Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nat Genet ; 56(3): 371-376, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38424461

RESUMO

Available genetically defined cancer models are limited in genotypic and phenotypic complexity and underrepresent the heterogeneity of human cancer. Here, we describe a combinatorial genetic strategy applied to an organoid transformation assay to rapidly generate diverse, clinically relevant bladder and prostate cancer models. Importantly, the clonal architecture of the resultant tumors can be resolved using single-cell or spatially resolved next-generation sequencing to uncover polygenic drivers of cancer phenotypes.


Assuntos
Neoplasias , Masculino , Humanos , Genótipo , Fenótipo , Neoplasias/genética , Estudos de Associação Genética
2.
Cancer Res Commun ; 3(11): 2358-2374, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37823778

RESUMO

Castration-resistant prostate cancer (CRPC) consists of multiple phenotypic subtypes including androgen receptor (AR)-active prostate cancer (ARPC) and neuroendocrine prostate cancer (NEPC). Tumor cells with these phenotypes can coexist between metastases within a patient and within an individual tumor. Treatments that are effective across CRPC subtypes are currently lacking. Histone deacetylation is crucial for the regulation of chromatin structure and maintenance of cancer cell state and activation of the PI3K/AKT/mTOR signaling cascade is a tumor growth-promoting pathway. We therefore investigated combined targeting of histone deacetylase (HDAC) and PI3K using a rationally designed dual inhibitor, fimepinostat, in CRPC subtypes in vitro and in vivo. Dual HDAC1/2 and PI3K/AKT pathway inhibition by fimepinostat led to robust tumor growth inhibition in both ARPC and NEPC models including cell line- and patient-derived xenografts. HDAC1/2 inhibition combined with PI3K/AKT inhibition was more effective than targeting each pathway alone, producing growth inhibitory effects through cell-cycle inhibition and apoptosis. Molecular profiling revealed on-target effects of combined HDAC1/2 and PI3K/AKT inhibition independent of tumor phenotype. Fimepinostat therapy was also associated with the suppression of lineage transcription factors including AR in ARPC and Achaete-scute homolog 1 (ASCL1) in NEPC. Together, these results indicate that fimepinostat represents a novel therapeutic that may be effective against both ARPC and NEPC through CRPC subtype-dependent and -independent mechanisms. SIGNIFICANCE: CRPC is a heterogeneous disease constituting multiple phenotypic subtypes that often co-occur within tumors or across metastases in patients. Existing targeted therapies for CRPC do not take this into account. Here we show that fimepinostat, a dual HDAC1/2 and PI3K/AKT inhibitor investigated clinically in other cancer types but not prostate cancer, may overcome this heterogeneity by effectively inhibiting both ARPC and NEPC subtypes of CRPC.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Histona Desacetilases/genética , Fenótipo , Castração
3.
J Mol Endocrinol ; 71(4)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855320

RESUMO

Suboptimal in utero environments such as poor maternal nutrition and gestational diabetes can impact fetal birth weight and the metabolic health trajectory of the adult offspring. Fetal growth is associated with alterations in placental mechanistic target of rapamycin (mTOR) signaling; it is reduced in fetal growth restriction and increased in fetal overgrowth. We previously reported that when metabolically challenged by a high-fat diet, placental mTORKO (mTORKOpl) adult female offspring develop obesity and insulin resistance, whereas placental TSC2KO (TSC2KOpl) female offspring are protected from diet-induced obesity and maintain proper glucose homeostasis. In the present study, we sought to investigate whether reducing or increasing placental mTOR signaling in utero alters the programming of adult offspring metabolic tissues preceding a metabolic challenge. Adult male and female mTORKOpl, TSC2KOpl, and respective controls on a normal chow diet were subjected to an acute intraperitoneal insulin injection. Upon insulin stimulation, insulin signaling via phosphorylation of Akt and nutrient sensing via phosphorylation of mTOR target ribosomal S6 were evaluated in the offspring liver, white adipose tissue, and skeletal muscle. Among tested tissues, we observed significant changes only in the liver signaling. In the male mTORKOpl adult offspring liver, insulin-stimulated phospho-Akt was enhanced compared to littermate controls. Basal phospho-S6 level was increased in the mTORKOpl female offspring liver compared to littermate controls and did not increase further in response to insulin. RNA sequencing of offspring liver identified placental mTORC1 programming-mediated differentially expressed genes. The expression of major urinary protein 1 (Mup1) was differentially altered in female mTORKOpl and TSC2KOpl offspring livers and we show that MUP1 level is dependent on overnutrition and fasting status. In summary, deletion of placental mTOR nutrient sensing in utero programs hepatic response to insulin action in a sexually dimorphic manner. Additionally, we highlight a possible role for hepatic and circulating MUP1 in glucose homeostasis that warrants further investigation.


Assuntos
Diabetes Gestacional , Placenta , Animais , Feminino , Masculino , Camundongos , Gravidez , Diabetes Gestacional/metabolismo , Macrossomia Fetal/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Obesidade/metabolismo , Placenta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
4.
bioRxiv ; 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37609344

RESUMO

Available genetically-defined cancer models are limited in genotypic and phenotypic complexity and underrepresent the heterogeneity of human cancer. Herein, we describe a combinatorial genetic strategy applied to an organoid transformation assay to rapidly generate diverse, clinically relevant bladder and prostate cancer models. Importantly, the clonal architecture of the resultant tumors can be resolved using single-cell or spatially resolved next-generation sequencing to uncover polygenic drivers of cancer phenotypes.

5.
J Biol Chem ; 299(2): 102878, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36623733

RESUMO

Deletion of O-GlcNAc transferase (Ogt) in pancreatic epithelial progenitor cells results in pancreatic hypoplasia at birth, partly due to increased apoptosis during embryonic development. Constitutive loss of Ogt in ß-cells results in increased ER stress and apoptosis, and in the Ogt-deficient pancreas, transcriptomic data previously revealed both tumor suppressor protein p53 and pancreatic duodenal homeobox 1 (Pdx1), key cell survival proteins in the developing pancreas, as upstream regulators of differentially expressed genes. However, the specific roles of these genes in pancreatic hypoplasia are unclear. In this study, we explored the independent roles of p53, ER stress protein CHOP, and Pdx1 in pancreas development and their use in the functional rescue of pancreatic hypoplasia in the context of Ogt loss. Using in vivo genetic manipulation and morphometric analysis, we show that Ogt plays a key regulatory role in pancreas development. Heterozygous, but not homozygous, loss of pancreatic p53 afforded a partial rescue of ß-cell, α-cell, and exocrine cell masses, while whole body loss of CHOP afforded a partial rescue in pancreas weight and a full rescue in exocrine cell mass. However, neither was sufficient to fully mitigate pancreatic hypoplasia at birth in the Ogt-deficient pancreas. Furthermore, overexpression of Pdx1 in the pancreatic epithelium resulted in partial rescues in pancreas weight and ß-cell mass in the Ogt loss background. These findings highlight the requirement of Ogt in pancreas development by targeting multiple proteins such as transcription factor Pdx1 and p53 in the developing pancreas.


Assuntos
Expressão Gênica , Células Secretoras de Glucagon , Pancreatopatias , Proteína Supressora de Tumor p53 , Animais , Camundongos , Células Secretoras de Glucagon/metabolismo , Pâncreas Exócrino/metabolismo , Proteína Supressora de Tumor p53/genética , Expressão Gênica/genética , Pancreatopatias/genética , Pancreatopatias/fisiopatologia
6.
Mol Imaging Biol ; 25(3): 541-553, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36284040

RESUMO

PURPOSE: Small molecule inhibitors that target oncogenic driver kinases are an important class of therapies for non-small cell lung cancer (NSCLC) and other malignancies. However, these therapies are not without their challenges. Each inhibitor works on only a subset of patients, the pharmacokinetics of these inhibitors is variable, and these inhibitors are associated with significant side effects. Many of these inhibitors lack non-invasive biomarkers to confirm pharmacodynamic efficacy, and our understanding of how these inhibitors block cancer cell growth remains incomplete. Limited clinical studies suggest that early (< 2 weeks after start of therapy) changes in tumor glucose consumption, measured by [18F]FDG PET imaging, can predict therapeutic efficacy, but the scope of this strategy and functional relevance of this inhibition of glucose consumption remains understudied. Here we demonstrate that early inhibition of glucose consumption as can be measured clinically with [18F]FDG PET is a consistent phenotype of efficacious targeted kinase inhibitors and is necessary for the subsequent inhibition of growth across models of NSCLC. METHODS: We tested nine NSCLC cell lines (A549, H1129, H1734, H1993, H2228, H3122, H460, HCC827, and PC9 cells) and ten targeted therapies (afatinib, buparlisib, ceritinib, cabozantinib, crizotinib, dovitinib, erlotinib, ponatinib, trametinib, and vemurafenib) across concentrations ranging from 1.6 nM to 5 µM to evaluate whether these inhibitors block glucose consumption at 24-h post-drug treatment and cell growth at 72-h post-drug treatment. We overexpressed the facilitative glucose transporter SLC2A1 (GLUT1) to test the functional connection between blocked glucose consumption and cell growth after treatment with a kinase inhibitor. A subset of these inhibitors and cell lines were studied in vivo. RESULTS: Across the nine NSCLC cell lines, ten targeted therapies, and a range of inhibitor concentrations, whether a kinase inhibitor blocked glucose consumption at 24-h post-drug treatment strongly correlated with whether that inhibitor blocked cell growth at 72-h post-drug treatment in cell culture. These results were confirmed in vivo with [18F]FDG PET imaging. GLUT1 overexpression blocked the kinase inhibitors from limiting glucose consumption and cell growth. CONCLUSIONS: Our results demonstrate that the early inhibition of lung cancer glucose consumption in response to a kinase inhibitor is a strong biomarker of and is often required for the subsequent inhibition of cell growth. Early inhibition of glucose consumption may provide complementary information to other biomarkers in determining whether a drug will effectively limit tumor growth.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Fluordesoxiglucose F18/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 1 , Tomografia por Emissão de Pósitrons/métodos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Antineoplásicos/farmacologia , Biomarcadores , Linhagem Celular Tumoral
7.
Int J Radiat Biol ; 98(12): 1789-1801, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35939063

RESUMO

BACKGROUND: In the past three decades, a large body of data on the effects of exposure to ionizing radiation and the ensuing changes in gene expression has been generated. These data have allowed for an understanding of molecular-level events and shown a level of consistency in response despite the vast formats and experimental procedures being used across institutions. However, clarity on how this information may inform strategies for health risk assessment needs to be explored. An approach to bridge this gap is the adverse outcome pathway (AOP) framework. AOPs represent an illustrative framework characterizing a stressor associated with a sequential set of causally linked key events (KEs) at different levels of biological organization, beginning with a molecular initiating event (MIE) and culminating in an adverse outcome (AO). Here, we demonstrate the interpretation of transcriptomic datasets in the context of the AOP framework within the field of ionizing radiation by using a lung cancer AOP (AOP 272: https://www.aopwiki.org/aops/272) as a case example. METHODS: Through the mining of the literature, radiation exposure-related transcriptomic studies in line with AOP 272 related to lung cancer, DNA damage response, and repair were identified. The differentially expressed genes within relevant studies were collated and subjected to the pathway and network analysis using Reactome and GeneMANIA platforms. Identified pathways were filtered (p < .001, ≥3 genes) and categorized based on relevance to KEs in the AOP. Gene connectivities were identified and further grouped by gene expression-informed associated events (AEs). Relevant quantitative dose-response data were used to inform the directionality in the expression of the genes in the network across AEs. RESULTS: Reactome analyses identified 7 high-level biological processes with multiple pathways and associated genes that mapped to potential KEs in AOP 272. The gene connectivities were further represented as a network of AEs with associated expression profiles that highlighted patterns of gene expression levels. CONCLUSIONS: This study demonstrates the application of transcriptomics data in AOP development and provides information on potential data gaps. Although the approach is new and anticipated to evolve, it shows promise for improving the understanding of underlying mechanisms of disease progression with a long-term vision to be predictive of adverse outcomes.


Assuntos
Rotas de Resultados Adversos , Neoplasias Pulmonares , Lesões por Radiação , Humanos , Transcriptoma , Medição de Risco/métodos , Radiação Ionizante , Neoplasias Pulmonares/genética
8.
Gut Microbes ; 13(1): 1983101, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34816784

RESUMO

Emerging research suggests gut microbiome may play a role in pancreatic cancer initiation and progression, but cultivation of the cancer microbiome remains challenging. This pilot study aims to investigate the possibility to cultivate pancreatic microbiome from pancreatic cystic lesions associated with invasive cancer. Intra-operatively acquired pancreatic cyst fluid samples showed culture-positivity mainly in the intraductal papillary mucinous neoplasm (IPMN) group of lesions. MALDI-TOF MS profiling analysis shows Gammaproteobacteria and Bacilli dominate among individual bacteria isolates. Among cultivated bacteria, Gammaproteobacteria, particularly Klebsiella pneumoniae, but also Granulicatella adiacens and Enterococcus faecalis, demonstrate consistent pathogenic properties in pancreatic cell lines tested in ex vivo co-culture models. Pathogenic properties include intracellular survival capability, cell death induction, or causing DNA double-strand breaks in the surviving cells resembling genotoxic effects. This study provides new insights into the role of the pancreatic microbiota in the intriguing link between pancreatic cystic lesions and cancer.


Assuntos
Dano ao DNA , Microbiota/fisiologia , Neoplasias Intraductais Pancreáticas/microbiologia , Neoplasias Intraductais Pancreáticas/patologia , Idoso , Idoso de 80 Anos ou mais , Antibacterianos/farmacologia , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Morte Celular/efeitos dos fármacos , Linhagem Celular , Dano ao DNA/efeitos dos fármacos , Feminino , Humanos , Masculino , Viabilidade Microbiana/efeitos dos fármacos , Projetos Piloto
9.
J Evid Based Integr Med ; 26: 2515690X211043741, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34657477

RESUMO

Citrus grandis or Citrus maxima, widely recognized as Pomelo is widely cultivated in many countries because of their large amounts of functional, nutraceutical and biological activities. In traditional medicine, various parts of this plant including leaf, pulp and peel are used for generations as they are scientifically proven to have therapeutic potentials and safe for human use. The main objective of this study was to review the different therapeutic applications of Citrus grandis and the phytochemicals associated with its medicinal values. In this article different pharmacological properties like antimicrobial, antitumor, antioxidant, anti-inflammatory, anticancer, antiepileptic, stomach tonic, cardiac stimulant, cytotoxic, hepatoprotective, nephroprotective, and anti-diabetic activities of the plant are highlighted. The enrichment of the fruit with flavonoids, polyphenols, coumarins, limonoids, acridone alkaloids, essential oils and vitamins mainly helps in exhibiting the pharmacological activities within the body. The vitamins enriched fruit is rich in nutritional value and also has minerals like calcium, phosphorous, sodium and potassium, which helps in maintaining the proper health and growth of the bones as well as the electrolyte balance of the body. To conclude, various potential therapeutic effects of Citrus grandis have been demonstrated in recent literature. Further studies on various parts of fruit, including pulp, peel, leaf, seed and it essential oil could unveil additional pharmacological activities which can be beneficial to the mankind.


Assuntos
Citrus , Óleos Voláteis , Antioxidantes , Frutas , Humanos , Compostos Fitoquímicos
10.
Sci Transl Med ; 13(599)2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162753

RESUMO

The human biliary system, a mucosal barrier tissue connecting the liver and intestine, is an organ often affected by serious inflammatory and malignant diseases. Although these diseases are linked to immunological processes, the biliary system represents an unexplored immunological niche. By combining endoscopy-guided sampling of the biliary tree with a high-dimensional analysis approach, comprehensive mapping of the human biliary immunological landscape in patients with primary sclerosing cholangitis (PSC), a severe biliary inflammatory disease, was conducted. Major differences in immune cell composition in bile ducts compared to blood were revealed. Furthermore, biliary inflammation in patients with PSC was characterized by high presence of neutrophils and T cells as compared to control individuals without PSC. The biliary T cells displayed a CD103+CD69+ effector memory phenotype, a combined gut and liver homing profile, and produced interleukin-17 (IL-17) and IL-22. Biliary neutrophil infiltration in PSC associated with CXCL8, possibly produced by resident T cells, and CXCL16 was linked to the enrichment of T cells. This study uncovers the immunological niche of human bile ducts, defines a local immune network between neutrophils and biliary-resident T cells in PSC, and provides a resource for future studies of the immune responses in biliary disorders.


Assuntos
Sistema Biliar , Colangite Esclerosante , Humanos , Fígado , Neutrófilos , Linfócitos T
11.
J Clin Oncol ; 39(29): 3261-3272, 2021 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-34156898

RESUMO

PURPOSE: Standard cytotoxic induction chemotherapy for acute myeloid leukemia (AML) results in prolonged neutropenia and risk of infection. Romyelocel-L is a universal, allogeneic myeloid progenitor cell product being studied to reduce infection during induction chemotherapy. PATIENTS AND METHODS: One hundred sixty-three patients with de novo AML (age ≥ 55 years) receiving induction chemotherapy were randomly assigned on day 0 (d0), of whom 120 were evaluable. Subjects received either romyelocel-L infusion on d9 with granulocyte colony-stimulating factor (G-CSF) starting daily d14 (treatment group) or G-CSF daily alone on d14 (control) until absolute neutrophil count recovery to 500/µL. End points included days in febrile episode, microbiologically defined infections, clinically diagnosed infection, and days in hospital. RESULTS: Mean days in febrile episode was shorter in the treatment arm from d15 through d28 (2.36 v 3.90; P = .02). Similarly, a trend toward decreased microbiologically defined infections and clinically diagnosed infection in the treatment arm was observed from d9 to d28 (35.6% v 47.5%; P = .09), reaching a statistically significant difference from d15 to d28 (6.8% v 27.9%; P = .002). Because of this, antibacterial or antifungal use for treatment of an infection was significantly less in the treatment group (d9-d28: 44.1% v 63.9%; P = .01). Significantly fewer patients in the treatment arm received empiric antifungals from d9 tod28 (42.4% v 63.9%; P = .02) and d15-d28 (42.4% v 62.3%; P = .02). Patients in the treatment arm also had 3.2 fewer hospital days compared with control (25.5 v 28.7; P = .001). Remission rates and days to absolute neutrophil count recovery were similar in the two groups. No patients in the romyelocel-L plus G-CSF group died because of infection compared with two patients in the control arm. No graft-versus-host disease was observed. CONCLUSION: Subjects receiving romyelocel-L showed a decreased incidence of infections, antimicrobial use, and hospitalization, suggesting that romyelocel-L may provide a new option to reduce infections in patients with AML undergoing induction therapy.


Assuntos
Leucemia Mieloide Aguda/tratamento farmacológico , Células Progenitoras Mieloides/transplante , Adulto , Idoso , Antifúngicos/uso terapêutico , Feminino , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Humanos , Quimioterapia de Indução , Masculino , Pessoa de Meia-Idade , Neutrófilos/fisiologia , Estudos Prospectivos
12.
J Fungi (Basel) ; 7(4)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921294

RESUMO

Oral mucositis is an acute side effect of radiation therapy that is especially common with head and neck cancer treatment. In recent years, several studies have revealed the predisposing factors for mucositis, leading to the pre-treatment of patients to deter the development of opportunistic oral fungal infections. Although many clinical protocols already advise the use of probiotics to counteract inflammation and fungal colonization, preclinical studies are needed to better delineate the mechanisms by which a host may acquire benefits via co-evolution with oral microbiota, probiotics, and fungal commensals, such as Candida albicans, especially during acute inflammation. Here, we review the current understanding of radiation therapy-dependent oral mucositis in terms of pathology, prevention, treatment, and related opportunistic infections, with a final focus on the oral microbiome and how it may be important for future therapy.

13.
Sci Rep ; 11(1): 4609, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33633154

RESUMO

Bladder cancer is among the most prevalent cancers worldwide. Currently, few bladder cancer models have undergone thorough characterization to assess their fidelity to patient tumors, especially upon propagation in the laboratory. Here, we establish and molecularly characterize CoCaB 1, an aggressive cisplatin-resistant muscle-invasive bladder cancer patient-derived xenograft (PDX) and companion organoid system. CoCaB 1 was a subcutaneous PDX model reliably transplanted in vivo and demonstrated an acceleration in growth upon serial transplantation, which was reflected in organoid and 2D cell culture systems. Transcriptome analysis revealed progression towards an increasingly proliferative and stem-like expression profile. Gene expression differences between organoid and PDX models reflected expected differences in cellular composition, with organoids enriched in lipid biosynthesis and metabolism genes and deprived of extracellular components observed in PDXs. Both PDX and organoid models maintained the histological fidelity and mutational heterogeneity of their parental tumor. This study establishes the CoCaB 1 PDX and organoid system as companion representative tumor models for the development of novel bladder cancer therapies.


Assuntos
Organoides/metabolismo , Neoplasias da Bexiga Urinária/patologia , Animais , Antineoplásicos/uso terapêutico , Cisplatino/uso terapêutico , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Masculino , Camundongos SCID , Invasividade Neoplásica , Transplante de Neoplasias , Gencitabina
14.
JCI Insight ; 6(5)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33507879

RESUMO

Tenascin-C (TNC), an extracellular matrix protein that has proinflammatory properties, is a recently described antibody target in rheumatoid arthritis (RA). In this study, we utilized a systematic discovery process and identified 5 potentially novel citrullinated TNC (cit-TNC) T cell epitopes. CD4+ T cells specific for these epitopes were elevated in the peripheral blood of subjects with RA and showed signs of activation. Cit-TNC-specific T cells were also present among synovial fluid T cells and secreted IFN-γ. Two of these cit-TNC T cell epitopes were also recognized by antibodies within the serum and synovial fluid of individuals with RA. Detectable serum levels of cit-TNC-reactive antibodies were prevalent among subjects with RA and positively associated with cyclic citrullinated peptide (CCP) reactivity and the HLA shared epitope. Furthermore, cit-TNC-reactive antibodies were correlated with rheumatoid factor and elevated in subjects with a history of smoking. This work confirms cit-TNC as an autoantigen that is targeted by autoreactive CD4+ T cells and autoantibodies in patients with RA. Furthermore, our findings raise the possibility that coinciding epitopes recognized by both CD4+ T cells and B cells have the potential to amplify autoimmunity and promote the development and progression of RA.


Assuntos
Artrite Reumatoide/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Tenascina/imunologia , Linfócitos B/citologia , Linfócitos T CD4-Positivos/citologia , Humanos
15.
Int J Mol Sci ; 21(23)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266231

RESUMO

LL-37, the only member of the mammalian cathelicidin in humans, plays an essential role in innate immunity by killing pathogens and regulating the inflammatory response. However, at an inflammatory focus, arginine residues in LL-37 can be converted to citrulline via a reaction catalyzed by peptidyl-arginine deiminases (PAD2 and PAD4), which are expressed in neutrophils and are highly active during the formation of neutrophil extracellular traps (NETs). Citrullination impairs the bactericidal activity of LL-37 and abrogates its immunomodulatory functions. Therefore, we hypothesized that citrullination-resistant LL-37 variants would retain the functionality of the native peptide in the presence of PADs. To test this hypothesis, we synthetized LL-37 in which arginine residues were substituted by homoarginine (hArg-LL-37). Bactericidal activity of hArg-LL-37 was comparable with that of native LL-37, but neither treatment with PAD4 nor exposure to NETs affected the antibacterial and immunomodulatory activities of hArg-LL-37. Importantly, the susceptibilities of LL-37 and hArg-LL-37 to degradation by proteases did not significantly differ. Collectively, we demonstrated that citrullination-resistant hArg-LL-37 is an attractive lead compound for the generation of new agents to treat bacterial infections and other inflammatory diseases associated with enhanced PAD activity. Moreover, our results provide a proof-of-concept for synthesis of therapeutic peptides using homoarginine.


Assuntos
Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Hidrolases/metabolismo , Sequência de Aminoácidos , Animais , Anti-Infecciosos/química , Peptídeos Catiônicos Antimicrobianos/química , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Citrulinação/efeitos dos fármacos , Citocinas/metabolismo , Ativação Enzimática , Humanos , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Testes de Sensibilidade Microbiana , Proteína-Arginina Desiminase do Tipo 4/genética , Proteína-Arginina Desiminase do Tipo 4/isolamento & purificação , Proteólise , Células RAW 264.7 , Catelicidinas
16.
Front Microbiol ; 11: 722, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411104

RESUMO

Porphyromonas gingivalis, the main etiologic agent of periodontitis, secretes cysteine proteases named gingipains. HRgpA and RgpB gingipains have Arg-specificity, while Kgp gingipain is Lys-specific. Together they can cleave an array of proteins and importantly contribute to the development of periodontitis. In this study we focused on gingipain-exerted proteolysis at the cell surface of human gingival epithelial cells [telomerase immortalized gingival keratinocytes (TIGK)] in order to better understand the molecular mechanisms behind tissue destruction in periodontitis. Using mass spectrometry, we investigated the whole sheddome/degradome of TIGK cell surface proteins by P. gingivalis strains differing in gingipain expression and by purified gingipains, and performed the first global proteomic analysis of gignpain proteolysis at the membrane. Incubation of TIGK cells with P. gingivalis resulted in massive degradation of proteins already at low multiplicity of infection, whereas incubating cells with purified gingipains resulted in more discrete patterns, indicative of a combination of complete degradation and shedding of membrane proteins. Most of the identified gingipain substrates were molecules involved in adhesion, suggesting that gingipains may cause tissue damage through cleavage of cell contacts, resulting in cell detachment and rounding, and consequently leading to anoikis. However, HRgpA and RgpB gingipains differ in their mechanism of action. While RgpB rapidly degraded the proteins, HRgpA exhibited a much slower proteolysis indicative of ectodomain shedding, as demonstrated for the transferrin receptor protein 1 (TFRC). These results reveal a molecular underpinning to P. gingivalis-induced tissue destruction and enhance our knowledge of the role of P. gingivalis proteases in the pathobiology of periodontitis. Proteomics data are available via ProteomeXchange with identifier PXD015679.

17.
Life Sci Alliance ; 3(1)2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31818882

RESUMO

Acquired immune responses are initiated by activation of CD4+ helper T (Th) cells via recognition of antigens presented by conventional dendritic cells (cDCs). DCs instruct Th-cell polarization program into specific effector Th subset, which will dictate the type of immune responses. Hence, it is important to unravel how differentiation and/or activation of DC are linked with Th-cell-intrinsic mechanism that directs differentiation toward a specific effector Th subset. Here, we show that loss of Runx/Cbfß transcription factors complexes during DC development leads to loss of CD103+CD11b+ cDC2s and alters characteristics of CD103-CD11b+ cDCs in the intestine, which was accompanied with impaired differentiation of Rorγt+ Th17 cells and type 3 Rorγt+ regulatory T cells. We also show that a Runx-binding enhancer in the Rorc gene is essential for T cells to integrate cDC-derived signals to induce Rorγt expression. These findings reveal that Runx/Cbfß complexes play crucial and complementary roles in cDCs and Th cells to shape converging type 3 immune responses.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Subunidade beta de Fator de Ligação ao Core/metabolismo , Células Dendríticas/metabolismo , Mucosa Intestinal/citologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Linfócitos T Reguladores/metabolismo , Células Th17/metabolismo , Imunidade Adaptativa , Animais , Diferenciação Celular/imunologia , Células Cultivadas , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Subunidade beta de Fator de Ligação ao Core/genética , Células Dendríticas/imunologia , Mucosa Intestinal/imunologia , Camundongos , Camundongos Transgênicos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Linfócitos T Reguladores/imunologia , Células Th17/imunologia
18.
Nat Commun ; 10(1): 5444, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784510

RESUMO

Elevated glucose consumption is fundamental to cancer, but selectively targeting this pathway is challenging. We develop a high-throughput assay for measuring glucose consumption and use it to screen non-small-cell lung cancer cell lines against bioactive small molecules. We identify Milciclib that blocks glucose consumption in H460 and H1975, but not in HCC827 or A549 cells, by decreasing SLC2A1 (GLUT1) mRNA and protein levels and by inhibiting glucose transport. Milciclib blocks glucose consumption by targeting cyclin-dependent kinase 7 (CDK7) similar to other CDK7 inhibitors including THZ1 and LDC4297. Enhanced PIK3CA signaling leads to CDK7 phosphorylation, which promotes RNA Polymerase II phosphorylation and transcription. Milciclib, THZ1, and LDC4297 lead to a reduction in RNA Polymerase II phosphorylation on the SLC2A1 promoter. These data indicate that our high-throughput assay can identify compounds that regulate glucose consumption and that CDK7 is a key regulator of glucose consumption in cells with an activated PI3K pathway.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Transportador de Glucose Tipo 1/efeitos dos fármacos , Glucose/metabolismo , Neoplasias Pulmonares/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Células A549 , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Fenilenodiaminas/farmacologia , Fosforilação , Pirazóis/farmacologia , Pirimidinas/farmacologia , Quinazolinas/farmacologia , RNA Polimerase II/efeitos dos fármacos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais , Triazinas/farmacologia , Quinase Ativadora de Quinase Dependente de Ciclina
20.
Nat Med ; 25(9): 1415-1421, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31501609

RESUMO

During cancer therapy, tumor heterogeneity can drive the evolution of multiple tumor subclones harboring unique resistance mechanisms in an individual patient1-3. Previous case reports and small case series have suggested that liquid biopsy (specifically, cell-free DNA (cfDNA)) may better capture the heterogeneity of acquired resistance4-8. However, the effectiveness of cfDNA versus standard single-lesion tumor biopsies has not been directly compared in larger-scale prospective cohorts of patients following progression on targeted therapy. Here, in a prospective cohort of 42 patients with molecularly defined gastrointestinal cancers and acquired resistance to targeted therapy, direct comparison of postprogression cfDNA versus tumor biopsy revealed that cfDNA more frequently identified clinically relevant resistance alterations and multiple resistance mechanisms, detecting resistance alterations not found in the matched tumor biopsy in 78% of cases. Whole-exome sequencing of serial cfDNA, tumor biopsies and rapid autopsy specimens elucidated substantial geographic and evolutionary differences across lesions. Our data suggest that acquired resistance is frequently characterized by profound tumor heterogeneity, and that the emergence of multiple resistance alterations in an individual patient may represent the 'rule' rather than the 'exception'. These findings have profound therapeutic implications and highlight the potential advantages of cfDNA over tissue biopsy in the setting of acquired resistance.


Assuntos
Ácidos Nucleicos Livres/sangue , DNA de Neoplasias/sangue , Neoplasias Gastrointestinais/sangue , Biópsia Líquida , Autopsia , Ácidos Nucleicos Livres/genética , Estudos de Coortes , DNA de Neoplasias/genética , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/patologia , Heterogeneidade Genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA