Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Hum Genet ; 105(2): 302-316, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31256877

RESUMO

Members of a paralogous gene family in which variation in one gene is known to cause disease are eight times more likely to also be associated with human disease. Recent studies have elucidated DHX30 and DDX3X as genes for which pathogenic variant alleles are involved in neurodevelopmental disorders. We hypothesized that variants in paralogous genes encoding members of the DExD/H-box RNA helicase superfamily might also underlie developmental delay and/or intellectual disability (DD and/or ID) disease phenotypes. Here we describe 15 unrelated individuals who have DD and/or ID, central nervous system (CNS) dysfunction, vertebral anomalies, and dysmorphic features and were found to have probably damaging variants in DExD/H-box RNA helicase genes. In addition, these individuals exhibit a variety of other tissue and organ system involvement including ocular, outer ear, hearing, cardiac, and kidney tissues. Five individuals with homozygous (one), compound-heterozygous (two), or de novo (two) missense variants in DHX37 were identified by exome sequencing. We identified ten total individuals with missense variants in three other DDX/DHX paralogs: DHX16 (four individuals), DDX54 (three individuals), and DHX34 (three individuals). Most identified variants are rare, predicted to be damaging, and occur at conserved amino acid residues. Taken together, these 15 individuals implicate the DExD/H-box helicases in both dominantly and recessively inherited neurodevelopmental phenotypes and highlight the potential for more than one disease mechanism underlying these disorders.


Assuntos
RNA Helicases DEAD-box/genética , Mutação de Sentido Incorreto , Proteínas de Neoplasias/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , RNA Helicases/genética , Feminino , Estudos de Associação Genética , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem , Sequenciamento do Exoma
2.
BMC Genomics ; 17(1): 832, 2016 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-27782803

RESUMO

BACKGROUND: NR2E1 (Tlx) is an orphan nuclear receptor that regulates the maintenance and self-renewal of neural stem cells, and promotes tumourigenesis. Nr2e1-null mice exhibit reduced cortical and limbic structures and pronounced retinal dystrophy. NR2E1 functions mainly as a repressor of gene transcription in association with the co-repressors atrophin-1, LSD1, HDAC and BCL11A. Recent evidence suggests that NR2E1 also acts as an activator of gene transcription. However, co-activator complexes that interact with NR2E1 have not yet been identified. In order to find potential novel co-regulators for NR2E1, we used a microarray assay for real-time analysis of co-regulator-nuclear receptor interaction (MARCoNI) that contains peptides representing interaction motifs from potential co-regulatory proteins, including known co-activator nuclear receptor box sequences (LxxLL motif). RESULTS: We found that NR2E1 binds strongly to an atrophin-1 peptide (Atro box) used as positive control and to 19 other peptides that constitute candidate NR2E1 partners. Two of these proteins, p300 and androgen receptor (AR), were further validated by reciprocal pull-down assays. The specificity of NR2E1 binding to peptides in the array was evaluated using two single amino acid variants, R274G and R276Q, which disrupted the majority of the binding interactions observed with wild-type NR2E1. The decreased binding affinity of these variants to co-regulators was further validated by pull-down assays using atrophin1 as bait. Despite the high conservation of arginine 274 in vertebrates, its reduced interactions with co-regulators were not significant in vivo as determined by retinal phenotype analysis in single-copy Nr2e1-null mice carrying the variant R274G. CONCLUSIONS: We showed that MARCoNI is a specific assay to test interactions of NR2E1 with candidate co-regulators. In this way, we unveiled 19 potential co-regulator partners for NR2E1, including eight co-activators. All the candidates here identified need to be further validated using in vitro and in vivo models. This assay was sensitive to point mutations in NR2E1 ligand binding domain making it useful to identify mutations and/or small molecules that alter binding of NR2E1 to protein partners.


Assuntos
Ligantes , Receptores Nucleares Órfãos/agonistas , Receptores Citoplasmáticos e Nucleares/agonistas , Sequência de Aminoácidos , Animais , Proteínas de Transporte , Descoberta de Drogas , Variação Genética , Humanos , Camundongos , Camundongos Knockout , Receptores Nucleares Órfãos/química , Receptores Nucleares Órfãos/metabolismo , Fenótipo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA