Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Periodontol ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38660744

RESUMO

AIM: This prospective study investigated the salivary proteome before and after periodontal therapy. MATERIALS AND METHODS: Ten systemically healthy, non-smoking, stage III, grade C periodontitis patients underwent non-surgical periodontal treatment. Full-mouth periodontal parameters were measured, and saliva (n = 30) collected pre- (T0), and one (T1) and six (T6) months post-treatment. The proteome was investigated by label-free quantitative proteomics. Protein expression changes were modelled over time, with significant protein regulation considered at false discovery rate <0.05. RESULTS: Treatment significantly reduced bleeding scores, percentages of sites with pocket depth ≥5 mm, plaque and gingival indexes. One thousand seven hundred and thirteen proteins were identified and 838 proteins (human = 757, bacterial = 81) quantified (≥2 peptides). At T1, 80 (T1 vs. T0: 60↑:20↓), and at T6, 118 human proteins (T6 vs. T0: 67↑:51↓) were regulated. The salivary proteome at T6 versus T1 remained stable. Highest protein activity post- versus pre-treatment was observed for cellular movement and inflammatory response. The small proline-rich protein 3 (T1 vs. T0: 5.4-fold↑) and lymphocyte-specific protein 1 (T6 vs. T0: 4.6-fold↓) were the top regulated human proteins. Proteins from Neisseria mucosa and Treponema socranskii (T1 vs. T0: 8.0-fold↓, 4.9-fold↓) were down-regulated. CONCLUSIONS: Periodontal treatment reduced clinical disease parameters and these changes were reflected in the salivary proteome. This underscores the potential of utilizing saliva biomarkers as prognostic tools for monitoring treatment outcomes.

2.
JOR Spine ; 6(1): e1237, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36994463

RESUMO

Background: Vertebral endplate signal intensity changes visualized by magnetic resonance imaging termed Modic changes (MC) are highly prevalent in low back pain patients. Interconvertibility between the three MC subtypes (MC1, MC2, MC3) suggests different pathological stages. Histologically, granulation tissue, fibrosis, and bone marrow edema are signs of inflammation in MC1 and MC2. However, different inflammatory infiltrates and amount of fatty marrow suggest distinct inflammatory processes in MC2. Aims: The aims of this study were to investigate (i) the degree of bony (BEP) and cartilage endplate (CEP) degeneration in MC2, (ii) to identify inflammatory MC2 pathomechanisms, and (iii) to show that these marrow changes correlate with severity of endplate degeneration. Methods: Pairs of axial biopsies (n = 58) spanning the entire vertebral body including both CEPs were collected from human cadaveric vertebrae with MC2. From one biopsy, the bone marrow directly adjacent to the CEP was analyzed with mass spectrometry. Differentially expressed proteins (DEPs) between MC2 and control were identified and bioinformatic enrichment analysis was performed. The other biopsy was processed for paraffin histology and BEP/CEP degenerations were scored. Endplate scores were correlated with DEPs. Results: Endplates from MC2 were significantly more degenerated. Proteomic analysis revealed an activated complement system, increased expression of extracellular matrix proteins, angiogenic, and neurogenic factors in MC2 marrow. Endplate scores correlated with upregulated complement and neurogenic proteins. Discussion: The inflammatory pathomechanisms in MC2 comprises activation of the complement system. Concurrent inflammation, fibrosis, angiogenesis, and neurogenesis indicate that MC2 is a chronic inflammation. Correlation of endplate damage with complement and neurogenic proteins suggest that complement system activation and neoinnervation may be linked to endplate damage. The endplate-near marrow is the pathomechanistic site, because MC2 occur at locations with more endplate degeneration. Conclusion: MC2 are fibroinflammatory changes with complement system involvement which occur adjacent to damaged endplates.

3.
Neoplasia ; 35: 100858, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508875

RESUMO

Fibrosarcoma (FSA) are rare soft tissue tumors that display aggressive local behavior and invasive growth leading to high rates of tumor recurrence. While the low incidence in humans hampers detailed understanding of the disease, FSA are frequent in dogs and present potential models for the human condition. However, a lack of in-depth molecular characterization of FSA and unaffected peritumoral tissue (PTT) in both species impedes the translational potential of dogs. To address this shortcoming, we characterized canine FSA and matched skeletal muscle, adipose and connective tissue using laser-capture microdissection (LCM) and LC-MS/MS in 30 formalin-fixed paraffin embedded (FFPE) specimens. Principal component analysis of 3'530 different proteins detected across all samples clearly separates the four tissues, with several targets strongly differentiating tumor from all three PTTs. 25 proteins were exclusively found in tumor tissue in ≥80% of cases. Among these, CD68 (a macrophage marker), Optineurin (OPTN), Nuclear receptor coactivator 5 (NCOA5), RAP1GDS1 (Rap1 GTPase-GDP dissociation stimulator 1) and Stromal cell derived factor 2 like 1 (SDF2L1) were present in ≥90% of FSA. Protein expression across all FSA was highly homogeneous and characterized by MYC and TP53 signaling, hyperactive EIF2 and immune-related changes as well as strongly decreased oxidative phosphorylation and oxidative lipid metabolism. Finally, we demonstrate significant molecular homology between canine FSA and human soft-tissue sarcomas, emphasizing the relevance of studying canine FSA as a model for human FSA. In conclusion, we provide the first detailed overview of proteomic changes in FSA and surrounding PTT with relevance for the human disease.


Assuntos
Fibrossarcoma , Proteômica , Cães , Humanos , Animais , Cromatografia Líquida , Espectrometria de Massas em Tandem , Recidiva Local de Neoplasia , Fibrossarcoma/genética , Fibrossarcoma/metabolismo , Fibrossarcoma/patologia
4.
Blood Adv ; 6(11): 3480-3493, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35008095

RESUMO

Polycythemia vera (PV) is a stem cell disorder characterized by hyperproliferation of the myeloid lineages and the presence of an activating JAK2 mutation. To elucidate mechanisms controlling PV stem and progenitor cell biology, we applied a recently developed highly sensitive data-independent acquisition mass spectrometry workflow to purified hematopoietic stem and progenitor cell (HSPC) subpopulations of patients with chronic and progressed PV. We integrated proteomic data with genomic, transcriptomic, flow cytometry, and in vitro colony formation data. Comparative analyses revealed added information gained by proteomic compared with transcriptomic data in 30% of proteins with changed expression in PV patients. Upregulated biological pathways in hematopoietic stem and multipotent progenitor cells (HSC/MPPs) of PV included mammalian target of rapamycin (MTOR), STAT, and interferon signaling. We further identified a prominent reduction of clusterin (CLU) protein expression and a corresponding activation of nuclear factor-κB (NF-κB) signaling in HSC/MPPs of untreated PV patients compared with controls. Reversing the reduction of CLU and inhibiting NF-κB signaling decreased proliferation and differentiation of PV HSC/MPPs in vitro. Upon progression of PV, we identified upregulation of LGALS9 and SOCS2 protein expression in HSC/MPPs. Treatment of patients with hydroxyurea normalized the expression of CLU and NF-κB2 but not of LGALS9 and SOCS2. These findings expand the current understanding of the molecular pathophysiology underlying PV and provide new potential targets (CLU and NF-κB) for antiproliferative therapy in patients with PV.


Assuntos
Policitemia Vera , Proliferação de Células , Células-Tronco Hematopoéticas , Humanos , Janus Quinase 2/genética , NF-kappa B , Policitemia Vera/diagnóstico , Policitemia Vera/genética , Proteômica
5.
Nat Commun ; 12(1): 6924, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34836971

RESUMO

Rhabdomyosarcoma (RMS) is a pediatric malignancy of skeletal muscle lineage. The aggressive alveolar subtype is characterized by t(2;13) or t(1;13) translocations encoding for PAX3- or PAX7-FOXO1 chimeric transcription factors, respectively, and are referred to as fusion positive RMS (FP-RMS). The fusion gene alters the myogenic program and maintains the proliferative state while blocking terminal differentiation. Here, we investigated the contributions of chromatin regulatory complexes to FP-RMS tumor maintenance. We define the mSWI/SNF functional repertoire in FP-RMS. We find that SMARCA4 (encoding BRG1) is overexpressed in this malignancy compared to skeletal muscle and is essential for cell proliferation. Proteomic studies suggest proximity between PAX3-FOXO1 and BAF complexes, which is further supported by genome-wide binding profiles revealing enhancer colocalization of BAF with core regulatory transcription factors. Further, mSWI/SNF complexes localize to sites of de novo histone acetylation. Phenotypically, interference with mSWI/SNF complex function induces transcriptional activation of the skeletal muscle differentiation program associated with MYCN enhancer invasion at myogenic target genes, which is recapitulated by BRG1 targeting compounds. We conclude that inhibition of BRG1 overcomes the differentiation blockade of FP-RMS cells and may provide a therapeutic strategy for this lethal childhood tumor.


Assuntos
Diferenciação Celular , Proliferação de Células , Desenvolvimento Muscular/fisiologia , Rabdomiossarcoma/genética , Rabdomiossarcoma/metabolismo , Linhagem Celular Tumoral , Criança , Cromatina , DNA Helicases/metabolismo , Epigenômica , Regulação Neoplásica da Expressão Gênica , Humanos , Músculo Esquelético , Proteínas Nucleares/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Fator de Transcrição PAX7 , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Proteômica , Fatores de Transcrição/metabolismo , Ativação Transcricional
7.
Redox Biol ; 26: 101265, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31299612

RESUMO

Protein:protein interactions are the basis of molecular communication and are usually of transient non-covalent nature, while covalent interactions other than ubiquitination are rare. For cellular adaptations, the cellular oxygen and peroxide sensor factor inhibiting HIF (FIH) confers oxygen and oxidant stress sensitivity to the hypoxia inducible factor (HIF) by asparagine hydroxylation. We investigated whether FIH contributes to hypoxia adaptation also through other mechanisms and identified a hypoxia sensitive, likely covalent, bond formation by FIH with several client proteins, including the deubiquitinase ovarian tumor domain containing ubiquitin aldehyde binding protein 1 (OTUB1). Biochemical analyses were consistent with a co-translational amide bond formation between FIH and OTUB1, occurring within mammalian and bacterial cells but not between separately purified proteins. Bond formation is catalysed by FIH and highly dependent on oxygen availability in the cellular microenvironment. Within cells, a heterotrimeric complex is formed, consisting of two FIH and one covalently linked OTUB1. Complexation of OTUB1 by FIH regulates OTUB1 deubiquitinase activity. Our findings reveal an alternative mechanism for hypoxia adaptation with remarkably high oxygen sensitivity, mediated through covalent protein-protein interactions catalysed by an asparagine modifying dioxygenase.


Assuntos
Cisteína Endopeptidases/genética , Fator 1 Induzível por Hipóxia/metabolismo , Oxigênio/metabolismo , Linhagem Celular Tumoral , Cisteína Endopeptidases/metabolismo , Enzimas Desubiquitinantes , Humanos , Espectrometria de Massas , Oxirredução , Oxigênio/química
8.
Front Immunol ; 10: 540, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024521

RESUMO

Immune responses to citrullinated peptides have been described in autoimmune diseases like rheumatoid arthritis (RA) and multiple sclerosis (MS). We investigated the post-translational modification (PTM), arginine to citrulline, in brain tissue of MS patients and controls (C) by proteomics and subsequently the cellular immune response of cerebrospinal fluid (CSF)-infiltrating T cells to citrullinated and unmodified peptides of myelin basic protein (MBP). Using specifically adapted tissue extraction- and combined data interpretation protocols we could establish a map of citrullinated proteins by identifying more than 80 proteins with two or more citrullinated peptides in human brain tissue. We report many of them for the first time. For the already described citrullinated proteins MBP, GFAP, and vimentin, we could identify additional citrullinated sites. The number of modified proteins in MS white matter was higher than control tissue. Citrullinated peptides are considered neoepitopes that may trigger autoreactivity. We used newly identified epitopes and previously reported immunodominant myelin peptides in their citrullinated and non-citrullinated form to address the recognition of CSF-infiltrating CD4+ T cells from 22 MS patients by measuring proliferation and IFN-γ secretion. We did not detect marked responses to citrullinated peptides, but slightly more strongly to the non-modified version. Based on these data, we conclude that citrullination does not appear to be an important activating factor of a T cell response, but could be the consequence of an immune- or inflammatory response. Our approach allowed us to perform a deep proteome analysis and opens new technical possibilities to analyze complex PTM patterns on minute quantities of rare tissue samples.


Assuntos
Encéfalo/imunologia , Esclerose Múltipla/imunologia , Proteína Básica da Mielina/imunologia , Linfócitos T/imunologia , Adolescente , Adulto , Líquido Cefalorraquidiano/imunologia , Citrulinação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Peptídeos/imunologia , Adulto Jovem
9.
Mol Cell Proteomics ; 17(7): 1392-1409, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29610270

RESUMO

Periodontal diseases are among the most prevalent worldwide, but largely silent, chronic diseases. They affect the tooth-supporting tissues with multiple ramifications on life quality. Their early diagnosis is still challenging, due to lack of appropriate molecular diagnostic methods. Saliva offers a non-invasively collectable reservoir of clinically relevant biomarkers, which, if utilized efficiently, could facilitate early diagnosis and monitoring of ongoing disease. Despite several novel protein markers being recently enlisted by discovery proteomics, their routine diagnostic application is hampered by the lack of validation platforms that allow for rapid, accurate and simultaneous quantification of multiple proteins in large cohorts. Here we carried out a pipeline of two proteomic platforms; firstly, we applied open ended label-free quantitative (LFQ) proteomics for discovery in saliva (n = 67, including individuals with health, gingivitis, and periodontitis), followed by selected-reaction monitoring (SRM)-targeted proteomics for validation in an independent cohort (n = 82). The LFQ platform led to the discovery of 119 proteins with at least 2-fold significant difference between health and disease. The 65 proteins chosen for the subsequent SRM platform included 50 functionally related proteins derived from the significantly enriched processes of the LFQ data, 11 from literature-mining, and four house-keeping ones. Among those, 60 were reproducibly quantifiable proteins (92% success rate), represented by a total of 143 peptides. Machine-learning modeling led to a narrowed-down panel of five proteins of high predictive value for periodontal diseases with maximum area under the receiver operating curve >0.97 (higher in disease: Matrix metalloproteinase-9, Ras-related protein-1, Actin-related protein 2/3 complex subunit 5; lower in disease: Clusterin, Deleted in Malignant Brain Tumors 1). This panel enriches the pool of credible clinical biomarker candidates for diagnostic assay development. Yet, the quantum leap brought into the field of periodontal diagnostics by this study is the application of the biomarker discovery-through-verification pipeline, which can be used for validation in further cohorts.


Assuntos
Doenças Periodontais/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Saliva/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Adulto , Área Sob a Curva , Biomarcadores/metabolismo , Humanos , Pessoa de Meia-Idade , Mapas de Interação de Proteínas , Reprodutibilidade dos Testes , Coloração e Rotulagem , Adulto Jovem
10.
Science ; 352(6291): aad0189, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27284200

RESUMO

Recent improvements in quantitative proteomics approaches, including Sequential Window Acquisition of all Theoretical Mass Spectra (SWATH-MS), permit reproducible large-scale protein measurements across diverse cohorts. Together with genomics, transcriptomics, and other technologies, transomic data sets can be generated that permit detailed analyses across broad molecular interaction networks. Here, we examine mitochondrial links to liver metabolism through the genome, transcriptome, proteome, and metabolome of 386 individuals in the BXD mouse reference population. Several links were validated between genetic variants toward transcripts, proteins, metabolites, and phenotypes. Among these, sequence variants in Cox7a2l alter its protein's activity, which in turn leads to downstream differences in mitochondrial supercomplex formation. This data set demonstrates that the proteome can now be quantified comprehensively, serving as a key complement to transcriptomics, genomics, and metabolomics--a combination moving us forward in complex trait analysis.


Assuntos
Colesterol/metabolismo , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , Proteômica , Animais , Dieta , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Variação Genética , Células Hep G2 , Humanos , Redes e Vias Metabólicas/genética , Metaboloma , Metabolômica , Camundongos , Camundongos Endogâmicos , Mitocôndrias Hepáticas/genética , Dados de Sequência Molecular , Proteoma , Locos de Características Quantitativas , Transcriptoma
11.
Nat Med ; 21(4): 407-13, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25730263

RESUMO

Clinical specimens are each inherently unique, limited and nonrenewable. Small samples such as tissue biopsies are often completely consumed after a limited number of analyses. Here we present a method that enables fast and reproducible conversion of a small amount of tissue (approximating the quantity obtained by a biopsy) into a single, permanent digital file representing the mass spectrometry (MS)-measurable proteome of the sample. The method combines pressure cycling technology (PCT) and sequential window acquisition of all theoretical fragment ion spectra (SWATH)-MS. The resulting proteome maps can be analyzed, re-analyzed, compared and mined in silico to detect and quantify specific proteins across multiple samples. We used this method to process and convert 18 biopsy samples from nine patients with renal cell carcinoma into SWATH-MS fragment ion maps. From these proteome maps we detected and quantified more than 2,000 proteins with a high degree of reproducibility across all samples. The measured proteins clearly distinguished tumorous kidney tissues from healthy tissues and differentiated distinct histomorphological kidney cancer subtypes.


Assuntos
Espectrometria de Massas/métodos , Proteômica/métodos , Biópsia , Carcinoma de Células Renais/metabolismo , Humanos , Íons , Rim/metabolismo , Neoplasias Renais/metabolismo , Peptídeos/química , Pressão , Proteoma , Reprodutibilidade dos Testes
12.
BMC Bioinformatics ; 6: 285, 2005 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-16318636

RESUMO

BACKGROUND: Biological Mass Spectrometry is used to analyse peptides and proteins. A mass spectrum generates a list of measured mass to charge ratios and intensities of ionised peptides, which is called a peak-list. In order to classify the underlying amino acid sequence, the acquired spectra are usually compared with synthetic ones. Development of suitable methods of direct peak-list comparison may be advantageous for many applications. RESULTS: The pairwise peak-list comparison is a multistage process composed of matching of peaks embedded in two peak-lists, normalisation, scaling of peak intensities and dissimilarity measures. In our analysis, we focused on binary and intensity based measures. We have modified the measures in order to comprise the mass spectrometry specific properties of mass measurement accuracy and non-matching peaks. We compared the labelling of peak-list pairs, obtained using different factors of the pairwise peak-list comparison, as being the same or different to those determined by sequence database searches. In order to elucidate how these factors influence the peak-list comparison we adopted an analysis of variance type method with the partial area under the ROC curve as a dependent variable. CONCLUSION: The analysis of variance provides insight into the relevance of various factors influencing the outcome of the pairwise peak-list comparison. For large MS/MS and PMF data sets the outcome of ANOVA analysis was consistent, providing a strong indication that the results presented here might be valid for many various types of peptide mass measurements.


Assuntos
Biologia Computacional/métodos , Interpretação Estatística de Dados , Espectrometria de Massas/métodos , Algoritmos , Análise de Variância , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Bactérias/química , Encéfalo/metabolismo , Calibragem , Camundongos , Modelos Estatísticos , Peptídeos/química , Proteínas/química , Curva ROC , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA