , Glutationa/metabolismo , Metaboloma , Transaminases/metabolismo
2.
Front Cell Dev Biol ; 12: 1375441, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799507

RESUMO

Background: Neurofibromin, coded by the NF1 tumor suppressor gene, is the main negative regulator of the RAS pathway and is frequently mutated in various cancers. Women with Neurofibromatosis Type I (NF1)-a tumor predisposition syndrome caused by a germline NF1 mutation-have an increased risk of developing aggressive breast cancer with poorer prognosis. The mechanism by which NF1 mutations lead to breast cancer tumorigenesis is not well understood. Therefore, the objective of this work was to identify stromal alterations before tumor formation that result in the increased risk and poorer outcome seen among NF1 patients with breast cancer. Approach: To accurately model the germline monoallelic NF1 mutations in NF1 patients, we utilized an Nf1-deficient rat model with accelerated mammary development before presenting with highly penetrant breast cancer. Results: We identified increased collagen content in Nf1-deficient rat mammary glands before tumor formation that correlated with age of tumor onset. Additionally, gene expression analysis revealed that Nf1-deficient mature adipocytes in the rat mammary gland have increased collagen expression and shifted to a fibroblast and preadipocyte expression profile. This alteration in lineage commitment was also observed with in vitro differentiation, however, flow cytometry analysis did not show a change in mammary adipose-derived mesenchymal stem cell abundance. Conclusion: Collectively, this study uncovered the previously undescribed role of Nf1 in mammary collagen deposition and regulating adipocyte differentiation. In addition to unraveling the mechanism of tumor formation, further investigation of adipocytes and collagen modifications in preneoplastic mammary glands will create a foundation for developing early detection strategies of breast cancer among NF1 patients.

3.
Oncogene ; 43(19): 1411-1430, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38480916

RESUMO

Malignant peripheral nerve sheath tumors (MPNSTs) are chemotherapy resistant sarcomas that are a leading cause of death in neurofibromatosis type 1 (NF1). Although NF1-related MPNSTs derive from neural crest cell origin, they also exhibit intratumoral heterogeneity. TP53 mutations are associated with significantly decreased survival in MPNSTs, however the mechanisms underlying TP53-mediated therapy responses are unclear in the context of NF1-deficiency. We evaluated the role of two commonly altered genes, MET and TP53, in kinome reprograming and cellular differentiation in preclinical MPNST mouse models. We previously showed that MET amplification occurs early in human MPNST progression and that Trp53 loss abrogated MET-addiction resulting in MET inhibitor resistance. Here we demonstrate a novel mechanism of therapy resistance whereby p53 alters MET stability, localization, and downstream signaling leading to kinome reprogramming and lineage plasticity. Trp53 loss also resulted in a shift from RAS/ERK to AKT signaling and enhanced sensitivity to MEK and mTOR inhibition. In response to MET, MEK and mTOR inhibition, we observed broad and heterogeneous activation of key differentiation genes in Trp53-deficient lines suggesting Trp53 loss also impacts lineage plasticity in MPNSTs. These results demonstrate the mechanisms by which p53 loss alters MET dependency and therapy resistance in MPNSTS through kinome reprogramming and phenotypic flexibility.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neurofibromatose 1 , Inibidores de Proteínas Quinases , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Camundongos , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Neurofibromatose 1/genética , Neurofibromatose 1/patologia , Neurofibromina 1/genética , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Neoplasias de Bainha Neural/genética , Neoplasias de Bainha Neural/patologia , Neoplasias de Bainha Neural/tratamento farmacológico , Linhagem Celular Tumoral , Transdução de Sinais , Linhagem da Célula/genética , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Neurofibrossarcoma/genética , Neurofibrossarcoma/patologia , Neurofibrossarcoma/tratamento farmacológico , Plasticidade Celular/efeitos dos fármacos , Plasticidade Celular/genética
4.
bioRxiv ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37745326

RESUMO

DNA mutations are necessary drivers of cancer, yet only a small subset of mutated cells go on to cause the disease. To date, the mechanisms that determine which rare subset of cells transform and initiate tumorigenesis remain unclear. Here, we take advantage of a unique model of intrinsic developmental heterogeneity (Trim28+/D9) and demonstrate that stochastic early life epigenetic variation can trigger distinct cancer-susceptibility 'states' in adulthood. We show that these developmentally primed states are characterized by differential methylation patterns at typically silenced heterochromatin, and that these epigenetic signatures are detectable as early as 10 days of age. The differentially methylated loci are enriched for genes with known oncogenic potential. These same genes are frequently mutated in human cancers, and their dysregulation correlates with poor prognosis. These results provide proof-of-concept that intrinsic developmental heterogeneity can prime individual, life-long cancer risk.

5.
Neurobiol Dis ; 159: 105513, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34536552

RESUMO

Autophagic dysregulation and lysosomal impairment have been implicated in the pathogenesis of Parkinson's disease, partly due to the identification of mutations in multiple genes involved in these pathways such as GBA, SNCA, ATP13a2 (also known as PARK9), TMEM175 and LRRK2. Mutations resulting in lysosomal dysfunction are proposed to contribute to Parkinson's disease by increasing α-synuclein levels, that in turn may promote aggregation of this protein. Here, we used two different genetic models-one heterozygous for a mutated form of the GBA protein (D409V), and the other heterozygous for an ATP13a2 loss-of-function mutation, to test whether these mutations exacerbate the spread of α-synuclein pathology following injection of α-synuclein preformed fibrils in the olfactory bulb of 12-week-old mice. Contrary to our hypothesis, we found that mice harboring GBA D409V+/- and ATP13a2+/- mutations did not have exacerbated behavioral impairments or histopathology (α-synuclein, LAMP2, and Iba1) when compared to their wildtype littermates. This indicates that in the young mouse brain, neither the GBA D409V mutation or ATP13a2 loss-of-function mutation accelerate the spread of α-synuclein pathology. As a consequence, we postulate that these mutations increase Parkinson's disease risk only by acting in one of the initial, upstream events in the Parkinson's disease pathogenic process. Further, the mutations, and the molecular pathways they impact, appear to play a less important role once the pathogenic process has been triggered and therefore do not specifically influence α-synuclein pathology spread.


Assuntos
Autofagia/genética , Glucosilceramidase/genética , Transtornos Parkinsonianos/genética , Agregados Proteicos , ATPases Translocadoras de Prótons/genética , Olfato/genética , alfa-Sinucleína/metabolismo , Animais , Comportamento Animal , Heterozigoto , Locomoção , Mutação com Perda de Função , Camundongos , Mutação , Bulbo Olfatório , Córtex Olfatório/patologia , Córtex Olfatório/fisiopatologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/fisiopatologia , Córtex Perirrinal/patologia , Córtex Perirrinal/fisiopatologia , Sintomas Prodrômicos , Olfato/fisiologia
6.
J Histochem Cytochem ; 69(5): 297-320, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33641490

RESUMO

Analysis of formalin-fixed paraffin-embedded (FFPE) tissue by immunohistochemistry (IHC) is commonplace in clinical and research laboratories. However, reports suggest that IHC results can be compromised by biospecimen preanalytical factors. The National Cancer Institute's Biospecimen Preanalytical Variables Program conducted a systematic study to examine the potential effects of delay to fixation (DTF) and time in fixative (TIF) on IHC using 24 cancer biomarkers. Differences in IHC staining, relative to controls with a DTF of 1 hr, were observed in FFPE kidney tumor specimens after a DTF of ≥2 hr. Reductions in H-score and/or staining intensity were observed for c-MET, p53, PAX2, PAX8, pAKT, and survivin, whereas increases were observed for RCC1, EGFR, and CD10. Prolonged TIF of 72 hr resulted in significantly reduced H-scores of CD44 and c-Met in kidney tumor specimens, compared with controls with 12-hr TIF. An elevated probability of altered staining intensity due to DTF was observed for nine antigens, whereas for prolonged TIF an elevated probability was observed for one antigen. Results reported here and elsewhere across tumor types and antigens support limiting DTF to ≤1 hr when possible and fixing tissues in formalin for 12-24 hr to avoid confounding effects of these preanalytical factors on IHC.


Assuntos
Biomarcadores Tumorais/análise , Imuno-Histoquímica/métodos , Formaldeído , Humanos , Neoplasias Renais/patologia , Inclusão em Parafina , Fixação de Tecidos
7.
Genes (Basel) ; 11(3)2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32245042

RESUMO

Neurofibromatosis Type 1 (NF1)-related Malignant Peripheral Nerve Sheath Tumors (MPNST) are highly resistant sarcomas that account for significant mortality. The mechanisms of therapy resistance are not well-understood in MPNSTs, particularly with respect to kinase inhibition strategies. In this study, we aimed to quantify the impact of both the genomic context and targeted therapy on MPNST resistance using reverse phase phosphoproteome array (RPPA) analysis. We treated tumorgrafts from three genetically engineered mouse models using MET (capmatinib) and MEK (trametinib) inhibitors and doxorubicin, and assessed phosphosignaling at 4 h, 2 days, and 21 days. Baseline kinase signaling in our mouse models recapitulated an MET-addicted state (NF1-MET), P53 mutation (NF1-P53), and HGF overexpression (NF1). Following perturbation with the drug, we observed broad and redundant kinome adaptations that extended well beyond canonical RAS/ERK or PI3K/AKT/mTOR signaling. MET and MEK inhibition were both associated with an initial inflammatory response mediated by kinases in the JAK/STAT pathway and NFkB. Growth signaling predominated at the 2-day and 21-day time points as a result of broad RTK and intracellular kinase activation. Interestingly, AXL and NFkB were strongly activated at the 2-day and 21-day time points, and tightly correlated, regardless of the treatment type or genomic context. The degree of kinome adaptation observed in innately resistant tumors was significantly less than the surviving fractions of responsive tumors that exhibited a latency period before reinitiating growth. Lastly, doxorubicin resistance was associated with kinome adaptations that strongly favored growth and survival signaling. These observations confirm that MPNSTs are capable of profound signaling plasticity in the face of kinase inhibition or DNA damaging agent administration. It is possible that by targeting AXL or NFkB, therapy resistance can be mitigated.


Assuntos
Antineoplásicos/uso terapêutico , Sistema de Sinalização das MAP Quinases , Neoplasias de Bainha Neural/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteoma/metabolismo , Animais , Antineoplásicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica , Benzamidas , Doxorrubicina/administração & dosagem , Doxorrubicina/uso terapêutico , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Imidazóis/administração & dosagem , Imidazóis/uso terapêutico , Camundongos , Camundongos SCID , NF-kappa B/genética , NF-kappa B/metabolismo , Neoplasias de Bainha Neural/genética , Neurofibromina 1/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/uso terapêutico , Proteoma/genética , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridonas/administração & dosagem , Piridonas/uso terapêutico , Pirimidinonas/administração & dosagem , Pirimidinonas/uso terapêutico , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Inibidores da Topoisomerase II/administração & dosagem , Inibidores da Topoisomerase II/uso terapêutico , Triazinas/administração & dosagem , Triazinas/uso terapêutico , Proteínas ras/genética , Proteínas ras/metabolismo
8.
Hum Reprod ; 35(1): 44-57, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31913469

RESUMO

STUDY QUESTION: Can endometrial stromal stem/progenitor cell markers, SUSD2 and CD146/CD140b, enrich for human myometrial and fibroid stem/progenitor cells? SUMMARY ANSWER: SUSD2 enriches for myometrial and fibroid cells that have mesenchymal stem cell (MSC) characteristics and can also be induced to decidualise. WHAT IS KNOWN ALREADY: Mesenchymal stem-like cells have been separately characterised in the endometrial stroma and myometrium and may contribute to diseases in their respective tissues. STUDY DESIGN, SIZE, DURATION: Normal myometrium, fibroids and endometrium were collected from hysterectomies with informed consent. Primary cells or tissues were used from at least three patient samples for each experiment. PARTICIPANTS/MATERIALS, SETTING, METHODS: Flow cytometry, immunohistochemistry and immunofluorescence were used to characterise tissues. In vitro colony formation in normoxic and hypoxic conditions, MSC lineage differentiation (osteogenic and adipogenic) and decidualisation were used to assess stem cell activity. Xenotransplantation into immunocompromised mice was used to determine in vivo stem-like activity. Endpoint measures included quantitative PCR, colony formation, trichrome, Oil Red O and alkaline phosphatase activity staining. MAIN RESULTS AND THE ROLE OF CHANCE: CD146+CD140b+ and/or SUSD2+ myometrial and fibroid cells were located in the perivascular region and formed more colonies in vitro compared to control cells and differentiated down adipogenic and osteogenic mesenchymal lineages in vitro. SUSD2+ myometrial cells had greater in vitro decidualisation potential, and SUSD2+ fibroid cells formed larger tumours in vivo compared to control cells. LARGE-SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Markers used in this study enrich for cells with stem/progenitor cell activity; however, they do not distinguish stem from progenitor cells. SUSD2+ myometrial cells express markers of decidualisation when treated in vitro, but in vivo assays are needed to fully demonstration their ability to decidualise. WIDER IMPLICATIONS OF THE FINDINGS: These results suggest a possible common MSC for the endometrial stroma and myometrium, which could be the tumour-initiating cell for uterine fibroids. STUDY FUNDING/COMPETING INTEREST(S): These studies were supported by NIH grants to JMT (R01OD012206) and to ALP (F32HD081856). The authors certify that we have no conflicts of interest to disclose.


Assuntos
Leiomioma , Células-Tronco Mesenquimais , Animais , Endométrio , Feminino , Humanos , Camundongos , Miométrio , Células-Tronco , Células Estromais
9.
Stem Cells Dev ; 27(24): 1715-1728, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30328770

RESUMO

Uterine remodeling during pregnancy is a fundamental, dynamic process required for successful propagation of eutherian species. The uterus can increase in size up to 40-fold during pregnancy, which is largely attributed to expansion of the myometrium by hyperplasia and hypertrophy. After pregnancy, the uterus repairs the remodeled or "damaged" tissue during uterine involution (INV). Little is known about this repair process, particularly the role of mesenchymal stem/progenitor cells. The objective of this study was to identify and characterize putative mesenchymal stem/progenitor cells in the murine myometrium using a combination of label retention and mesenchymal stem cell (MSC) marker expression and a pregnancy and uterine INV model. Tet-off transgenic mice with the Cre-lox system were used to specifically label mesenchymal cells (ie, myometrial and endometrial stromal cells) within the uterus while avoiding other cell types (eg, epithelial, immune, and endothelial cells) to identify slowly dividing cells and assess their stem cell qualities. We identified myometrial label-retaining cells (LRCs) that persisted for at least 3 months, expressed CD146 and CD140b (MSC markers), and proliferated at a higher rate during uterine INV compared with nonlabeled cells. The LRCs did not appear to express either estrogen receptor alpha or progesterone receptor, nor did the number of LRCs change at different estrous stages or in response to exogenous estradiol or progesterone administration, suggesting that LRCs were not involved in normal estrous cycling. The results from this study provide important insight into putative stem/progenitor cells in the myometrium and their possible role in uterine physiology.


Assuntos
Células-Tronco Mesenquimais/citologia , Miométrio/citologia , Regeneração , Animais , Antígeno CD146/genética , Antígeno CD146/metabolismo , Proliferação de Células , Células Cultivadas , Endométrio/citologia , Endométrio/fisiologia , Ciclo Estral/fisiologia , Feminino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Camundongos , Miométrio/fisiologia , Gravidez/fisiologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA