Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Mol Immunol ; 21(4): 362-373, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38374404

RESUMO

Vγ9Vδ2 T cells are specialized effector cells that have gained prominence as immunotherapy agents due to their ability to target and kill cells with altered pyrophosphate metabolites. In our effort to understand how cancer cells evade the cell-killing activity of Vγ9Vδ2 T cells, we performed a comprehensive genome-scale CRISPR screening of cancer cells. We found that four molecules belonging to the butyrophilin (BTN) family, specifically BTN2A1, BTN3A1, BTN3A2, and BTN3A3, are critically important and play unique, nonoverlapping roles in facilitating the destruction of cancer cells by primary Vγ9Vδ2 T cells. The coordinated function of these BTN molecules was driven by synchronized gene expression, which was regulated by IFN-γ signaling and the RFX complex. Additionally, an enzyme called QPCTL was shown to play a key role in modifying the N-terminal glutamine of these BTN proteins and was found to be a crucial factor in Vγ9Vδ2 T cell killing of cancer cells. Through our research, we offer a detailed overview of the functional genomic mechanisms that underlie how cancer cells escape Vγ9Vδ2 T cells. Moreover, our findings shed light on the importance of the harmonized expression and function of gene family members in modulating T-cell activity.


Assuntos
Neoplasias , Linfócitos T , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Butirofilinas/genética , Butirofilinas/metabolismo , Ativação Linfocitária/genética , Morte Celular
2.
J Clin Invest ; 132(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35239512

RESUMO

Y-box-binding protein 1 (YB-1) is a multifunctional RNA binding protein involved in virtually every step of RNA metabolism. However, the functions and mechanisms of YB-1 in one of the most aggressive cancers, glioblastoma, are not well understood. In this study, we found that YB-1 protein was markedly overexpressed in glioblastoma and acted as a critical activator of both mTORC1 and mTORC2 signaling. Mechanistically, YB-1 bound the 5'UTR of CCT4 mRNA to promote the translation of CCT4, a component of the CCT chaperone complex, that in turn activated the mTOR signaling pathway by promoting mLST8 folding. In addition, YB-1 autoregulated its own translation by binding to its 5'UTR, leading to sustained activation of mTOR signaling. In patients with glioblastoma, high protein expression of YB-1 correlated with increased expression of CCT4 and mLST8 and activated mTOR signaling. Importantly, the administration of RNA decoys specifically targeting YB-1 in a mouse xenograft model resulted in slower tumor growth and better survival. Taken together, these findings uncover a disrupted proteostasis pathway involving a YB-1/CCT4/mLST8/mTOR axis in promoting glioblastoma growth, suggesting that YB-1 is a potential therapeutic target for the treatment of glioblastoma.


Assuntos
Glioblastoma , Proteína 1 de Ligação a Y-Box , Regiões 5' não Traduzidas , Animais , Linhagem Celular Tumoral , Chaperonina com TCP-1 , Glioblastoma/genética , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/genética , Proteína 1 de Ligação a Y-Box/genética , Proteína 1 de Ligação a Y-Box/metabolismo , Homólogo LST8 da Proteína Associada a mTOR/genética , Homólogo LST8 da Proteína Associada a mTOR/metabolismo
3.
Cell Res ; 28(3): 323-335, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29327730

RESUMO

Eosinophils (Eos) have been long considered as end-stage effector cells in the hierarchical hematopoietic system. Numerous lines of evidence have suggested that Eos are multifunctional leukocytes with respect to the initiation, propagation and regulation of various inflammatory or immune reactions, especially in allergic diseases. Recent studies have shown that Eos are also required for maintenance of bone marrow plasma cells and differentiation of B cells. However, it remains unclear whether Eos contributes to regulation of hematopoietic stem cell (HSC) homeostasis. Here, we demonstrate that Eos disrupt HSC homeostasis by impairing HSC quiescence and reconstitution ability in wild-type mice following ovalbumin (OVA) challenge and even by causing bone marrow HSC failure and exhaustion in Cd3δ-Il-5 transgenic mice. The impaired maintenance and function of HSCs were associated with Eos-induced redox imbalance (increased oxidative phosphorylation and decreased anti-oxidants levels). More importantly, using mass spectrometry, we determined that CCL-6 is expressed at a high level under eosinophilia. We demonstrate that CCL-6 is Eos-derived and responsible for the impaired HSC homeostasis. Interestingly, blockage of CCL-6 with a specific neutralizing antibody, restored the reconstitution ability of HSCs while exacerbating eosinophilia airway inflammation in OVA-challenged mice. Thus, our study reveals an unexpected function of Eos/CCL-6 in HSC homeostasis.


Assuntos
Quimiocinas CC/fisiologia , Eosinófilos/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Homeostase , Animais , Complexo CD3/genética , Modelos Animais de Doenças , Eosinófilos/metabolismo , Interleucina-5/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oxirredução
4.
Cell Res ; 27(6): 815-829, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28429771

RESUMO

Studying the early function of essential genes is an important and challenging problem in developmental biology. Here, we established a method for rapidly inducing CRISPR-Cas9-mediated mutations in one blastomere of two-cell stage embryos, termed 2-cell embryo-CRISPR-Cas9 injection (2CC), to study the in vivo function of essential (or unknown) genes in founder chimeric mice. By injecting both Cre mRNA and CRISPR-Cas9 targeting the gene of interest into fluorescent reporter mice, the 2CC method can trace both wild-type and mutant cells at different developmental stages, offering internal control for phenotypic analyses of mutant cells. Using this method, we identified novel functions of the essential gene Tet3 in regulating excitatory and inhibitory synaptic transmission in the developing mouse cerebral cortex. By generating chimeric mutant mice, the 2CC method allows for the rapid screening of gene function in multiple tissues and cell types in founder chimeric mice, significantly expanding the current armamentarium of genetic tools.


Assuntos
Blastômeros/metabolismo , Sistemas CRISPR-Cas/fisiologia , Edição de Genes/métodos , Animais , Sistemas CRISPR-Cas/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Embrião de Mamíferos/metabolismo , Engenharia Genética/métodos , Masculino , Camundongos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
5.
Cell Res ; 27(5): 626-641, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28281539

RESUMO

Extensive pre-mRNA back-splicing generates numerous circular RNAs (circRNAs) in human transcriptome. However, the biological functions of these circRNAs remain largely unclear. Here we report that N6-methyladenosine (m6A), the most abundant base modification of RNA, promotes efficient initiation of protein translation from circRNAs in human cells. We discover that consensus m6A motifs are enriched in circRNAs and a single m6A site is sufficient to drive translation initiation. This m6A-driven translation requires initiation factor eIF4G2 and m6A reader YTHDF3, and is enhanced by methyltransferase METTL3/14, inhibited by demethylase FTO, and upregulated upon heat shock. Further analyses through polysome profiling, computational prediction and mass spectrometry reveal that m6A-driven translation of circRNAs is widespread, with hundreds of endogenous circRNAs having translation potential. Our study expands the coding landscape of human transcriptome, and suggests a role of circRNA-derived proteins in cellular responses to environmental stress.


Assuntos
Adenosina/análogos & derivados , Biossíntese de Proteínas , RNA/metabolismo , Adenosina/metabolismo , Fator de Iniciação 3 em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Células HeLa , Humanos , Motivos de Nucleotídeos/genética , Peptídeos/química , Peptídeos/metabolismo , RNA Circular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espectrometria de Massas em Tandem , Transcriptoma/genética
6.
Expert Rev Proteomics ; 14(2): 157-170, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28043171

RESUMO

INTRODUCTION: Arginine methylation is an important post-translational modification (PTM) in cells, which is catalyzed by a group of protein arginine methyltransferases (PRMTs). It plays significant roles in diverse cellular processes and various diseases. Misregulation and aberrant expression of PRMTs can provide potential biomarkers and therapeutic targets for drug discovery. Areas covered: Herein, we review the arginine methylation literature and summarize the methodologies for the characterization of this modification, as well as describe the recent insights into arginine methyltransferases and their biological functions in diseases. Expert commentary: Benefits from the enzyme-based large-scale screening approach, the novel affinity enrichment strategies, arginine methylated protein family is the focus of attention. Although a number of arginine methyltransferases and related substrates are identified, the catalytic mechanism of different types of PRMTs remains unclear and few related demethylases are characterized. Novel functional studies continuously reveal the importance of this modification in the cell cycle and diseases. A deeper understanding of arginine methylated proteins, modification sites, and their mechanisms of regulation is needed to explore their role in life processes, especially their relationship with diseases, thus accelerating the generation of potent, selective, cell-penetrant drug candidates.


Assuntos
Arginina/metabolismo , Proteínas/metabolismo , Doenças Cardiovasculares/metabolismo , Reparo do DNA , Humanos , Espectrometria de Massas/métodos , Metilação , Esclerose Múltipla/metabolismo , Atrofia Muscular Espinal/metabolismo , Neoplasias/metabolismo , Processamento de Proteína Pós-Traducional , Proteína-Arginina N-Metiltransferases/metabolismo , Proteômica/métodos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA