Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396660

RESUMO

Bone marrow adipose tissue (BMAT) is hypothesized to serve as an expandable/contractible fat depot which functions, in part, to minimize energy requirements for sustaining optimal hematopoiesis. We investigated whether BMAT is required for immune reconstitution following injury. Male wild type (WBB6F1, WT) and BMAT-deficient WBB6F1/J-KitW/KitW-v/J (KitW/W-v) mice were lethally irradiated. Irradiation was followed by adoptive transfer of 1000 purified WT hematopoietic stem cells (HSCs). The extent of immune reconstitution in blood, bone marrow, and lymph nodes in the irradiated mice was determined using HSCs from green fluorescent protein (GFP)-expressing mice. We also evaluated skeletal response to treatment. Detection of GFP-positive B and T cells in peripheral blood at 4 and 9 weeks following adoptive transfer and in bone marrow and lymph nodes following necropsy revealed excellent immune reconstitution in both WT and BMAT-deficient mice. Adipocytes were numerous in the distal femur of WT mice but absent or rare in KitW/W-v mice. Bone parameters, including length, mass, density, bone volume, microarchitecture, and turnover balance, exhibited few differences between WT and BMAT-deficient mice. The minimal differences suggest that BMAT is not required for reconstitution of the immune system following lethal radiation and is not a major contributor to the skeletal phenotypes of kit signaling-deficient mice.


Assuntos
Tecido Adiposo , Medula Óssea , Masculino , Animais , Camundongos , Medula Óssea/metabolismo , Tecido Adiposo/metabolismo , Adipócitos/metabolismo , Células-Tronco Hematopoéticas , Osso e Ossos
2.
Gut Microbes ; 16(1): 2315633, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38358253

RESUMO

Xanthohumol (XN), a polyphenol found in the hop plant (Humulus lupulus), has antioxidant, anti-inflammatory, prebiotic, and anti-hyperlipidemic activity. Preclinical evidence suggests the gut microbiome is essential in mediating these bioactivities; however, relatively little is known about XN's impact on human gut microbiota in vivo. We conducted a randomized, triple-blinded, placebo-controlled clinical trial (ClinicalTrials.gov NCT03735420) to determine safety and tolerability of XN in healthy adults. Thirty healthy participants were randomized to 24 mg/day XN or placebo for 8 weeks. As secondary outcomes, quantification of bacterial metabolites and 16S rRNA gene sequencing were utilized to explore the relationships between XN supplementation, gut microbiota, and biomarkers of gut health. Although XN did not significantly change gut microbiota composition, it did re-shape individual taxa in an enterotype-dependent manner. High levels of inter-individual variation in metabolic profiles and bioavailability of XN metabolites were observed. Moreover, reductions in microbiota-derived bile acid metabolism were observed, which were specific to Prevotella and Ruminococcus enterotypes. These results suggest interactions between XN and gut microbiota in healthy adults are highly inter-individualized and potentially indicate that XN elicits effects on gut health in an enterotype-dependent manner.


Assuntos
Microbioma Gastrointestinal , Propiofenonas , Adulto , Humanos , RNA Ribossômico 16S/genética , Flavonoides/farmacologia , Prebióticos
3.
Toxicol Appl Pharmacol ; 478: 116709, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37797845

RESUMO

Arsenic occurs naturally in the environment and humans can be exposed through food, drinking water and inhalation of air-borne particles. Arsenic exposure is associated with cardiovascular, pulmonary, renal, immunologic, and developmental toxicities as well as carcinogenesis. Arsenic displays dose-depen toxicities in target organs or tissues with elevated levels of arsenic. Zinc is an essential micronutrient with proposed protective benefits due to its antioxidant properties, integration into zinc-containing proteins and zinc-related immune signaling. In this study, we tested levels of arsenic and zinc in plasma, kidney, liver, and spleen as model tissues after chronic (42-day) treatment with either arsenite, zinc, or in combination. Arsenite exposure had minimal impact on tissue zinc levels with the exception of the kidney. Conversely, zinc supplementation of arsenite-exposed mice reduced the amount of arsenic detected in all tissues tested. Expression of transporters associated with zinc or arsenic influx and efflux were evaluated under each treatment condition. Significant effects of arsenite exposure on zinc transporter expression displayed tissue selectivity for liver and kidney, and was restricted to Zip10 and Zip14, respectively. Arsenite also interacted with zinc co-exposure for Zip10 expression in liver tissue. Pairwise comparisons show neither arsenite nor zinc supplementation alone significantly altered expression of transporters utilized by arsenic. However, significant interactions between arsenite and zinc were evident for Aqp7 and Mrp1 in a tissue selective manner. These findings illustrate interactions between arsenite and zinc leading to changes in tissue metal level and suggest a potential mechanism by which zinc may offer protection from arsenic toxicities.


Assuntos
Arsênio , Arsenitos , Humanos , Camundongos , Animais , Arsênio/toxicidade , Arsenitos/toxicidade , Zinco/metabolismo , Distribuição Tecidual , Suplementos Nutricionais
4.
Front Endocrinol (Lausanne) ; 13: 959743, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277726

RESUMO

Bone marrow adipose tissue (BMAT) levels are higher in distal femur metaphysis of female mice housed at thermoneutral (32°C) than in mice housed at 22°C, as are abdominal white adipose tissue (WAT) mass, and serum leptin levels. We performed two experiments to explore the role of increased leptin in temperature-enhanced accrual of BMAT. First, we supplemented 6-week-old female C57BL/6J (B6) mice with leptin for 2 weeks at 10 µg/d using a subcutaneously implanted osmotic pump. Controls consisted of ad libitum (ad lib) fed mice and mice pair fed to match food intake of leptin-supplemented mice. The mice were maintained at 32°C for the duration of treatment. At necropsy, serum leptin in leptin-supplemented mice did not differ from ad lib mice, suggesting suppression of endogenous leptin production. In support, Ucp1 expression in BAT, percent body fat, and abdominal WAT mass were lower in leptin-supplemented mice. Leptin-supplemented mice also had lower BMAT and higher bone formation in distal femur metaphysis compared to the ad lib group, changes not replicated by pair-feeding. In the second experiment, BMAT response was evaluated in 6-week-old female B6 wild type (WT), leptin-deficient ob/ob and leptin-treated (0.3 µg/d) ob/ob mice housed at 32°C for the 2-week duration of the treatment. Compared to mice sacrificed at baseline (22°C), BMAT increased in ob/ob mice as well as WT mice, indicating a leptin independent response to increased temperature. However, infusion of ob/ob mice with leptin, at a dose rate having negligible effects on either energy metabolism or serum leptin levels, attenuated the increase in BMAT. In summary, increased housing temperature and increased leptin have independent but opposing effects on BMAT in mice.


Assuntos
Medula Óssea , Leptina , Camundongos , Feminino , Animais , Leptina/metabolismo , Medula Óssea/metabolismo , Temperatura , Adiposidade , Camundongos Endogâmicos C57BL , Obesidade/metabolismo
5.
Mol Nutr Food Res ; 66(11): e2100974, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35319818

RESUMO

SCOPE: A dose-ranging study is performed using young estrogen-depleted rats to determine whether dietary isoliquiritigenin (ILQ) alters bone metabolism and if the effects are associated with estrogen receptor signaling. METHODS AND RESULTS: Six-week-old rats (ovariectomized at 4 weeks of age) are fed diets containing 0, 100, 250, or 750 ppm ILQ (n = 5/treatment) for 7 days. Gene expression in femur and uterus, blood markers of bone turnover, body composition, and uterine weight and epithelial cell height are determined. Because ILQ lowers bone resorption, the effect of ILQ on in vitro differentiation of osteoclasts from bone marrow of mice is assessed. Treatment resulted in a dose-dependent increases in serum ILQ but no changes in serum osteocalcin, a marker of global bone formation. Contrastingly, ILQ administration results in reduced serum CTX-1, a marker of global bone resorption, and reduces tartrate resistant acid phosphatase expression in osteoclast culture. ILQ treatment and endogenous estrogen production had limited overlap on gene expression in femur and uterus. However, uterine epithelial cell hyperplasia is observed in two of five animals treated with 750 ppm. CONCLUSIONS: In conclusion, dietary ILQ reduces bone resorption in vivo and osteoclast differentiation in vitro, by mechanisms likely differing from actions of ovarian hormones.


Assuntos
Reabsorção Óssea , Osteoclastos , Animais , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Diferenciação Celular , Chalconas , Estrogênios/metabolismo , Feminino , Humanos , Camundongos , Ovariectomia , Ratos , Fosfatase Ácida Resistente a Tartarato/metabolismo , Fosfatase Ácida Resistente a Tartarato/farmacologia
6.
JAMA Netw Open ; 5(1): e2144381, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-35050353

RESUMO

Importance: Racial and ethnic differences in lung cancer screening (LCS) completion and follow-up may be associated with lung cancer incidence and mortality rates among high-risk populations. Aggregation of Asian American, Native Hawaiian, and Pacific Islander racial and ethnic groups may mask the true underlying disparities in screening uptake and diagnostic follow-up, creating barriers for targeted, preventive health care. Objective: To examine racial and ethnic differences in LCS completion and follow-up rates in a multiethnic population. Design, Setting, and Participants: This population-based cohort study was conducted at a health maintenance organization in Hawaii. LCS program participants were identified using electronic medical records from January 1, 2015, to December 31, 2019. Study eligibility requirements included being aged 55 to 79 years, a 30 pack-year smoking history, a current smoker or having quit within the past 15 years, at least 5 years past any lung cancer diagnosis and treatment, and cancer free. Data analysis was performed from June 2019 to October 2020. Exposure: Eligible for LCS. Main Outcomes and Measures: Screening rates were analyzed by self-reported race and ethnicity and completion of a low-dose computed tomography (LDCT) test. Diagnostic follow-up results were based on the Lung Imaging Reporting and Data System (Lung-RADS) staging system. Results: A total of 1030 eligible LCS program members had an order placed; their mean (SD) age was 65.5 (5.8) years, and 633 (61%) were men. The largest racial and ethnic groups were non-Hispanic White (381 participants [37.0%]), Native Hawaiian or part Native Hawaiian (186 participants [18.1%]), and Japanese (146 participants [14.2%]). Men and Filipino, Chinese, Japanese, and non-Hispanic White individuals had a higher proportion of screen orders for LDCT compared with women and individuals of the other racial and ethnic groups. The overall LCS completion rate was 81% (838 participants). There was a 14% to 15% screening completion rate gap among groups. Asian individuals had the highest screening completion rate (266 participants [86%]) followed by Native Hawaiian (149 participants [80%]) and non-Hispanic White individuals (305 participants [80%]), Pacific Islander (50 participants [79%]) individuals, and individuals of other racial and ethnic groups (68 participants [77%]). Within Asian subgroups, Korean (31 participants [94%]) and Japanese (129 participants [88%]) individuals had the highest completion rates followed by Chinese individuals (28 participants [82%]) and Filipino individuals (78 participants [79%]). Of the 54 participants with Lung-RADS stage 3 disease, 93% (50 participants) completed a 6-month surveillance LDCT test; of 37 individuals with Lung-RADS stage 4 disease, 35 (97%) were followed-up for additional procedures. Conclusions and Relevance: This cohort study found racial and ethnic disparities in LCS completion rates after disaggregation of Native Hawaiian, Pacific Islander, and Asian individuals and their subgroups. These findings suggest that future research is needed to understand factors that may be associated with LCS completion and follow-up behaviors among these racial and ethnic groups.


Assuntos
Detecção Precoce de Câncer/estatística & dados numéricos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/etiologia , Grupos Raciais/estatística & dados numéricos , Idoso , Asiático , Estudos de Coortes , Etnicidade , Feminino , Havaí , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Havaiano Nativo ou Outro Ilhéu do Pacífico/estatística & dados numéricos , Fatores de Risco , População Branca/estatística & dados numéricos
7.
Nutrients ; 15(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36615700

RESUMO

Brassica vegetables contain a multitude of bioactive compounds that prevent and suppress cancer and promote health. Evidence suggests that the gut microbiome may be essential in the production of these compounds; however, the relationship between specific microbes and the abundance of metabolites produced during cruciferous vegetable digestion are still unclear. We utilized an ex vivo human fecal incubation model with in vitro digested broccoli sprouts (Broc), Brussels sprouts (Brus), a combination of the two vegetables (Combo), or a negative control (NC) to investigate microbial metabolites of cruciferous vegetables. We conducted untargeted metabolomics on the fecal cultures by LC-MS/MS and completed 16S rRNA gene sequencing. We identified 72 microbial genera in our samples, 29 of which were significantly differentially abundant between treatment groups. A total of 4499 metabolomic features were found to be significantly different between treatment groups (q ≤ 0.05, fold change > 2). Chemical enrichment analysis revealed 45 classes of compounds to be significantly enriched by brassicas, including long-chain fatty acids, coumaric acids, and peptides. Multi-block PLS-DA and a filtering method were used to identify microbe−metabolite interactions. We identified 373 metabolites from brassica, which had strong relationships with microbes, such as members of the family Clostridiaceae and genus Intestinibacter, that may be microbially derived.


Assuntos
Brassica , Microbioma Gastrointestinal , Humanos , Verduras , Microbioma Gastrointestinal/genética , Cromatografia Líquida , RNA Ribossômico 16S/genética , Promoção da Saúde , Multiômica , Espectrometria de Massas em Tandem , Brassica/química , Metabolômica/métodos
8.
Prostate Cancer Prostatic Dis ; 25(1): 119-122, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34007020

RESUMO

BACKGROUND: Exercise is increasingly recognized as an effective strategy to improve cancer prevention and prognosis. Several biological mechanisms mediating these benefits have been proposed, but the role of epigenetics remains largely unknown. Since epigenetics is highly susceptible to lifestyle factors, we hypothesized that exercise could affect the epigenome landscape in cancer tissues. METHODS: Rats implanted with AT1 prostate tumors were randomized to either control or exercise training. microRNA expression, DNA methylation and histone acetylation were analyzed in the tumor tissue. RESULTS: MiR-27a-5p appeared to be differently expressed between sedentary and trained rats. Furthermore, exercise increased global DNA methylation and decreased DNA methyltransferases mRNA expression in the tumor tissue. Histone acetylation however remained unaltered. CONCLUSION: Overall, exercise might reverse some of the cancer-related epigenetic alterations in the prostate tumor tissue.


Assuntos
Histonas , Condicionamento Físico Animal , Neoplasias da Próstata , Animais , Masculino , Ratos , Metilação de DNA , Epigênese Genética , Histonas/genética , Histonas/metabolismo , Neoplasias da Próstata/genética , RNA Mensageiro/genética
9.
Nutrients ; 13(9)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34578891

RESUMO

Isothiocyanates, such as sulforaphane and iberin, derived from glucosinolates (GLS) in cruciferous vegetables, are known to prevent and suppress cancer development. GLS can also be converted by bacteria to biologically inert nitriles, such as sulforaphane-nitrile (SFN-NIT) and iberin-nitrile (IBN-NIT), but the role of the gut microbiome in this process is relatively undescribed and SFN-NIT excretion in humans is unknown. An ex vivo fecal incubation model with in vitro digested broccoli sprouts and 16S sequencing was utilized to explore the role of the gut microbiome in SFN- and IBN-NIT production. SFN-NIT excretion was measured among human subjects following broccoli sprout consumption. The fecal culture model showed high inter-individual variability in nitrile production and identified two sub-populations of microbial communities among the fecal cultures, which coincided with a differing abundance of nitriles. The Clostridiaceae family was associated with high levels, while individuals with a low abundance of nitriles were more enriched with taxa from the Enterobacteriaceae family. High levels of inter-individual variation in urine SFN-NIT levels were also observed, with peak excretion of SFN-NIT at 24 h post broccoli sprout consumption. These results suggest that nitrile production from broccoli, as opposed to isothiocyanates, could be influenced by gut microbiome composition, potentially lowering efficacy of cruciferous vegetable interventions.


Assuntos
Brassica/química , Microbioma Gastrointestinal , Glucosinolatos/metabolismo , Isotiocianatos/metabolismo , Nitrilas/metabolismo , Sulfóxidos/metabolismo , Clostridiaceae , Enterobacteriaceae , Feminino , Humanos , Masculino , Brotos de Planta/química , Tiocianatos/metabolismo
10.
Int J Mol Sci ; 22(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202651

RESUMO

Dieting is a common but often ineffective long-term strategy for preventing weight gain. Similar to humans, adult rats exhibit progressive weight gain. The adipokine leptin regulates appetite and energy expenditure but hyperleptinemia is associated with leptin resistance. Here, we compared the effects of increasing leptin levels in the hypothalamus using gene therapy with conventional caloric restriction on weight gain, food consumption, serum leptin and adiponectin levels, white adipose tissue, marrow adipose tissue, and bone in nine-month-old female Sprague-Dawley rats. Rats (n = 16) were implanted with a cannula in the 3rd ventricle of the hypothalamus and injected with a recombinant adeno-associated virus, encoding the rat gene for leptin (rAAV-Lep), and maintained on standard rat chow for 18 weeks. A second group (n = 15) was calorically-restricted to match the weight of the rAAV-Lep group. Both approaches prevented weight gain, and no differences in bone were detected. However, calorically-restricted rats consumed 15% less food and had lower brown adipose tissue Ucp-1 mRNA expression than rAAV-Lep rats. Additionally, calorically-restricted rats had higher abdominal white adipose tissue mass, higher serum leptin and adiponectin levels, and higher marrow adiposity. Caloric restriction and hypothalamic leptin gene therapy, while equally effective in preventing weight gain, differ in their effects on energy intake, energy expenditure, adipokine levels, and body composition.


Assuntos
Restrição Calórica , Metabolismo Energético , Terapia Genética , Hipotálamo/metabolismo , Leptina/genética , Adipocinas/sangue , Adipocinas/genética , Adipocinas/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Tecido Adiposo Branco/metabolismo , Adiposidade/genética , Animais , Biomarcadores , Peso Corporal , Medula Óssea/metabolismo , Dependovirus/genética , Ingestão de Energia , Metabolismo Energético/genética , Feminino , Expressão Gênica , Terapia Genética/métodos , Vetores Genéticos , Leptina/metabolismo , Ratos , Transgenes
11.
Artigo em Inglês | MEDLINE | ID: mdl-32256446

RESUMO

Growing female mice housed at room temperature (22°C) weigh the same but differ in body composition compared to mice housed at thermoneutrality (32°C). Specifically, mice housed at room temperature have lower levels of white adipose tissue (WAT). Additionally, bone marrow adipose tissue (bMAT) and cancellous bone volume fraction in distal femur metaphysis are lower in room temperature-housed mice. The metabolic changes induced by sub-thermoneutral housing are associated with lower leptin levels in serum and higher levels of Ucp1 gene expression in brown adipose tissue. Although the precise mechanisms mediating adaptation to sub-thermoneutral temperature stress remain to be elucidated, there is evidence that increased sympathetic nervous system activity acting via ß-adrenergic receptors plays an important role. We therefore evaluated the effect of the non-specific ß-blocker propranolol (primarily ß1 and ß2 antagonist) on body composition, femur microarchitecture, and bMAT in growing female C57BL/6 mice housed at either room temperature or thermoneutral temperature. As anticipated, cancellous bone volume fraction, WAT and bMAT were lower in mice housed at room temperature. Propranolol had small but significant effects on bone microarchitecture (increased trabecular number and decreased trabecular spacing), but did not attenuate premature bone loss induced by room temperature housing. In contrast, propranolol treatment prevented housing temperature-associated differences in WAT and bMAT. To gain additional insight, we evaluated a panel of genes in tibia, using an adipogenesis PCR array. Housing temperature and treatment with propranolol had exclusive as well as shared effects on gene expression. Of particular interest was the finding that room temperature housing reduced, whereas propranolol increased, expression of the gene for acetyl-CoA carboxylase (Acacb), the rate-limiting step for fatty acid synthesis and a key regulator of ß-oxidation. Taken together, these findings provide evidence that increased activation of ß1 and/or ß2 receptors contributes to reduced bMAT by regulating adipocyte metabolism, but that this pathway is unlikely to be responsible for premature cancellous bone loss in room temperature-housed mice.


Assuntos
Adipócitos/efeitos dos fármacos , Medula Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Propranolol/farmacologia , Temperatura , Aclimatação , Adipócitos/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Temperatura Corporal/fisiologia , Medula Óssea/metabolismo , Osso e Ossos/anatomia & histologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho do Órgão/efeitos dos fármacos
12.
Nutr Cancer ; 72(1): 74-87, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31155953

RESUMO

Previous studies suggest compounds such as sulforaphane (SFN) derived from cruciferous vegetables may prevent prostate cancer development and progression. This study evaluated the effect of broccoli sprout extract (BSE) supplementation on blood histone deacetylase (HDAC) activity, prostate RNA gene expression, and tissue biomarkers (histone H3 lysine 18 acetylation (H3K18ac), HDAC3, HDAC6, Ki67, and p21). A total of 98 men scheduled for prostate biopsy were allocated into either BSE (200 µmol daily) or a placebo in our double-blind, randomized controlled trial. We used nonparametric tests to evaluate the differences of blood HDAC activity and prostate tissue immunohistochemistry biomarkers between treatment groups. Further, we performed RNA-Seq analysis on the prostate biopsies and identified 40 differentially expressed genes correlated with BSE treatment, including downregulation of two genes previously implicated in prostate cancer development, AMACR and ARLNC1. Although urine and plasma SFN isothiocyanates and individual SFN metabolites were statistically higher in the treatment group, our results did not show a significant difference in HDAC activity or prostate tissue biomarkers. This study indicates BSE supplementation correlates with changes in gene expression but not with several other prostate cancer biomarkers. More research is required to fully understand the chemopreventive effects of BSE supplementation on prostate cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Brassica , Quimioprevenção/métodos , Isotiocianatos/administração & dosagem , Próstata/efeitos dos fármacos , Neoplasias da Próstata/prevenção & controle , Idoso , Anticarcinógenos/administração & dosagem , Disponibilidade Biológica , Biópsia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Método Duplo-Cego , Histona Desacetilases/sangue , Humanos , Isotiocianatos/urina , Antígeno Ki-67/metabolismo , Masculino , Pessoa de Meia-Idade , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/dietoterapia , Neoplasias da Próstata/metabolismo , Racemases e Epimerases/metabolismo , Sulfóxidos , Produtos Vegetais/normas
13.
Alcohol Clin Exp Res ; 43(11): 2301-2311, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31479513

RESUMO

BACKGROUND: Estrogen signaling is essential for the sexual dimorphism of the skeleton, is required for normal bone remodeling balance in adults, and may influence the skeletal response to alcohol. High levels of alcohol consumption lower bone mass in ovary-intact but not ovariectomized (ovx) rats. However, the extremely rapid rate of bone loss immediately following ovx may obscure the effects of alcohol. We therefore determined (i) whether heavy alcohol consumption (35% caloric intake) influences bone in sexually mature ovx rats with established cancellous osteopenia and (ii) whether ICI 182,780 (ICI), a potent estrogen receptor signaling antagonist, alters the skeletal response to alcohol. METHODS: Three weeks following ovx, rats were randomized into 5 groups, (i) baseline, (ii) control + vehicle, (iii) control + ICI, (iv) ethanol (EtOH) + vehicle, or (v) EtOH + ICI, and treated accordingly for 4 weeks. Dual-energy X-ray absorptiometry, microcomputed tomography, blood measurements of markers of bone turnover, and gene expression in femur and uterus were used to evaluate response to alcohol and ICI. RESULTS: Rats consuming alcohol had lower bone mass and increased fat mass. Bone microarchitecture of the tibia and gene expression in femur were altered; specifically, there was reduced accrual of cortical bone, net loss of cancellous bone, and differential expression of 19/84 genes related to bone turnover. Furthermore, osteocalcin, a marker of bone turnover, was lower in alcohol-fed rats. ICI had no effect on weight gain, body composition, or cortical bone. ICI reduced cancellous bone loss and serum CTX-1, a biochemical marker of bone resorption; alcohol antagonized the latter 2 responses. Neither alcohol nor ICI affected uterine weight or gene expression. CONCLUSIONS: Alcohol exaggerated bone loss in ovx rats in the presence or absence of estrogen receptor blockade with ICI. The negligible effect of alcohol on uterus and limited effects of ICI on bone in alcohol-fed ovx rats suggest that estrogen receptor signaling plays a limited role in the action of alcohol on bone in a rat model for chronic alcohol abuse.


Assuntos
Doenças Ósseas Metabólicas/induzido quimicamente , Osso e Ossos/efeitos dos fármacos , Antagonistas do Receptor de Estrogênio/uso terapêutico , Etanol/efeitos adversos , Fulvestranto/uso terapêutico , Ovariectomia/efeitos adversos , Absorciometria de Fóton , Animais , Densidade Óssea/efeitos dos fármacos , Doenças Ósseas Metabólicas/diagnóstico por imagem , Doenças Ósseas Metabólicas/prevenção & controle , Osso e Ossos/diagnóstico por imagem , Feminino , Ratos , Ratos Sprague-Dawley , Receptores de Estrogênio/antagonistas & inibidores , Microtomografia por Raio-X
14.
PLoS One ; 14(4): e0214387, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30943218

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, particularly in obese and type 2 diabetic individuals. NAFLD ranges in severity from benign steatosis to nonalcoholic steatohepatitis (NASH); and NASH can progress to cirrhosis, primary hepatocellular carcinoma (HCC) and liver failure. As such, NAFLD has emerged as a major public health concern. Herein, we used a lipidomic and transcriptomic approach to identify lipid markers associated with western diet (WD) induced NASH in female mice. METHODS: Female mice (low-density lipoprotein receptor null (Ldlr -/-) were fed a reference or WD diet for 38 and 46 weeks. Transcriptomic and lipidomic approaches, coupled with statistical analyses, were used to identify associations between major NASH markers and transcriptomic & lipidomic markers. RESULTS: The WD induced all major hallmarks of NASH in female Ldlr -/- mice, including steatosis (SFA, MUFA, MUFA-containing di- and triacylglycerols), inflammation (TNFα), oxidative stress (Ncf2), and fibrosis (Col1A). The WD also increased transcripts associated with membrane remodeling (LpCat), apoptosis & autophagy (Casp1, CtsS), hedgehog (Taz) & notch signaling (Hey1), epithelial-mesenchymal transition (S1004A) and cancer (Gpc3). WD feeding, however, suppressed the expression of the hedgehog inhibitory protein (Hhip), and enzymes involved in triglyceride catabolism (Tgh/Ces3, Ces1g), as well as the hepatic abundance of C18-22 PUFA-containing phosphoglycerolipids (GpCho, GpEtn, GpSer, GpIns). WD feeding also increased hepatic cyclooxygenase (Cox1 & 2) expression and pro-inflammatory ω6 PUFA-derived oxylipins (PGE2), as well as lipid markers of oxidative stress (8-iso-PGF2α). The WD suppressed the hepatic abundance of reparative oxylipins (19, 20-DiHDPA) as well as the expression of enzymes involved in fatty epoxide metabolism (Cyp2C, Ephx). CONCLUSION: WD-induced NASH in female Ldlr -/- mice was characterized by a massive increase in hepatic neutral and membrane lipids containing SFA and MUFA and a loss of C18-22 PUFA-containing membrane lipids. Moreover, the WD increased hepatic pro-inflammatory oxylipins and suppressed the hepatic abundance of reparative oxylipins. Such global changes in the type and abundance of hepatic lipids likely contributes to tissue remodeling and NASH severity.


Assuntos
Lipidômica , Hepatopatia Gordurosa não Alcoólica/genética , Receptores de LDL/genética , Transcriptoma/genética , Animais , Carcinoma Hepatocelular/complicações , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dieta Ocidental/efeitos adversos , Modelos Animais de Doenças , Ácidos Graxos Monoinsaturados/metabolismo , Ácidos Graxos Ômega-3/genética , Feminino , Fibrose/complicações , Fibrose/genética , Fibrose/metabolismo , Humanos , Metabolismo dos Lipídeos/genética , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/complicações , Obesidade/genética , Obesidade/metabolismo , Estresse Oxidativo/genética , Triglicerídeos/metabolismo
15.
Radiat Res ; 191(5): 413-427, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30870097

RESUMO

Total-body irradiation (TBI) followed by transfer of bone marrow cells from donors is routinely performed in immunology research and can be used to manipulate differentiation and/or function of bone cells. However, exposure to high-dose radiation can result in irreversible osteopenia, and transfer of heterogeneous cell populations can complicate interpretation of results. The goal of this research was to establish an approach for reconstituting bone marrow using small numbers of purified donor-derived hematopoietic stem cells (HSCs) without negatively affecting bone metabolism. Gamma-irradiated (9 Gy) WBB6F1 mice were engrafted with bone marrow cells (5 × 106 cells) or purified HSCs (3,000 cells) obtained from GFP transgenic mice. In vivo analysis and in vitro differentiation assays performed two months later established that both methods were effective in reconstituting the hematopoietic compartment with donor-derived cells. We confirmed these findings by engrafting C57Bl/6 (B6) mice with bone marrow cells or purified HSCs from CD45.1 B6 congenic mice. We next performed adoptive transfer of purified HSCs (750 cells) into WBB6F1 and radiosensitive KitW/W-v mice and evaluated the skeleton two months later. Minimal differences were observed between controls and WBB6F1-engrafted mice that received fractionated doses of 2 × 5 Gy. Kitw/wv mice lost weight and became osteopenic after 2 × 5 Gy irradiations but these abnormalities were negligible after 5 Gy irradiation. Importantly, adoptive transfer of wild-type cells into Kitw/wv mice restored normal Kit expression in bone marrow. Together, these findings provide strong evidence for efficient engraftment with purified HSCs after lethal TBI with minimal collateral damage to bone. This approach will be useful for investigating mechanisms by which hematopoietic lineage cells regulate bone metabolism.


Assuntos
Osso e Ossos/patologia , Osso e Ossos/efeitos da radiação , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Animais , Osso e Ossos/metabolismo , Contagem de Células , Feminino , Regulação da Expressão Gênica/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Tamanho do Órgão/efeitos da radiação , Osteocalcina/sangue
16.
Vet Med Sci ; 4(4): 357-363, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30117668

RESUMO

The role of epigenetic alterations during cancer has gained increasing attention and has resulted in a paradigm shift in our understanding of mechanisms leading to cancer susceptibility. Sulforaphane (SFN) is a naturally occurring isothiocyanate derived from the precursor glucosinolate, glucoraphanin (GFN), which is found in cruciferous vegetables such as broccoli. Sulforaphane has been shown to suppress tumour growth by several mechanisms including inhibiting histone deacetylases. The objective of this study was to provide a detailed analysis of sulforaphane absorption following a single oral dose of a broccoli sprout supplement in normal dogs. A single dose of broccoli sprout supplement (with active myrosinase) was orally administered to 10 healthy adult dogs. Blood and urine samples were collected prior to dosing, and at various time points post-dosing. Plasma total SFN metabolite levels peaked at 4 h post-consumption and were cleared by 24 h post-consumption. Urinary SFN metabolites peaked at 4 h post-consumption, and remained detectable at 24 and 48 h post-supplement consumption. A trend for decrease in histone deacetylase activity was observed at 1 h post-consumption and a significant decrease was observed at 24 h post-consumption. The data presented herein indicate that oral SFN is absorbed in dogs, SFN metabolites are detectable in plasma and urine post-dosing, and SFN and its metabolites have some effect on histone deacetylase activity following a single dose.


Assuntos
Brassica/química , Cães , Histona Desacetilases/metabolismo , Isotiocianatos/farmacocinética , Extratos Vegetais/farmacologia , Animais , Cães/sangue , Cães/urina , Inibidores de Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacocinética , Inibidores de Histona Desacetilases/farmacologia , Isotiocianatos/metabolismo , Isotiocianatos/farmacologia , Sulfóxidos
17.
Curr Dev Nutr ; 2(3): nzy002, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30019025

RESUMO

BACKGROUND: Cruciferous vegetables have been associated with the chemoprevention of cancer. Epigenetic regulators have been identified as important targets for prostate cancer chemoprevention. Treatment of human prostate cancer cells with sulforaphane (SFN), a chemical from broccoli and broccoli sprouts, inhibits epigenetic regulators such as histone deacetylase (HDAC) enzymes, but it is not known whether consumption of a diet high in broccoli sprouts impacts epigenetic mechanisms in an in vivo model of prostate cancer. OBJECTIVE: In the transgenic adenocarcinoma of the mouse prostate (TRAMP) model, we tested the hypothesis that a broccoli sprout diet suppresses prostate cancer, inhibits HDAC expression, alters histone modifications, and changes the expression of genes regulated by HDACs. METHODS: TRAMP mice were fed a 15% broccoli sprout or control AIN93G diet; tissue samples were collected at 12 and 28 wk of age. RESULTS: Mice fed broccoli sprouts had detectable amounts of SFN metabolites in liver, kidney, colon, and prostate tissues. Broccoli sprouts reduced prostate cancer incidence and progression to invasive cancer by 11- and 2.4-fold at 12 and 28 wk of age, respectively. There was a significant decline in HDAC3 protein expression in the epithelial cells of prostate ventral and anterior lobes at age 12 wk. Broccoli sprout consumption also decreased histone H3 lysine 9 trimethylation in the ventral lobe (age 12 wk), and decreased histone H3 lysine 18 acetylation in all prostate lobes (age 28 wk). A decline in p16 mRNA levels, a gene regulated by HDAC3, was associated with broccoli sprout consumption, but no significant changes were noted at the protein level. CONCLUSIONS: Broccoli sprout intake was associated with a decline in prostate cancer occurrence and HDAC3 protein expression in the prostate, extending prior work that implicated loss of HDAC3/ corepressor interactions as a key preventive mechanism by SFN in vivo.

18.
Mol Nutr Food Res ; 62(19): e1700665, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29377494

RESUMO

SCOPE: Several lines of evidence suggest that the consumption of cruciferous vegetables is beneficial to human health. Yet, underlying mechanisms and key molecular targets that are involved with achieving these benefits in humans are still not fully understood. To accelerate this research, we conduct a human study to identify potential molecular targets of crucifers for further study. This study aims to characterize plasma metabolite profiles in humans before and after consuming fresh broccoli sprouts (a rich dietary source of bioactive sulforaphane). METHODS AND RESULTS: Ten healthy adults consume fresh broccoli sprouts (containing 200 µmol sulforaphane equivalents) at time 0 and provide blood samples at 0, 3, 6, 12, 24, and 48 h. An untargeted metabolomics screen reveals that levels of several plasma metabolites are significantly different before and after sprout intake, including fatty acids (14:0, 14:1, 16:0, 16:1, 18:0, and 18:1), glutathione, glutamine, cysteine, dehydroepiandrosterone, and deoxyuridine monophosphate. Evaluation of all time points is conducted using paired t-test (R software) and repeated measures analysis of variance for a within-subject design (Progenesis QI). CONCLUSION: This investigation identifies several potential molecular targets of crucifers that may aid in studying established and emerging health benefits of consuming cruciferous vegetables and related bioactive compounds.


Assuntos
Sangue/metabolismo , Brassica , Adulto , Brassica/química , Desidroepiandrosterona/sangue , Nucleotídeos de Desoxiuracil/sangue , Ácidos Graxos/sangue , Feminino , Glutationa/sangue , Humanos , Isotiocianatos/análise , Isotiocianatos/sangue , Isotiocianatos/urina , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade , Sulfóxidos
19.
J Nutr Biochem ; 47: 113-119, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28582660

RESUMO

Androgen receptor (AR) is a transcription factor involved in normal prostate physiology and prostate cancer (PCa) development. 3,3'-Diindolylmethane (DIM) is a promising phytochemical agent against PCa that affects AR activity and epigenetic regulators in PCa cells. However, whether DIM suppresses PCa via epigenetic regulation of AR target genes is unknown. We assessed epigenetic regulation of AR target genes in LNCaP PCa cells and showed that DIM treatment led to epigenetic suppression of AR target genes involved in DNA repair (PARP1, MRE11, DNA-PK). Decreased expression of these genes was accompanied by an increase in repressive chromatin marks, loss of AR occupancy and EZH2 recruitment to their regulatory regions. Decreased DNA repair gene expression was associated with an increase in DNA damage (γH2Ax) and up-regulation of genomic repeat elements LINE1 and α-satellite. Our results suggest that DIM suppresses AR-dependent gene transcription through epigenetic modulation, leading to DNA damage and genome instability in PCa cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Cromatina/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Indóis/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Receptores Androgênicos/metabolismo , Antagonistas de Receptores de Andrógenos/farmacologia , Linhagem Celular Tumoral , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Dano ao DNA , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Repressão Enzimática/efeitos dos fármacos , Repressão Epigenética/efeitos dos fármacos , Instabilidade Genômica/efeitos dos fármacos , Humanos , Proteína Homóloga a MRE11/antagonistas & inibidores , Proteína Homóloga a MRE11/genética , Proteína Homóloga a MRE11/metabolismo , Masculino , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptores Androgênicos/química , Receptores Androgênicos/genética , Elementos de Resposta/efeitos dos fármacos
20.
PLoS One ; 12(4): e0173376, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28422962

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is a major public health concern in western societies. Nonalcoholic steatohepatitis (NASH), the progressive form of NAFLD, is characterized by hepatic steatosis, inflammation, oxidative stress and fibrosis. NASH is a risk factor for cirrhosis and hepatocellular carcinoma. NASH is predicted to be the leading cause of liver transplants by 2020. Despite this growing public health concern, there remain no Food and Drug Administration (FDA) approved NASH treatments. Using Ldlr -/- mice as a preclinical model of western diet (WD)-induced NASH, we previously established that dietary supplementation with docosahexaenoic acid (DHA, 22:6,ω3) attenuated WD-induced NASH in a prevention study. Herein, we evaluated the capacity of DHA supplementation of the WD and a low fat diet to fully reverse NASH in mice with pre-existing disease. METHODS: Ldlr -/- mice fed the WD for 22 wks developed metabolic syndrome (MetS) and a severe NASH phenotype, including obesity, dyslipidemia, hyperglycemia, hepatic steatosis, inflammation, fibrosis and low hepatic polyunsaturated fatty acid (PUFA) content. These mice were randomized to 5 groups: a baseline group (WDB, sacrificed at 22 wks) and 4 treatments: 1) WD + olive oil (WDO); 2) WD + DHA (WDD); 3) returned to chow + olive oil (WDChO); or 4) returned to chow + DHA (WDChD). The four treatment groups were maintained on their respective diets for 8 wks. An additional group was maintained on standard laboratory chow (Reference Diet, RD) for the 30-wk duration of the study. RESULTS: When compared to the WDB group, the WDO group displayed increased hepatic expression of genes linked to inflammation (Opn, Il1rn, Gdf15), hepatic fibrosis (collagen staining, Col1A1, Thbs2, Lox) reflecting disease progression. Mice in the WDD group, in contrast, had increased hepatic C20-22 ω3 PUFA and no evidence of NASH progression. MetS and NASH markers in the WDChO or WDChD groups were significantly attenuated and marginally different from the RD group, reflecting disease remission. CONCLUSION: While these studies establish that DHA supplementation of the WD blocks WD-induced NASH progression, DHA alone does not promote full remission of diet-induced MetS or NASH.


Assuntos
Gorduras na Dieta/administração & dosagem , Ácidos Docosa-Hexaenoicos/administração & dosagem , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Receptores de LDL/deficiência , Animais , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Dieta Ocidental , Modelos Animais de Doenças , Progressão da Doença , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/genética , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Azeite de Oliva/administração & dosagem , Osteopontina/genética , Osteopontina/metabolismo , Proteína-Lisina 6-Oxidase/genética , Proteína-Lisina 6-Oxidase/metabolismo , Receptores de LDL/genética , Trombospondinas/genética , Trombospondinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA