Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ChemMedChem ; 16(16): 2504-2514, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-33899342

RESUMO

Oncogenic Ras proteins are implicated in the most common life-threatening cancers. Despite intense research over the past two decades, the progress towards small-molecule inhibitors has been limited. One reason for this failure is that Ras proteins interact with their effectors only via protein-protein interactions, which are notoriously difficult to address with small organic molecules. Herein we describe an alternative strategy, which prevents farnesylation and subsequent membrane insertion, a prerequisite for the activation of Ras proteins. Our approach is based on sequence-selective supramolecular receptors which bind to the C-terminal farnesyl transferase recognition unit of Ras and Rheb proteins and covalently modify the essential cysteine in the so-called CaaX-box.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Linhagem Celular Tumoral , Humanos , Proteínas de Membrana/química , Proteínas Quinases Ativadas por Mitógeno/química , Modelos Moleculares , Estrutura Molecular , Fosfatidilinositol 3-Quinases/química , Ligação Proteica , Proteínas Proto-Oncogênicas p21(ras)/química , Transdução de Sinais
2.
FASEB J ; 31(11): 5019-5035, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28768720

RESUMO

Within the kidney, angiotensin II (AngII) targets different cell types in the vasculature, tubuli, and glomeruli. An important part of the renal filtration barrier is composed of podocytes with their actin-rich foot processes. In this study, we used stable isotope labeling with amino acids in cell culture coupled to mass spectrometry to characterize relative changes in the phosphoproteome of human podocytes in response to short-term treatment with AngII. In 4 replicates, we identified a total of 17,956 peptides that were traceable to 2081 distinct proteins. Bioinformatic analyses revealed that among the increasingly phosphorylated peptides are predominantly peptides that are related to actin filaments, cytoskeleton, lamellipodia, mammalian target of rapamycin, and MAPK signaling. Among others, this screening approach highlighted the increased phosphorylation of actin-bundling protein, l-plastin (LCP1). AngII-dependent phosphorylation of LCP1 in cultured podocytes was mediated by the kinases ERK, p90 ribosomal S6 kinase, PKA, or PKC. LCP1 phosphorylation increased filopodia formation. In addition, treatment with AngII led to LCP1 redistribution to the cell margins, membrane ruffling, and formation of lamellipodia. Our data highlight the importance of AngII-triggered actin cytoskeleton-associated signal transduction in podocytes.-Schenk, L. K., Möller-Kerutt, A., Klosowski, R., Wolters, D., Schaffner-Reckinger, E., Weide, T., Pavenstädt, H., Vollenbröker, B. Angiotensin II regulates phosphorylation of actin-associated proteins in human podocytes.


Assuntos
Angiotensina II/farmacologia , Sistema de Sinalização das MAP Quinases , Proteínas dos Microfilamentos/metabolismo , Podócitos/metabolismo , Angiotensina II/genética , Angiotensina II/metabolismo , Linhagem Celular Transformada , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Proteínas dos Microfilamentos/genética , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo
3.
Biol Chem ; 397(6): 541-54, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26894577

RESUMO

Mutations in the gene coding for the multi-domain protein leucine-rich repeat kinase 2 (LRRK2) are the leading cause of genetically inherited Parkinson's disease (PD). Two of the common found mutations are the R1441C and G2019S. In this study we identified protein phosphatase 2A (PP2A) as an interacting partner of LRRK2. We were able to demonstrate that the Ras of complex protein (ROC) domain is sufficient to interact with the three subunits of PP2A in human neuroblastoma SH-SY5Y cells and in HeLa cells. The alpha subunit of PP2A is interacting with LRRK2 in the perinuclear region of HeLa cells. Silencing the catalytic subunit of PP2A by shRNA aggravated cellular degeneration induced by the pathogenic R1441C-LRRK2 mutant expressed in neuroblastoma SH-SY5Y cells. A similar enhancement of apoptotic nuclei was observed by downregulation of the catalytic subunit of PP2A in cultured cortical cells derived from neurons overexpressing the pathogenic mutant G2019S-LRRK2. Conversely, pharmacological activation of PP2A by sodium selenate showed a partial neuroprotection from R1441C-LRRK2-induced cellular degeneration. All these data suggest that PP2A is a new interacting partner of LRRK2 and reveal the importance of PP2A as a potential therapeutic target in PD.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Proteína Fosfatase 2/metabolismo , Domínio Catalítico , Morte Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/química , Neurônios/citologia , Neurônios/efeitos dos fármacos , Ligação Proteica , Proteína Fosfatase 2/química , Proteína Fosfatase 2/deficiência , Proteína Fosfatase 2/genética , Ácido Selênico/farmacologia
4.
Mol Cell Proteomics ; 14(8): 2072-84, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25979994

RESUMO

G protein-coupled receptors (GPCRs) constitute the largest family among mammalian membrane proteins and are capable of initiating numerous essential signaling cascades. Various GPCR-mediated pathways are organized into protein microdomains that can be orchestrated and regulated through scaffolding proteins, such as PSD-95/discs-large/ZO1 (PDZ) domain proteins. However, detailed binding characteristics of PDZ-GPCR interactions remain elusive because these interactions seem to be more complex than previously thought. To address this issue, we analyzed binding modalities using our established model system. This system includes the 13 individual PDZ domains of the multiple PDZ domain protein 1 (MUPP1; the largest PDZ protein), a broad range of murine olfactory receptors (a multifaceted gene cluster within the family of GPCRs), and associated olfactory signaling proteins. These proteins were analyzed in a large-scale peptide microarray approach and continuative interaction studies. As a result, we demonstrate that canonical binding motifs were not overrepresented among the interaction partners of MUPP1. Furthermore, C-terminal phosphorylation and distinct amino acid replacements abolished PDZ binding promiscuity. In addition to the described in vitro experiments, we identified new interaction partners within the murine olfactory epithelium using pull-down-based interactomics and could verify the partners through co-immunoprecipitation. In summary, the present study provides important insight into the complexity of the binding characteristics of PDZ-GPCR interactions based on olfactory signaling proteins, which could identify novel clinical targets for GPCR-associated diseases in the future.


Assuntos
Mapeamento de Interação de Proteínas , Proteômica/métodos , Receptores Odorantes/química , Receptores Odorantes/metabolismo , Transdução de Sinais , Animais , Proteínas de Transporte/metabolismo , Espectrometria de Massas , Proteínas de Membrana , Camundongos Transgênicos , Peptídeos/metabolismo , Fosforilação , Análise Serial de Proteínas , Ligação Proteica , Estrutura Terciária de Proteína
5.
Proteomics ; 15(1): 44-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25332194

RESUMO

Acetylation is a common PTM of proteins but is still challenging to analyze. Only few acetylome studies have been performed to tackle this issue. Yet, the detection of acetylated proteins in complex cell lysates remains to be improved. Here, we present a proteomic approach with proteinase K as a suitable protease to identify acetylated peptides quantitatively. We first optimized the digestion conditions using an artificial system of purified bovine histones to find the optimal protease. Subsequently, the capability of proteinase K was demonstrated in complex HEK293 cell lysates. Finally, SILAC in combination with MudPIT was used to show that quantification with proteinase K is possible. In this study, we identified a sheer number of 557 unique acetylated peptides originating from 633 acetylation sites.


Assuntos
Endopeptidase K/metabolismo , Histonas/metabolismo , Peptídeos/metabolismo , Acetilação , Acilação , Sequência de Aminoácidos , Animais , Bovinos , Células HEK293 , Histonas/análise , Humanos , Dados de Sequência Molecular , Peptídeos/análise , Proteômica , Sirtuínas/metabolismo
6.
Eukaryot Cell ; 14(4): 345-58, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25527523

RESUMO

Sarcolemmal membrane-associated protein (SLMAP) is a tail-anchored protein involved in fundamental cellular processes, such as myoblast fusion, cell cycle progression, and chromosomal inheritance. Further, SLMAP misexpression is associated with endothelial dysfunctions in diabetes and cancer. SLMAP is part of the conserved striatin-interacting phosphatase and kinase (STRIPAK) complex required for specific signaling pathways in yeasts, filamentous fungi, insects, and mammals. In filamentous fungi, STRIPAK was initially discovered in Sordaria macrospora, a model system for fungal differentiation. Here, we functionally characterize the STRIPAK subunit PRO45, a homolog of human SLMAP. We show that PRO45 is required for sexual propagation and cell-to-cell fusion and that its forkhead-associated (FHA) domain is essential for these processes. Protein-protein interaction studies revealed that PRO45 binds to STRIPAK subunits PRO11 and SmMOB3, which are also required for sexual propagation. Superresolution structured-illumination microscopy (SIM) further established that PRO45 localizes to the nuclear envelope, endoplasmic reticulum, and mitochondria. SIM also showed that localization to the nuclear envelope requires STRIPAK subunits PRO11 and PRO22, whereas for mitochondria it does not. Taken together, our study provides important insights into fundamental roles of the fungal SLMAP homolog PRO45 and suggests STRIPAK-related and STRIPAK-unrelated functions.


Assuntos
Retículo Endoplasmático/fisiologia , Proteínas de Membrana/fisiologia , Mitocôndrias/fisiologia , Membrana Nuclear/fisiologia , Sordariales/citologia , Sequência de Aminoácidos , Proteínas Fúngicas/fisiologia , Hifas/citologia , Modelos Biológicos , Dados de Sequência Molecular , Ligação Proteica , Transdução de Sinais
7.
Proteomics ; 13(17): 2670-81, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23798543

RESUMO

In contrast to normal healing wounds, chronic wounds commonly show disturbances in proteins regulating wound healing processes, particularly those involved in cell proliferation and protein degradation. Multidimensional protein identification technology MS/MS was conducted to investigate and compare the protein composition of chronic diabetic foot exudates to exudates from split-skin donor sites of burn victims otherwise healthy. Spectral counting revealed 188 proteins differentially expressed (more than twofold and p-value <0.05) in chronic wounds. Most were involved in biological processes including inflammation, angiogenesis, and cell mortality. Increased expression of the inflammatory response stimulating S100 proteins, predominantly S100A8 and S100A9 (almost tenfold), was identified. Matrix metalloproteinases (MMPs) MMP1, MMP2, and MMP8 were identified to be elevated in chronic wounds with significant impact on collagen degradation and tissue destruction. Further, proteins with antiangiogenic properties were found at higher expression levels in chronic wounds. Reduced angiogenesis leads to drastic shortage in nutrition supply and causes increased cell death, demonstrated by Annexin A5 exclusively found in chronic wound exudates. However, excessive nucleic and cytosolic material infers cell death occurring not only by apoptosis but also by necrosis. In conclusion, mass spectrometric investigation of exudates from chronic wounds demonstrated dramatic impairment in wound repair with excessive inflammation, antiangiogenic environment, and accelerated cell death.


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Exsudatos e Transudatos/química , Neovascularização Fisiológica , Pele/metabolismo , Cicatrização , Adulto , Idoso , Anexina A5/isolamento & purificação , Apoptose , Calgranulina A/biossíntese , Calgranulina B/biossíntese , Proliferação de Células , Sobrevivência Celular , Pé Diabético/fisiopatologia , Expressão Gênica , Humanos , Masculino , Metaloproteinase 1 da Matriz/biossíntese , Metaloproteinase 2 da Matriz/biossíntese , Metaloproteinase 8 da Matriz/biossíntese , Pessoa de Meia-Idade , Necrose , Proteoma/análise , Proteômica , Transplante de Pele , Espectrometria de Massas em Tandem , Adulto Jovem
8.
PLoS One ; 7(11): e49761, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23185430

RESUMO

Sirtuins are protein deacetylases regulating metabolism, stress responses, and aging processes, and they were suggested to mediate the lifespan extending effect of a low calorie diet. Sirtuin activation by the polyphenol resveratrol can mimic such lifespan extending effects and alleviate metabolic diseases. The mechanism of Sirtuin stimulation is unknown, hindering the development of improved activators. Here we show that resveratrol inhibits human Sirt3 and stimulates Sirt5, in addition to Sirt1, against fluorophore-labeled peptide substrates but also against peptides and proteins lacking the non-physiological fluorophore modification. We further present crystal structures of Sirt3 and Sirt5 in complex with fluorogenic substrate peptide and modulator. The compound acts as a top cover, closing the Sirtuin's polypeptide binding pocket and influencing details of peptide binding by directly interacting with this substrate. Our results provide a mechanism for the direct activation of Sirtuins by small molecules and suggest that activators have to be tailored to a specific Sirtuin/substrate pair.


Assuntos
Peptídeos , Sirtuína 1 , Sirtuína 3 , Sirtuínas , Acetilação/efeitos dos fármacos , Restrição Calórica , Cristalografia por Raios X , Humanos , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Resveratrol , Sirtuína 1/química , Sirtuína 1/metabolismo , Sirtuína 3/química , Sirtuína 3/metabolismo , Sirtuínas/química , Sirtuínas/metabolismo , Estilbenos/farmacologia , Especificidade por Substrato
9.
Metallomics ; 4(11): 1185-96, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23014849

RESUMO

An approach to characterize the interactions of RAPTA-T, a novel ruthenium-based anticancer drug candidate with intriguing antimetastatic properties, with human ovarian cancer cells in vitro is described. The distribution profile of the metallodrug within the cancer cells was determined by (size exclusion chromatography)-inductively coupled mass spectrometry combined with subcellular fractionation procedures (metallomics). Multidimensional protein identification technology (MudPIT) was then used to obtain insight into the alteration of the cellular proteome upon RAPTA-T treatment. The metallomics approach reveals striking differences in the intracellular behavior of the drug between cisplatin-sensitive and resistant cell lines and provides clues on possible mechanisms of action as well as detoxification, quantitative proteomics based on spectral counting sheds light on cellular response mechanisms to metallodrug treatment.


Assuntos
Antineoplásicos/farmacologia , Compostos Organometálicos/farmacologia , Proteoma/efeitos dos fármacos , Antineoplásicos/química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , DNA/metabolismo , Feminino , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Espectrometria de Massas , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Compostos Organometálicos/química , Compostos Organometálicos/farmacocinética , Neoplasias Ovarianas , Proteoma/análise , Proteômica , Rutênio/química , Rutênio/farmacocinética , Rutênio/farmacologia , Distribuição Tecidual
10.
Anal Chem ; 84(15): 6848-55, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22799595

RESUMO

Farnesylation involves the post-translational attachment of a 15 carbon unit to the C-terminus of proteins, thus allowing them to incorporate into membranes. The farnesylation reaction requires farnesyldiphosphate as the farnesyl group donor and is catalyzed by the farnesyltransferase. Some of the most familiar farnesylated proteins belong to the Ras protein superfamily, well-known oncoproteins. As Ras proteins require the membrane localization for the transduction of extracellular signals, farnesyltransferase inhibitors are discussed as chemotherapeutic agents. Despite the importance of this post-translational modification, farnesylated peptides have been investigated rarely by means of high-pressure liquid chromatography in combination with mass spectrometry. In this study, we examined the liquid chromatographic separation of farnesylated peptides with the help of the multidimensional protein identification technology. The peptides were further ionized by electrospray ionization and subsequently analyzed by tandem mass spectrometry. We demonstrated that farnesylated peptides are more strongly retained by reversed phase than nonfarnesylated peptides. This allowed for the identification of farnesylated peptides, if spiked into complex peptide samples. In some cases the farnesyl group was apparently split off from the peptide during the ionization process, and tandem mass spectra often revealed a neutral loss of the farnesyl moiety.


Assuntos
Cromatografia Líquida de Alta Pressão , Peptídeos/análise , Espectrometria de Massas por Ionização por Electrospray , Sequência de Aminoácidos , Células HeLa , Humanos , Dados de Sequência Molecular , Peptídeos/isolamento & purificação , Prenilação de Proteína , Tripsina/metabolismo , Proteínas rab1 de Ligação ao GTP/metabolismo
11.
J Cell Sci ; 125(Pt 18): 4230-40, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22641697

RESUMO

TAPL (ABCB9) is a homodimeric polypeptide translocation machinery which transports cytosolic peptides into the lumen of lysosomes for degradation. Since the function of proteins is strongly dependent on the interaction network involved, we investigated the interactome of TAPL. A proteomic approach allowed identification of the lysosome-associated membrane proteins LAMP-1 and LAMP-2B as the most abundant interaction partners. Albeit with low frequency, major histocompatibility complex II subunits were also detected. The interaction interface with LAMP was mapped to the four-transmembrane helices constituting the N-terminal domain of TAPL (TMD0). The LAMP proteins bind independently to TAPL. This interaction has influence on neither subcellular localization nor peptide transport activity. However, in LAMP-deficient cells, the half-life of TAPL is decreased by a factor of five, whereas another lysosomal membrane protein, LIMP-2, is not affected. Reduced stability of TAPL is caused by increased lysosomal degradation, indicating that LAMP proteins retain TAPL on the limiting membrane of endosomes and prevent its sorting to intraluminal vesicles.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/metabolismo , Peptídeos/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Animais , Linhagem Celular Tumoral , Cromatografia de Afinidade , Humanos , Espectrometria de Massas , Camundongos , Ligação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína
12.
Circulation ; 125(15): 1880-9, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22415145

RESUMO

BACKGROUND: Macrophage migration inhibitory factor (MIF) is a structurally unique inflammatory cytokine that controls cellular signaling in human physiology and disease through extra- and intracellular processes. Macrophage migration inhibitory factor has been shown to mediate both disease-exacerbating and beneficial effects, but the underlying mechanism(s) controlling these diverse functions are poorly understood. METHODS AND RESULTS: Here, we have identified an S-nitros(yl)ation modification of MIF that regulates the protective functional phenotype of MIF in myocardial reperfusion injury. Macrophage migration inhibitory factor contains 3 cysteine (Cys) residues; using recombinant wtMIF and site-specific MIF mutants, we have identified that Cys-81 is modified by S-nitros(yl)ation whereas the CXXC-derived Cys residues of MIF remained unaffected. The selective S-nitrosothiol formation at Cys-81 led to a doubling of the oxidoreductase activity of MIF. Importantly, S-nitrosothiol-MIF formation was measured both in vitro and in vivo and led to a decrease in cardiomyocyte apoptosis in the reperfused heart. This decrease was paralleled by a S-nitrosothiol-MIF- but not Cys81 serine (Ser)-MIF mutant-dependent reduction of infarct size in an in vivo model of myocardial ischemia/reperfusion injury. CONCLUSIONS: S-nitros(yl)ation of MIF is a pivotal novel regulatory mechanism, providing enhanced activity resulting in increased cytoprotection in myocardial reperfusion injury.


Assuntos
Fatores Inibidores da Migração de Macrófagos/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Animais , Cisteína/metabolismo , Citoproteção , Humanos , Camundongos , Traumatismo por Reperfusão Miocárdica/etiologia , Óxido Nítrico/metabolismo
13.
Anal Chem ; 84(3): 1592-600, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22224914

RESUMO

The targeted analysis of proteins in complex biological samples is best achieved using selected reaction monitoring (SRM). To maximize the sensitivity of this approach, sample fractionation or enrichment is still required, particularly to detect less abundant proteins in clinically relevant biofluids. Here, we report the development of multidimensional protein identification technology (MudPIT)-SRM, taking advantage of the robust online strong cation exchange chromatography for tryptic peptide fractionation and combining it with the multiplexed, quantitative attributes of SRM. The classical MudPIT method has been modified with an in-line strategy to introduce reference peptides onto the analytical column to enable quantitation at each salt step. Applying the MudPIT-SRM approach to profile abundant plasma proteins, we demonstrated mean increases in peak areas of almost 90% compared to conventional SRM. MudPIT-SRM analyses of low abundant proteins present in human wound fluid exudates similarly demonstrated increased peak areas and enabled the detection of proteins which were below the lower limit of detection when analyzed by conventional SRM. The MudPIT-SRM method is relatively facile to conduct and offers performance advantages to enhance sensitivity for biomarker studies.


Assuntos
Biomarcadores/sangue , Proteínas Sanguíneas/análise , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem , Sequência de Aminoácidos , Humanos , Dados de Sequência Molecular , Peptídeos/análise
14.
Proteomics ; 11(21): 4174-88, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21972224

RESUMO

Cisplatin is undoubtedly one of the most common and successful anticancer drugs worldwide. Though its DNA-based mechanism of action is well established, the contribution of the proteome to this process remains unclear. The possible impact of particular Escherichia coli proteins on the cytostatic activity of cisplatin was the subject of this study. Our main focus was not only the "bottom-up" identification of novel cisplatin protein targets through LC/LC-MS/MS analysis, but also a label-free quantification of their regulation profile by spectral-counting. The regulation of two proteins, aconitate hydratase 2 and 60 kDa chaperonin 1, could be linked to a platinated amino acid in the protein sequence, whereas in the cases of 30S ribosomal protein S1 and enolase, it could be shown that cisplatin fragments are coordinated to an essential site for the functionality of the protein. Nucleoside triphosphate pyrophosphohydrolase (MazG) regulates the programmed cell death and was found to be platinated on the protein surface, which probably correlates with the established mode of action. A possible new chapter in the understanding of cisplatin's mechanism of action and its severe side effects is opened, since evidence is provided that platinated proteins are not only involved in cellular stress response but also in energy metabolism through glycolysis and catabolic processes, in gene regulatory mechanisms and protein synthesis.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Sequência de Aminoácidos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Modelos Moleculares , Dados de Sequência Molecular , Pirofosfatases/química , Pirofosfatases/genética , Pirofosfatases/metabolismo
15.
J Biol Inorg Chem ; 15(8): 1293-303, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20658302

RESUMO

Multiresistant bacteria are becoming more and more widespread. It is therefore necessary to have new compound groups in hand, such as small cationic peptides, to cope with these challenges. In this work, we present a comprehensive approach by monitoring protein expression profiles in a gram-positive bacterium (Corynebacterium glutamicum) to investigate the cellular response to such a compound, a ferrocene-conjugated arginine- and tryptophan-rich pentapeptide. To achieve this, a proteomic outline was performed where the compound-treated sample was compared with an untreated control. This study comprises more than 900 protein identifications, including numerous integral membrane proteins, and among these 185 differential expressions. Surprisingly, unregulated catalase and no elevated H(2)O(2) levels demonstrate that no oxidative stress occurs after treatment with the iron-containing compound as a consequence of the potential Fenton reaction. A sufficient iron supply is evidenced by the iron-containing protein aconitase and SufB (the latter belongs to an iron-sulfur cluster assembly system) and decreased levels of ATP-binding-cassette-type cobalamin/Fe(3+) siderophore transporters. The organometallic peptide antibiotic targets the cell membrane, which is evident by decreased levels of various integral membrane proteins, such as peptide permeases and transporters, and an altered lipid composition. Conversion to a more rigid cell membrane seems to be a relevant protective strategy of C. glutamicum against the ferrocene-conjugated antimicrobial peptide compound.


Assuntos
Antibacterianos/farmacologia , Membrana Celular/efeitos dos fármacos , Corynebacterium glutamicum/efeitos dos fármacos , Compostos Ferrosos/farmacologia , Peptídeos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Membrana Celular/química , Membrana Celular/metabolismo , Corynebacterium glutamicum/citologia , Corynebacterium glutamicum/metabolismo , Relação Dose-Resposta a Droga , Compostos Ferrosos/síntese química , Compostos Ferrosos/química , Metalocenos , Conformação Molecular , Peptídeos/síntese química , Peptídeos/química , Proteômica , Relação Estrutura-Atividade
16.
ChemMedChem ; 3(11): 1696-707, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18855968

RESUMO

Cisplatin binding sites in human serum proteins have been characterised by using combined multidimensional liquid chromatography and ESI tandem mass spectrometry (MudPIT). Following incubation periods of 3 h for cisplatin-blood serum mixtures and subsequent trypsin digestion, MS-MS spectra were recorded for individual peptides that had been separated by SCX and RP liquid chromatography. Matching of the MS-MS spectra to theoretical sequences that were generated for human proteins in the SWISS-PROT database led to the identification of specific binding sites in human serum albumin (HSA), serotransferrin (Trfe) and other abundant serum proteins (A2mg, A1at, Apoa1, Apoa2). The cisplatin coordination sites in HSA and Trfe were confirmed by independent MudPIT studies on cisplatin reaction mixtures with the individual proteins. A total of five specific binding sites were identified for HSA, including the cysteine residue C34, two methionine sites (M329, M548) and the tyrosine and aspartate O-donor sites Y150 (or Y148) and D375 (or E376). Methionine-256 was established as a cisplatin coordination site for Trfe in addition to the O-donor sites E265, Y314, E385 and T457. Inspection of the protein structures indicates that the preferred residues belong either to peripheral alpha helices or to flexible loops within the protein-binding pockets. O-donor residues dominate as cisplatin binding sites for other abundant serum proteins.


Assuntos
Antineoplásicos/química , Proteínas Sanguíneas/química , Cromatografia Líquida/métodos , Cisplatino/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Sequência de Aminoácidos , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Sítios de Ligação , Proteínas Sanguíneas/metabolismo , Cisplatino/metabolismo , Cisplatino/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Espectrometria de Massas em Tandem/métodos , Transferrina/química
17.
Proc Natl Acad Sci U S A ; 105(15): 5705-9, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18413607

RESUMO

Cell fate and organismal lifespan are controlled by a complex signaling network whose dysfunction can cause a variety of aging-related diseases. An important protection against these failures is cellular apoptosis, which can be induced by p66(Shc) in response to cellular stress. The precise mechanisms of p66(Shc) action and regulation and the function of the p66(Shc)-specific N terminus remain to be identified. Here, we show that the p66(Shc) N terminus forms a redox module responsible for apoptosis initiation, and that this module can be activated through reversible tetramerization by forming two disulfide bonds. Glutathione and thioredoxins can reduce and inactivate p66(Shc), resulting in a thiol-based redox sensor system that initiates apoptosis once cellular protection systems cannot cope anymore with cellular stress.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Apoptose , Dissulfetos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Clonagem Molecular , Dimerização , Glutationa/farmacologia , Longevidade , Camundongos , Mitocôndrias Hepáticas , Oxirredução , Ratos , Proteínas Adaptadoras da Sinalização Shc , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Tiorredoxinas/farmacologia
18.
J Biol Inorg Chem ; 13(3): 421-34, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18157731

RESUMO

Combined multidimensional liquid chromatography and electrospray ionisation tandem mass spectrometry was employed to analyse platinated tryptic peptides from Escherichia coli cells treated with the anticancer drug cis-[PtCl2(NH3)2] at pH 7.0. Prerequisites for the LC/LC/MS/MS analysis of protein targets that are fulfilled by cisplatin are (a) that the original protein binding sites have a high kinetic stability over the range 2.3 < pH < 8.5, and (b) that the metal fragment remains coordinated to a significant number of b+ and y+ peptide ions under MS/MS fragmentation conditions. Matching the MS/MS spectra of the platinated tryptic peptides to sequences of proteins in the E. coli database enabled the identification of 31 protein targets for cisplatin. Whereas six of these are high-abundance enzymes and ribosomal proteins in E. coli cells, five low-abundance DNA-binding proteins were also identified as specific targets. These include the DNA mismatch repair protein mutS, the DNA helicase II (uvrD) and topoisomerase I (top1). Two efflux proteins (acrD, mdtA), the redox regulator thioredoxin 1 (thiO) and the external filament-like type-1 fimbrial protein A chain (fimA1) were also characterised as specific cisplatin-binding proteins. Kinetically favoured carboxylate (D, E) and hydroxy (S, T, Y) O atoms were identified as the Pt coordination sites in 18 proteins and methionyl S atoms in 9 proteins.


Assuntos
Cromatografia Líquida/métodos , Cisplatino/química , Proteínas de Ligação a DNA/química , Escherichia coli/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica
19.
J Biol Inorg Chem ; 12(6): 883-94, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17516097

RESUMO

An automated multidimensional protein identification technology, which combines biphasic liquid chromatography with electrospray ionisation tandem mass spectrometry (MS/MS), was employed to analyse tryptic peptides from Escherichia coli cells treated with the antiproliferation agent [(eta(6)-p-cymene)RuCl(2)(DMSO)], where DMSO is dimethyl sulfoxide. MS/MS spectra were recorded for molecular ions generated by neutral loss of p-cymene from intensive peptide ions coordinated by the (eta(6)-p-cymene)Ru(II) fragment. Matching of the MS/MS spectra of the ruthenated peptides to spectra of proteins in the E. coli database enabled the identification of five protein targets for [(eta(6)-p-cymene)RuCl(2)(DMSO)]. One of these is the constitutive cold-shock protein cspC, which regulates the expression of genes encoding stress-response proteins, and three of the other targets, ppiD, osmY and sucC, are proteins of the latter type. The DNA damage-inducible helicase dinG was likewise established as a protein target. Aspartate carboxylate functions were identified as the probable Ru binding sites in cspC, ppiD and dinG, and threonine and lysine side chains in osmY and sucC, respectively.


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteômica/métodos , Compostos de Rutênio/química , Antineoplásicos/química , Sítios de Ligação , Cromatografia Líquida , DNA Helicases , Dimetil Sulfóxido , Proteínas de Choque Térmico , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
20.
J Cell Sci ; 119(Pt 15): 3047-56, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16820410

RESUMO

A growing number of proteins originally found in endocytic structures of the plasma membrane appear to be able to traffic into the nucleus, but the cellular function of this translocation remains unclear. We have found that beta-arrestin2, which typically shows a cytoplasmic localization owing to constitutive nuclear export, appears in the nucleus after stimulation of the G-protein-coupled odorant receptor hOR17-4. In the nucleus, beta-arrestin2 was involved in transcriptional regulation as shown by a Gal4-based transactivation assay. Moreover, we discovered that beta-arrestin2 and hOR17-4, a receptor known to have a role in sperm-egg communication, colocalize in the midpiece of mature human spermatozoa. Stimulation of hOR17-4 in spermatozoa induced PKA-dependent translocation of beta-arrestin2 to the nucleus and nuclear accumulation of phosphorylated MAPKs. Analysis of the interaction partners of beta-arrestin2 indicates that odorant receptor signaling in spermatozoa may be important for the regulation of gene expression during the early processes of fertilization.


Assuntos
Arrestinas/metabolismo , Núcleo Celular/metabolismo , Espermatozoides , Aldeídos/metabolismo , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática , Humanos , Ligantes , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Receptores Odorantes/metabolismo , Proteínas de Plasma Seminal/metabolismo , Espermatozoides/citologia , Espermatozoides/metabolismo , Transcrição Gênica , Ativação Transcricional , beta-Arrestinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA