Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Sci ; 20(2): 606-620, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169654

RESUMO

Dysregulation of liver sinusoidal endothelial cell (LSEC) differentiation and function has been reported in alcohol-associated liver disease (ALD). Impaired nitric oxide (NO) production stimulates LSEC capillarization and dysfunction; however, the mechanism underlying NO production remains unclear. Here, we investigated the role of thioredoxin-interacting protein (TXNIP), an important regulator of redox homeostasis, in endothelial cell NO production and its subsequent effects on ALD progression. We found that hepatic TXNIP expression was upregulated in patients with ALD and in ethanol diet-fed mice with high expression in LSECs. Endothelial cell-specific Txnip deficiency (TxnipΔEC) in mice exacerbated alcohol-induced liver injury, inflammation, fibrosis, and hepatocellular carcinoma development. Deletion of Txnip in LSECs led to sinusoidal capillarization, downregulation of NO production, and increased release of proinflammatory cytokines and adhesion molecules, whereas TXNIP overexpression had the opposite effects. Mechanistically, TXNIP interacted with transforming growth factor ß-activated kinase 1 (TAK1) and subsequently suppressed the TAK1 pathway. Inhibition of TAK1 activation restored NO production and decreased the levels of proinflammatory cytokines, thereby, blocking liver injury and inflammation in TxnipΔEC mice. Our findings indicate that upregulated TXNIP expression in LSECs serves a protective role in ameliorating ALD. Enhancing TXNIP expression could, therefore, be a potential therapeutic approach for ALD.


Assuntos
Hepatopatias Alcoólicas , Óxido Nítrico , Animais , Humanos , Camundongos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Citocinas/metabolismo , Células Endoteliais/metabolismo , Inflamação/metabolismo , Fígado/metabolismo , Cirrose Hepática/metabolismo , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/metabolismo , Óxido Nítrico/metabolismo
2.
Cells ; 12(5)2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36899888

RESUMO

Heart failure (HF) is an emerging epidemic with a high mortality rate. Apart from conventional treatment methods, such as surgery or use of vasodilation drugs, metabolic therapy has been suggested as a new therapeutic strategy. The heart relies on fatty acid oxidation and glucose (pyruvate) oxidation for ATP-mediated contractility; the former meets most of the energy requirement, but the latter is more efficient. Inhibition of fatty acid oxidation leads to the induction of pyruvate oxidation and provides cardioprotection to failing energy-starved hearts. One of the non-canonical types of sex hormone receptors, progesterone receptor membrane component 1 (Pgrmc1), is a non-genomic progesterone receptor associated with reproduction and fertility. Recent studies revealed that Pgrmc1 regulates glucose and fatty acid synthesis. Notably, Pgrmc1 has also been associated with diabetic cardiomyopathy, as it reduces lipid-mediated toxicity and delays cardiac injury. However, the mechanism by which Pgrmc1 influences the energy-starved failing heart remains unknown. In this study, we found that loss of Pgrmc1 inhibited glycolysis and increased fatty acid/pyruvate oxidation, which is directly associated with ATP production, in starved hearts. Loss of Pgrmc1 during starvation activated the phosphorylation of AMP-activated protein kinase, which induced cardiac ATP production. Pgrmc1 loss increased the cellular respiration of cardiomyocytes under low-glucose conditions. In isoproterenol-induced cardiac injury, Pgrmc1 knockout resulted in less fibrosis and low heart failure marker expression. In summary, our results revealed that Pgrmc1 ablation in energy-deficit conditions increases fatty acid/pyruvate oxidation to protect against cardiac damage via energy starvation. Moreover, Pgrmc1 may be a regulator of cardiac metabolism that switches the dominance of glucose-fatty acid usage according to nutritional status and nutrient availability in the heart.


Assuntos
Insuficiência Cardíaca , Receptores de Progesterona , Humanos , Trifosfato de Adenosina/uso terapêutico , Ácidos Graxos/metabolismo , Glucose/metabolismo , Insuficiência Cardíaca/metabolismo , Proteínas de Membrana , Miócitos Cardíacos/metabolismo , Ácido Pirúvico
3.
Circ Res ; 132(1): 52-71, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36448450

RESUMO

BACKGROUND: The osteochondrogenic switch of vascular smooth muscle cells (VSMCs) is a pivotal cellular process in atherosclerotic calcification. However, the exact molecular mechanism of the osteochondrogenic transition of VSMCs remains to be elucidated. Here, we explore the regulatory role of TXNIP (thioredoxin-interacting protein) in the phenotypical transitioning of VSMCs toward osteochondrogenic cells responsible for atherosclerotic calcification. METHODS: The atherosclerotic phenotypes of Txnip-/- mice were analyzed in combination with single-cell RNA-sequencing. The atherosclerotic phenotypes of Tagln-Cre; Txnipflox/flox mice (smooth muscle cell-specific Txnip ablation model), and the mice transplanted with the bone marrow of Txnip-/- mice were analyzed. Public single-cell RNA-sequencing dataset (GSE159677) was reanalyzed to define the gene expression of TXNIP in human calcified atherosclerotic plaques. The effect of TXNIP suppression on the osteochondrogenic phenotypic changes in primary aortic VSMCs was analyzed. RESULTS: Atherosclerotic lesions of Txnip-/- mice presented significantly increased calcification and deposition of collagen content. Subsequent single-cell RNA-sequencing analysis identified the modulated VSMC and osteochondrogenic clusters, which were VSMC-derived populations. The osteochondrogenic cluster was markedly expanded in Txnip-/- mice. The pathway analysis of the VSMC-derived cells revealed enrichment of bone- and cartilage-formation-related pathways and bone morphogenetic protein signaling in Txnip-/- mice. Reanalyzing public single-cell RNA-sequencing dataset revealed that TXNIP was downregulated in the modulated VSMC and osteochondrogenic clusters of human calcified atherosclerotic lesions. Tagln-Cre; Txnipflox/flox mice recapitulated the calcification and collagen-rich atherosclerotic phenotypes of Txnip-/- mice, whereas the hematopoietic deficiency of TXNIP did not affect the lesion phenotype. Suppression of TXNIP in cultured VSMCs accelerates osteodifferentiation and upregulates bone morphogenetic protein signaling. Treatment with the bone morphogenetic protein signaling inhibitor K02288 abrogated the effect of TXNIP suppression on osteodifferentiation. CONCLUSIONS: Our results suggest that TXNIP is a novel regulator of atherosclerotic calcification by suppressing bone morphogenetic protein signaling to inhibit the transition of VSMCs toward an osteochondrogenic phenotype.


Assuntos
Aterosclerose , Calcinose , Placa Aterosclerótica , Calcificação Vascular , Camundongos , Humanos , Animais , Músculo Liso Vascular/metabolismo , Células Cultivadas , Aterosclerose/metabolismo , Placa Aterosclerótica/patologia , Calcinose/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Miócitos de Músculo Liso/metabolismo , RNA/metabolismo , Calcificação Vascular/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Tiorredoxinas/metabolismo
4.
Int Urol Nephrol ; 55(1): 17-28, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36107291

RESUMO

PURPOSE: Benign prostatic hyperplasia (BPH) is a urogenital disorder that affects approximately 85% of males who are over 50 years of age. Hydrocotyle ramiflora (HR), belonging to Apiaceae family, is used to treat urinary system diseases such as urine retention in traditional Chinese herbal medicine. In this study, we evaluated the effects of HR in the BPH animal model. METHODS: We induced BPH in rats via subcutaneous (sc) injections of testosterone propionate (TP, 3 mg/kg). Rats were also administered HR (150 mg/kg), finasteride (10 mg/kg), or vehicle via oral gavage. After induction, prostate glands were collected, weighed, and processed for further analysis, including histopathological examination and immunohistochemistry. In addition, the mRNA expression of inflammatory cytokines in prostatic tissues was determined by quantitative real-time PCR (qRT-PCR). The protein expression of pro-apoptotic markers was examined using western blotting. RESULTS: HR treatment significantly reduced the prostate weight, epithelial thickness, and proliferating cell nuclear antigen (PCNA) expression, with the levels of cleaved caspase-3 and Bcl-2-associated X (Bax) protein considerably increased compared to BPH group. HR also decreased inflammatory cell infiltration and pro-inflammatory cytokine levels compared with BPH group. Furthermore, the expression of phosphor-nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) were reduced by HR treatment. CONCLUSION: These results indicate that HR suppresses the development of BPH associated with anti-proliferative, pro-apoptotic, and anti-inflammatory effects, suggesting it is a potential alternative therapeutic agent for BPH.


Assuntos
Centella , Hiperplasia Prostática , Masculino , Humanos , Ratos , Animais , Hiperplasia Prostática/induzido quimicamente , Hiperplasia Prostática/tratamento farmacológico , Hiperplasia Prostática/metabolismo , Testosterona/uso terapêutico , Ratos Sprague-Dawley , Extratos Vegetais/efeitos adversos
5.
Gastric Cancer ; 26(1): 82-94, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36125689

RESUMO

BACKGROUND: Gastric cancer (GC) is a common malignancy worldwide, with a major attribution to Helicobacter pylori. Interleukin (IL)-17A has been reported to be up-regulated in serum and tumor of GC patients, but the precise mechanisms underlying its involvement in gastric tumorigenesis are yet to be established. Here, we investigated the roles of IL-17A in the pathogenesis of H. pylori-induced GC. METHODS: GC was induced in IL-17A knockout (KO) and wild-type (WT) mice via N-methyl-N-nitrosourea (MNU) treatment and H. pylori infection. At 50 weeks after treatment, gastric tissues were examined by histopathology, immunohistochemistry, and immunoblot analyses. In vitro experiments on the human GC cell lines were additionally performed to elucidate the underlying mechanisms. RESULTS: Deletion of IL-17A suppressed MNU and H. pylori-induced gastric tumor development accompanied by a decrease in gastric epithelial cell growth, oxidative stress, and expression of gastric epithelial stem cells markers. In AGS cells, recombinant human IL-17A (rhIL-17A) inhibited apoptosis and G1/S phase transition arrest while promoting reactive oxygen species production, sphere formation ability of cancer stem cells (CSC), and expression of stemness-related genes. In addition, rhIL-17A induced expression of IL-17RC, leading to NF-κB activation and increased NADPH oxidase 1 (NOX1) levels. Inhibition of NOX1 with GKT136901 attenuated rhIL-17A-mediated elevation of GC cell growth, ROS generation, and CSC stemness. Clinically, IL-17RC expressions were significantly upregulated in human GC compared with normal gastric tissues. CONCLUSION: Our results suggest that IL-17A promotes gastric carcinogenesis, in part, by regulating IL-17RC/NF-κB/NOX1 pathway, supporting its potential as a target in human GC therapy.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Animais , Humanos , Camundongos , Carcinogênese/metabolismo , Células Epiteliais/metabolismo , Mucosa Gástrica/patologia , Infecções por Helicobacter/complicações , Infecções por Helicobacter/patologia , Helicobacter pylori/genética , Interleucina-17/metabolismo , NF-kappa B/metabolismo , Neoplasias Gástricas/patologia , Receptores de Interleucina-17/metabolismo
6.
Res Rep Urol ; 14: 313-326, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187165

RESUMO

Introduction: Benign prostatic hyperplasia (BPH) is a non-neoplastic proliferative disease of the prostate. Eriochloa villosa (EV) reportedly possesses various pharmacological activities, including anti-lipase activity and modulation of various antioxidative enzymes. In this study, we investigate the therapeutic potential of EV against BPH in a testosterone-induced BPH rat model. Methods: Rats were subjected to a daily subcutaneous injection of testosterone (3 mg kg-1) for 4 weeks to induce BPH. Along with testosterone, rats in the treatment group were administered finasteride (10 mg kg-1) or EV (150 mg kg-1) via oral gavage. Prostatic cancer (LNCaP) cell line was used to examine the effect of EV. Results: Finasteride and EV significantly decrease the relative prostate weight, serum levels of dihydrotestosterone and testosterone, and prostate epithelial thickness. Testosterone injection induced prostatic hyperplasia and proliferating cell nuclear antigen expression; however, EV treatment significantly attenuated these effects. Moreover, finasteride- and EV-treated rats exhibit an increase in the number of TUNEL-positive cells and reduced Bcl-2 expression in the prostate tissues compared with the testosterone-treated animals. Furthermore, EV suppresses inflammatory cytokines, including interleukin (IL)-6 and IL-8, in the prostate tissues. Meanwhile, the expression of inflammatory mediator cyclooxygenase-2 is consistently upregulated in testosterone-treated rats, whereas EV treatment significantly reverses this effect. Notably, EV treatment suppresses malondialdehyde (MDA) levels and upregulates testosterone-induced catalase (CAT) expression. In addition, EV suppresses expression of androgen receptor (AR) and prostate-specific antigen (PSA) induced by testosterone in LNCaP cells. Conclusion: The present study results suggest that EV regulates prostatic proliferation, apoptosis, response to inflammation, and oxidative stress in the BPH rat model, and may, therefore, serve as a useful therapeutic agent for BPH.

7.
Autophagy ; 17(9): 2549-2564, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33190588

RESUMO

Impaired macroautophagy/autophagy has been implicated in experimental and human nonalcoholic steatohepatitis (NASH). However, the mechanism underlying autophagy dysregulation in NASH is largely unknown. Here, we investigated the role and mechanism of TXNIP/VDUP1 (thioredoxin interacting protein), a key mediator of cellular stress responses, in the pathogenesis of NASH. Hepatic TXNIP expression was upregulated in nonalcoholic fatty liver disease (NAFLD) patients and in methionine choline-deficient (MCD) diet-fed mice, as well as in palmitic acid (PA)-treated hepatocytes. Upregulation of hepatic TXNIP was positively correlated with impaired autophagy, as evidenced by a decreased number of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 beta) puncta and increased SQSTM1/p62 (sequestosome 1) expression. Deletion of the Txnip gene enhanced hepatic steatosis, inflammation, and fibrosis, accompanied by impaired autophagy and fatty acid oxidation (FAO) in MCD diet-fed mice. Mechanistically, TXNIP directly interacted with and positively regulated p-PRKAA, leading to inactivation of MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1) and nuclear translocation of TFEB (transcription factor EB), which in turn promoted autophagy. Inhibition of MTORC1 by rapamycin induced autophagy and increased the expression levels of FAO-related genes and concomitantly attenuated lipid accumulation in PA-treated txnip-knockout (KO) hepatocytes, which was further abolished by silencing of Atg7. Rapamycin treatment also attenuated MCD diet-induced steatosis, inflammation, and fibrosis with increased TFEB nuclear translocation and restored FAO in txnip-KO mice. Our findings suggest that elevated TXNIP ameliorates steatohepatitis by interacting with PRKAA and thereby inducing autophagy and FAO. Targeting TXNIP may be a potential therapeutic approach for NASH.Abbreviations: ACOX1: acyl-Coenzyme A oxidase 1, palmitoyl; ACSL1: acyl-CoA synthetase long-chain family member 1; ACTA2/α-SMA: actin, alpha 2, smooth muscle, aorta; ACTB: actin beta; ADGRE1/F4/80: adhesion G protein-coupled receptor E1; AMPK: AMP-activated protein kinase; ATG: autophagy-related; BafA1: bafilomycin A1; COL1A1/Col1α1: collagen, type I, alpha 1; CPT1A: carnitine palmitoyltransferase 1a, liver; CQ: chloroquine; DGAT1: diacylglycerol O-acyltransferase 1; DGAT2: diacylglycerol O-acyltransferase 2; ECI2/Peci: enoyl-Coenzyme A isomerase 2; EHHADH: enoyl-Coenzyme A, hydratase/3-hydroxyacyl Coenzyme A dehydrogenase; FAO: fatty acid oxidation; FASN: fatty acid synthase; FFA: free fatty acids; GFP: green fluorescent protein; GK/GYK: glycerol kinase; GOT1/AST: glutamic-oxaloacetic transaminase 1, soluble; GPAM: glycerol-3-phosphate acyltransferase, mitochondrial; GPT/ALT: glutamic pyruvic transaminase, soluble; H&E: hematoxylin and eosin; IL1B/IL-1ß: interleukin 1 beta; IL6: interleukin 6; IOD: integral optical density; KO: knockout; Leu: leupeptin; LPIN1: lipin 1; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MCD: methionine choline-deficient; MMP9: matrix metallopeptidase 9; mRNA: messenger RNA; MTORC1: mechanistic target of rapamycin kinase complex 1; NAFLD: nonalcoholic fatty liver diseases; NASH: nonalcoholic steatohepatitis; PA: palmitic acid; PPARA/PPARα: peroxisome proliferator activated receptor alpha; PPARG/PPARγ: peroxisome proliferator activated receptor gamma; qRT-PCR: quantitative real-time PCR; RPS6KB1/p70S6K1: ribosomal protein S6 kinase, polypeptide 1; RPTOR: regulatory associated protein of MTOR complex 1; SCD1: stearoyl-Coenzyme A desaturase 1; SEM: standard error of the mean; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; TG: triglyceride; TGFB/TGF-ß: transforming growth factor, beta; TIMP1: tissue inhibitor of metalloproteinase 1; TNF/TNF-α: tumor necrosis factor; TXNIP/VDUP1: thioredoxin interacting protein; WT: wild-type.


Assuntos
Autofagia , Proteínas de Transporte , Hepatopatia Gordurosa não Alcoólica , Tiorredoxinas , Animais , Autofagia/genética , Proteínas de Transporte/genética , Ácidos Graxos , Humanos , Metabolismo dos Lipídeos , Camundongos , Tiorredoxinas/genética
8.
J Ethnopharmacol ; 255: 112779, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32209388

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Asteris Radix et Rhizoma (AR) refers to the roots and rhizomes of Aster tataricus L., which is widely distributed throughout East Asia. AR has been consumed as a traditional medicine in Korea, Japan and China for the treatment of urologic symptoms. To date, however, the therapeutic effect of AR on benign prostatic hyperplasia (BPH) has not been investigated. AIM OF THE STUDY: The present study evaluated the therapeutic effects of AR on a testosterone-induced BPH rats. MATERIALS AND METHODS: We induced BPH to rats by subcutaneous injections (s.c) of testosterone propionate (TP) daily for four weeks. Rats were also administered daily oral gavage of AR (150 mg/kg) or vehicle. After four weeks of induction, all animals were euthanized humanely and their prostate glands were removed, weighed and processed for further analysis, including histopathological examination, real-time PCR, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and Western blot analysis. RESULTS: Administration of AR to TP-induced BPH rats considerably reduced prostate weight and concentrations of serum testosterone and prostate dihydrotestosterone (DHT). Epithelial thickness and expression of proliferating cell nuclear antigen (PCNA) were markedly suppressed by AR-treatment in the rats. Furthermore, the expression of the B-cell lymphoma 2 (Bcl-2) were reduced and expression of the Bcl-2-associated X protein (Bax) increased, resulting in significant reduction in Bcl-2/Bax ratio. In addition, AR decreased the level of pro-inflammatory cytokines, including interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). The expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were reduced by AR treatment in a TP-induced BPH rat model. CONCLUSIONS: AR alleviates BPH by promoting apoptosis and suppressing inflammation, indicating that AR may be used clinically to treat BPH accompanied by inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Aster , Extratos Vegetais/farmacologia , Raízes de Plantas , Próstata/efeitos dos fármacos , Hiperplasia Prostática/prevenção & controle , Rizoma , Propionato de Testosterona , Animais , Anti-Inflamatórios/isolamento & purificação , Proteínas Reguladoras de Apoptose/metabolismo , Aster/química , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Masculino , Tamanho do Órgão , Extratos Vegetais/isolamento & purificação , Raízes de Plantas/química , Próstata/metabolismo , Próstata/patologia , Hiperplasia Prostática/induzido quimicamente , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/patologia , Ratos Sprague-Dawley , Rizoma/química
9.
Int J Med Sci ; 16(12): 1557-1563, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31839743

RESUMO

E2F3, a member of the E2F family, plays a critical role in cell cycle and proliferation by targeting downstream, retinoblastoma (RB) a tumor suppressor family protein. The purpose of this study, was to investigate the role and function of E2F3 in vivo. We examined phenotypic abnormalities, by deletion of the E2f3 gene in mice. Complete ablation of the E2F3 was fully penetrant, in the pure C57BL/6N background. The E2f3+/ - mouse embryo developed normally without fatal disorder. However, they exhibited reduced body weight, growth retardation, skeletal imperfection, and poor grip strength ability. Findings suggest that E2F3 has a pivotal role in muscle and bone development, and affect normal mouse growth.


Assuntos
Desenvolvimento Ósseo/genética , Fator de Transcrição E2F3/genética , Desenvolvimento Embrionário/genética , Músculo Esquelético/crescimento & desenvolvimento , Animais , Apoptose/genética , Peso Corporal/genética , Ciclo Celular/genética , Proliferação de Células/genética , Embrião de Mamíferos , Humanos , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Fenótipo
10.
J Ethnopharmacol ; 233: 115-122, 2019 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-30508623

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ulmus macrocarpa Hance (UMH), of the family Ulmaceae, is a deciduous tree, widely distributed throughout Korea. UMH has been used as a traditional oriental medicine in Korea for the treatment of urological disorders, including bladder outlet obstruction (BOO), lower urinary tract syndrome (LUTS), diuresis, and hematuria. To date, its possible protective effects against benign prostatic hyperplasia (BPH) have not been analyzed. AIM OF THE STUDY: This study investigated the effects of UMH on the development of BPH using a rat model of testosterone propionate (TP)-induced BPH. MATERIALS AND METHODS: BPH was induced by daily subcutaneous injections of testosterone propionate (TP) for four weeks. UMH was administrated daily by oral gavage at a dose of 150 mg/kg during the four weeks of TP injections. Animals were sacrificed, and their prostates were weighed and subjected to histopathological examination, TUNEL assay, and western blot analysis. RESULTS: Treatment of BPH-model rats with UMH significantly reduced prostate weight, serum testosterone concentration and dihydrotestosterone (DHT) concentration in prostate tissue. TP-induced prostatic hyperplasia and the expression of proliferating cell nuclear antigen (PCNA) were significantly attenuated in UMH-treated rats. In addition, UMH administration markedly induced the activation of caspases-3, - 8, and - 9 in prostate tissues of BPH rats, accompanied by upregulation of expression of Fas, Fas-associated protein with death domain (FADD), and Fas ligand (FasL) and a reduction in the ratio of B-cell lymphoma 2 (Bcl-2) to Bcl-2-associated X protein (Bax). CONCLUSIONS: UMH effectively inhibited the proliferation and promoted the apoptosis of prostate cells, suggesting it may be useful for the treatment of BPH.


Assuntos
Extratos Vegetais/uso terapêutico , Hiperplasia Prostática/tratamento farmacológico , Ulmus , Animais , Apoptose/efeitos dos fármacos , Di-Hidrotestosterona/metabolismo , Masculino , Fitoterapia , Extratos Vegetais/farmacologia , Próstata/efeitos dos fármacos , Próstata/patologia , Próstata/fisiologia , Hiperplasia Prostática/induzido quimicamente , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/patologia , Ratos Sprague-Dawley , Testosterona/sangue , Propionato de Testosterona
11.
Biol Pharm Bull ; 42(1): 1-9, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30381617

RESUMO

Veratrum maackii (VM), a perennial plant in the Melanthiaceae family, has anti-hypertensive, anti-cholinergic, anti-asthmatic, anti-tussive, anti-fungal, anti-melanogenesis, and anti-tumor activities. Here, we investigated the therapeutic effect of VM on benign prostatic hyperplasia (BPH) in human normal prostate cell line (WPMY-1) and a testosterone propionate-induced BPH animal model. WPMY-1 cells were treated with VM (1-10 µg/mL) and testosterone propionate (100 nM). BPH in rats was generated via daily subcutaneous injections of testosterone propionate (3 mg/kg) dissolved in corn oil, for 4 weeks. VM (150 mg/kg) was administered daily for 4 weeks by oral gavage concurrently with the testosterone propionate. All rats were sacrificed and the prostates were dissected, weighed, and subjected to histological, immunohistochemical, and biochemical examinations. Immunoblotting experiments indicated that WPMY-1 cells treated testosterone propionate had increased expression of prostate specific antigen (PSA) and androgen receptor (AR), and treatment with VM or finasteride blocked this effect. In rat model, VM significantly reduced prostate weight, prostatic hyperplasia, prostatic levels of dihydrotestosterone (DHT), and expression of proliferation markers such as proliferating cell nuclear antigen (PCNA) and cyclin D1, but increased the expression of pro-apoptotic Bcl-2-associated X protein (Bax) and the cleavage of caspase-3. VM administration also suppressed the testosterone propionate-induced activation of nuclear factor-kappaB (NF-κB). Our results indicate that VM effectively represses the development of testosterone propionate-induced BPH, suggesting it may be a useful treatment agent for BPH.


Assuntos
Extratos Vegetais/uso terapêutico , Hiperplasia Prostática/induzido quimicamente , Hiperplasia Prostática/tratamento farmacológico , Propionato de Testosterona/toxicidade , Veratrum , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Humanos , Masculino , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Hiperplasia Prostática/patologia , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
12.
Biol Pharm Bull ; 40(12): 2125-2133, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28943529

RESUMO

Quisqualis indica (QI) has been used for treating disorders such as stomach pain, constipation, and digestion problem. This study was aimed to evaluate the therapeutic efficacy of QI extract on treating benign prostatic hyperplasia (BPH) in LNCaP human prostate cancer cell line and a testosterone-induced BPH rat model. LNCaP cells were treated with QI plus testosterone propionate (TP), and androgen receptor (AR) and prostate specific antigen (PSA) expression levels were assessed by Western blotting. To induce BPH, the rats were subjected to a daily subcutaneous injection of TP (3 mg/kg) for 4 weeks. The rats in treatment group were orally gavaged with QI (150 mg/kg) together with the TP injection. In-vitro studies showed that TP-induced increases in AR and PSA expression in LNCaP cells were reduced by QI treatment. In BPH-model rats, the prostate weight, testosterone in serum, dihydrotestosterone (DHT) concentration and 5α-reductase type 2 mRNA expression in prostate tissue were significantly reduced following the treatment with QI. TP-induced prostatic hyperplasia and the expression of proliferating cell nuclear antigen (PCNA) and cyclin D1 were significantly attenuated in QI-treated rats. In addition, QI induced apoptosis by up-regulating caspase-3 and -9 activity and decreasing the B-cell lymphoma 2 (Bcl-2)/Bcl-2-associated X protein (Bax) ratio in prostate tissues of BPH rats. Further investigation showed that TP-induced activation of AKT and glycogen synthase kinase 3ß (GSK3ß) was reduced by QI administration. Therefore, our findings suggest that QI attenuates the BPH state in rats through anti-proliferative and pro-apoptotic activities and might be useful in the clinical treatment of BPH.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Combretaceae/química , Extratos Vegetais/farmacologia , Próstata/efeitos dos fármacos , Hiperplasia Prostática/tratamento farmacológico , Animais , Di-Hidrotestosterona/sangue , Humanos , Masculino , Extratos Vegetais/uso terapêutico , Antígeno Nuclear de Célula em Proliferação , Próstata/citologia , Próstata/patologia , Antígeno Prostático Específico/sangue , Hiperplasia Prostática/sangue , Hiperplasia Prostática/induzido quimicamente , Hiperplasia Prostática/patologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Receptores Androgênicos/metabolismo , Sementes/química , Testosterona/sangue , Testosterona/metabolismo , Propionato de Testosterona/toxicidade
13.
Int Immunopharmacol ; 49: 67-76, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28551494

RESUMO

Isoimperatorin (IMP), an active natural furocoumarin, has numerous pharmacologic effects, including anti-inflammatory, analgesic, antispasmodic, and anticancer activities. This study aimed to evaluate the preventive activity of IMP in an ovalbumin (OVA)-induced murine model of asthma and to investigate its possible molecular mechanisms. Female BALB/c mice were sensitized on days 0 and 14 via intraperitoneal injection of 20µg OVA. On days 21-23 after the initial sensitization, the mice received an airway challenge with OVA (1% w/v in PBS) for 1h; meanwhile, IMP (10 or 30mg/kg once daily) was administered by gavage on days 18-23. Our results revealed that IMP significantly lowered the productions of interleukin (IL)-4, IL-5, IL-13, eotaxin, and immunoglobulin (Ig)E in bronchoalveolar lavage fluid (BALF), plasma, or lung tissues. Histological studies showed that IMP inhibited OVA-induced inflammatory cell infiltration and mucus production in the respiratory tract. In addition, pretreatment with IMP suppressed the activation of p38 mitogen-activated protein kinase (p38 MAPK), extracellular-signal-regulated kinases 1/2 (ERK1/2), and nuclear factor-κB (NF-κB). Together, these results suggest that IMP effectively inhibits airway inflammation and mucus hypersecretion by downregulating the levels of Th2 cytokines and inhibiting NF-κB and MAPK pathways.


Assuntos
Anti-Inflamatórios/uso terapêutico , Asma/tratamento farmacológico , Furocumarinas/uso terapêutico , Pneumonia/tratamento farmacológico , Células Th2/imunologia , Alérgenos/imunologia , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Imunoglobulina E/sangue , Camundongos , Camundongos Endogâmicos BALB C , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Muco/metabolismo , NF-kappa B/metabolismo , Ovalbumina/imunologia , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Int Immunopharmacol ; 31: 239-47, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26773771

RESUMO

meso-Dihydroguaiaretic acid (MDGA), which is a dibenzylbutane lignin isolated from the ethyl acetate fraction of Saururus chinensis, has various biological activities, including anti-oxidative, anti-inflammatory, anti-bacterial, and neuroprotective effects. However, no report has examined the potential anti-asthmatic activity of MDGA. In this study, we evaluated the protective effects of MDGA on asthmatic responses, particularly airway inflammation and mucus hypersecretion in an ovalbumin (OVA)-induced murine model of asthma. Intragastric administration of MDGA significantly lowered the productions of interleukin (IL)-4, IL-5, IL-13, tumor necrosis-α (TNF-α), eotaxin, monocyte chemoattractant protein-1 (MCP-1), vascular cell adhesion molecule-1 (VCAM-1), and immunoglobulin (Ig)E in bronchoalveolar lavage fluid (BALF), plasma, or lung tissues. Histological studies showed that MDGA inhibited OVA-induced inflammatory cell infiltration and mucus production in the respiratory tract. Moreover, MDGA markedly attenuated the OVA-induced activations of nuclear factor kappa B (NF-κB), extracellular-signal-regulated kinases 1/2 (ERK1/2), and p38 mitogen-activated protein kinase (p38 MAPK). Together, these results suggest that MDGA effectively inhibits airway inflammation and mucus hypersecretion by downregulating the levels of T helper 2 (Th2) cytokines, chemokines, and adhesion molecules, and inhibiting the activations of NF-κB and MAPKs.


Assuntos
Antiasmáticos/uso terapêutico , Asma/tratamento farmacológico , Guaiacol/análogos & derivados , Lignanas/uso terapêutico , Pneumonia/tratamento farmacológico , Saururaceae/imunologia , Animais , Movimento Celular/efeitos dos fármacos , Quimiocina CCL2/metabolismo , Citocinas/metabolismo , Feminino , Guaiacol/uso terapêutico , Humanos , Imunoglobulina E/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Células Th2/imunologia , Molécula 1 de Adesão de Célula Vascular/metabolismo
15.
Biol Pharm Bull ; 39(2): 221-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26632199

RESUMO

Manassantin A, a neolignan isolated from Saururus chinensis, is a major phytochemical compound that has various biological activities, including anti-inflammatory, neuroleptic, and human acyl-CoA : cholesterol acyltransferase (ACAT) inhibitory activities. In this study, we investigated the protective effects of manassantin A against ethanol-induced acute gastric injury in rats. Gastric injury was induced by intragastric administration of 5 mL/kg body weight of absolute ethanol to each rat. The positive control group and the manassantin A group were given oral doses of omeprazole (20 mg/kg) or manassantin A (15 mg/kg), respectively, 1 h prior to the administration of absolute ethanol. Our examinations revealed that manassantin A pretreatment reduced ethanol-induced hemorrhage, hyperemia, and epithelial cell loss in the gastric mucosa. Manassantin A pretreatment also attenuated the increased lipid peroxidation associated with ethanol-induced acute gastric lesions, increased the mucosal glutathione (GSH) content, and enhanced the activities of antioxidant enzymes. The levels of pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1ß were clearly decreased in the manassantin A-pretreated group. In addition, manassantin A pretreatment enhanced the levels of cyclooxygenase (COX)-1, COX-2, and prostaglandin E2 (PGE2) and reduced the inducible nitric oxide synthase (iNOS) overproduction and nuclear factor kappa B (NF-κB) phosphorylation. Collectively, these results indicate that manassantin A protects the gastric mucosa from ethanol-induced acute gastric injury, and suggest that these protective effects might be associated with COX/PGE2 stimulation, inhibition of iNOS production and NF-κB activation, and improvements in the antioxidant and anti-inflammatory status.


Assuntos
Antiulcerosos/farmacologia , Lignanas/farmacologia , Gastropatias/induzido quimicamente , Animais , Antiulcerosos/química , Catalase , Etanol , Glutationa , Lignanas/química , Masculino , Malondialdeído , Estrutura Molecular , Omeprazol/farmacologia , Ratos , Ratos Sprague-Dawley , Saururaceae/química , Gastropatias/prevenção & controle , Superóxido Dismutase
16.
Hepatology ; 59(3): 1094-106, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24115096

RESUMO

UNLABELLED: Prednisolone is a corticosteroid that has been used to treat inflammatory liver diseases such as autoimmune hepatitis and alcoholic hepatitis. However, the results have been controversial, and how prednisolone affects liver disease progression remains unknown. In the current study we examined the effect of prednisolone treatment on several models of liver injury, including T/NKT cell hepatitis induced by concanavalin A (ConA) and α-galactosylceramide (α-GalCer), and hepatotoxin-mediated hepatitis induced by carbon tetrachloride (CCl4 ) and/or ethanol. Prednisolone administration attenuated ConA- and α-GalCer-induced hepatitis and systemic inflammatory responses. Treating mice with prednisolone also suppressed inflammatory responses in a model of hepatotoxin (CCl4 )-induced hepatitis, but surprisingly exacerbated liver injury and delayed liver repair. In addition, administration of prednisolone also enhanced acetaminophen-, ethanol-, or ethanol plus CCl4 -induced liver injury. Immunohistochemical and flow cytometric analyses demonstrated that prednisolone treatment inhibited hepatic macrophage and neutrophil infiltration in CCl4 -induced hepatitis and suppressed their phagocytic activities in vivo and in vitro. Macrophage and/or neutrophil depletion aggravated CCl4 -induced liver injury and impeded liver regeneration. Finally, conditional disruption of glucocorticoid receptor in macrophages and neutrophils abolished prednisolone-mediated exacerbation of hepatotoxin-induced liver injury. CONCLUSION: Prednisolone treatment prevents T/NKT cell hepatitis but exacerbates hepatotoxin-induced liver injury by inhibiting macrophage- and neutrophil-mediated phagocytic and hepatic regenerative functions. These findings may not only increase our understanding of the steroid treatment mechanism but also help us to better manage steroid therapy in liver diseases.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Células Matadoras Naturais/efeitos dos fármacos , Prednisolona/farmacologia , Linfócitos T/efeitos dos fármacos , Animais , Tetracloreto de Carbono/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Concanavalina A/toxicidade , Modelos Animais de Doenças , Galactosilceramidas/toxicidade , Glucocorticoides/farmacologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Regeneração Hepática/efeitos dos fármacos , Regeneração Hepática/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitógenos/toxicidade , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/patologia , Linfócitos T/imunologia , Linfócitos T/patologia
17.
J Vet Sci ; 14(3): 257-62, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23820201

RESUMO

Vitamin D3 up-regulated protein 1 (VDUP1) is a potent growth suppressor that inhibits tumor cell proliferation and cell cycle progression when overexpressed. In a previous study, we showed that VDUP1 knockout (KO) mice exhibited accelerated liver regeneration because such animals could effectively control the expression of cell cycle regulators that drive the G1-to-S phase progression. In the present study, we further investigated the role played by VDUP1 in initial priming of liver regeneration. To accomplish this, VDUP1 KO and wild-type (WT) mice were subjected to 70% partial hepatectomy (PH) and sacrificed at different times after surgery. The hepatic levels of TNF-α and IL-6 increased after PH, but there were no significant differences between VDUP1 KO and WT mice. Nuclear factor-κB (NF-κB), c-Jun-N-terminal kinase (JNK), and signal transducer and activator of transcription 3 (STAT-3) were activated much earlier and to a greater extent in VDUP1 KO mice after PH. A single injection of TNF-α or IL-6 caused rapid activation of JNK and STAT-3 expression in both mice, but the responses were stronger and more sustained in VDUP1 KO mice. In conclusion, our findings provide evidence that VDUP1 plays a role in initiation of liver regeneration.


Assuntos
Proteínas de Transporte/genética , Regulação da Expressão Gênica , Hepatócitos/citologia , Fígado/fisiologia , Regeneração , Tiorredoxinas/genética , Animais , Western Blotting , Proteínas de Transporte/metabolismo , Proliferação de Células , Hepatectomia , Hepatócitos/fisiologia , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/metabolismo , Reação em Cadeia da Polimerase , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Tiorredoxinas/metabolismo
18.
J Vet Med Sci ; 75(3): 299-307, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23117827

RESUMO

Deregulated Wnt signaling pathway is implicated in many hereditary diseases and tumorigenesis including colorectal cancer, hepatocellular carcinoma and gastric cancer. In this study, to assess the relationship between chemically induced gastric tumor and canonical Wnt signaling pathway in genetically intact mice, histopathological and quantitative mRNA analyses were performed in C57BL/6J mice given drinking water containing N-methyl- N-nitrosurea (MNU). 60.5% of gastric adenoma and 27.9% of adenocarcinoma were observed 48 weeks after first administration. Also, in immunohistochemical analysis, aberrant expressions of phospho-GSK-3ß, ß-catenin, cyclin D1, c-Myc, osteopontin and COX-2 were found. In double immunofluorescent-antibody stains, ß-catenin accumulation was colocalized with other proteins. mRNA levels of cyclin D1, c-myc and COX-2 were relatively higher in adenocarcinoma. Altogether, canonical Wnt pathway was highly involved in MNU induced gastric neoplasia of C57BL/6J mice, and it could be a considerably suitable system for the study to examine the linkage between gastric tumorigenesis and the canonical Wnt pathway.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Metilnitrosoureia/toxicidade , Neoplasias Gástricas/induzido quimicamente , Via de Sinalização Wnt/fisiologia , Animais , Imuno-Histoquímica , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Neoplasias Gástricas/metabolismo
19.
Gut ; 61(1): 53-63, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21917648

RESUMO

OBJECTIVE: Vitamin D(3) upregulated protein 1 (VDUP1) is a potent tumour suppressor whose expression is dramatically reduced in various types of human cancers, including gastric cancer. However, the precise mechanisms underlying tumour development remain unclear. In the present study, the authors examined the effect of VDUP1 on Helicobacter pylori-induced gastric carcinogenesis in mice. DESIGN: Gastric cancer was generated in VDUP1 knockout (KO) and wild-type mice using a combination of N-methyl-N-nitrosourea treatment and H pylori infection. Fifty weeks after treatment, gastric tissues from both types of mice were examined by histopathology, immunohistochemistry and immunoblotting. In vitro tests on the human gastric cancer cell line, AGS, were also performed to identify the underlying mechanisms of cancer development. RESULTS: The overall incidence of gastric cancer was significantly higher in VDUP1 KO mice than in wild-type mice. Similarly, VDUP1 KO mice showed more severe chronic gastritis, glandular atrophy, foveolar hyperplasia, metaplasia and dysplasia. Although no differences in the apoptotic index were apparent, lack of VDUP1 increased the rate of gastric epithelial cell proliferation in non-cancerous stomachs, with corresponding increases in tumour necrosis factor alpha (TNFα) level, nuclear transcription factor kappa B (NF-κB) activation and cyclooxygenase-2 (COX-2) expression. An in vitro study showed that H pylori-associated cell proliferation and induction of TNFα, NF-κB and COX-2 were inhibited in cells transfected with VDUP1. In addition, overexpression of VDUP1 in AGS cells suppressed TNFα-induced NF-κB activation and COX-2 expression. CONCLUSION: Our data show that VDUP1 negatively regulates H pylori-associated gastric carcinogenesis, in part by disrupting cell growth and inhibiting the induction of TNFα, NF-κB and COX-2. These findings provide important insights into the role of VDUP1 in H pylori-associated tumourigenesis.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas de Transporte/metabolismo , Infecções por Helicobacter/complicações , Helicobacter pylori , Neoplasias Gástricas/etiologia , Tiorredoxinas/metabolismo , Animais , Biomarcadores Tumorais/fisiologia , Proteínas de Transporte/fisiologia , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/metabolismo , Humanos , Metilnitrosoureia/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Distribuição Aleatória , Neoplasias Gástricas/metabolismo , Tiorredoxinas/fisiologia , Análise Serial de Tecidos , Fator de Necrose Tumoral alfa/metabolismo
20.
J Hepatol ; 54(6): 1168-76, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21145821

RESUMO

BACKGROUND & AIMS: Liver regeneration is a complicated process involving a variety of interacting factors. Vitamin D3 up-regulated protein 1 (VDUP1) is a potent growth suppressor that, upon over-expression, inhibits tumor cell proliferation and cell-cycle progression. Here, we investigated the function of VDUP1 in liver regeneration following hepatectomy in mice. METHODS: Liver regeneration after 70% partial hepatectomy (PH) was compared in VDUP1 knockout (KO) and wild-type (WT) mice, and the activities of proliferative- and cell-cycle-related signaling pathways were measured. RESULTS: Compared with WT mice, liver recovery was significantly accelerated in VDUP1 KO mice during the first day after PH, in association with increased DNA synthesis. Consistent with this observation, the expression levels of key cell-cycle regulatory proteins, including cyclin D, cyclin E, cyclin-dependent kinase 4 (CDK4), p21, and p27, were markedly altered in the livers of VDUP1 KO mice. Induction of growth factors and activation of proliferative signaling pathway components including extracellular signal-regulated kinase 1/2 (ERK1/2), Akt, glycogen synthase kinase 3ß (GSK3ß), mammalian target of rapamycin (mTOR), and p70S6 kinase (p70(S6K)), occurred much earlier and to a greater extent in VDUP1 KO mouse livers. In addition, primary hepatocytes isolated from VDUP1 KO mice displayed increased activation of ERK1/2 and Akt in response to HGF and TGF-α. CONCLUSIONS: Our results reveal an important role for VDUP1 in the regulation of proliferative signaling during liver regeneration. Altered activation of genes involved in ERK1/2 and Akt signaling pathways may explain the accelerated growth responses seen in VDUP1 KO mice.


Assuntos
Proteínas de Transporte/fisiologia , Regeneração Hepática/fisiologia , Tiorredoxinas/fisiologia , Animais , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Tamanho Celular , Ciclinas/metabolismo , Hepatectomia , Fator de Crescimento de Hepatócito/farmacologia , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Regeneração Hepática/genética , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Tiorredoxinas/antagonistas & inibidores , Tiorredoxinas/genética , Fator de Crescimento Transformador alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA