Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Elife ; 122023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37580962

RESUMO

Background: Recent research has shown that the adhesion G protein-coupled receptor F1 (Adgrf1; also known as GPR110; PGR19; KPG_012; hGPCR36) is an oncogene. The evidence is mainly based on high expression of Adgrf1 in numerous cancer types, and knockdown Adgrf1 can reduce the cell migration, invasion, and proliferation. Adgrf1 is, however, mostly expressed in the liver of healthy individuals. The function of Adgrf1 in liver has not been revealed. Interestingly, expression level of hepatic Adgrf1 is dramatically decreased in obese subjects. Here, the research examined whether Adgrf1 has a role in liver metabolism. Methods: We used recombinant adeno-associated virus-mediated gene delivery system, and antisense oligonucleotide was used to manipulate the hepatic Adgrf1 expression level in diet-induced obese mice to investigate the role of Adgrf1 in hepatic steatosis. The clinical relevance was examined using transcriptome profiling and archived biopsy specimens of liver tissues from non-alcoholic fatty liver disease (NAFLD) patients with different degree of fatty liver. Results: The expression of Adgrf1 in the liver was directly correlated to fat content in the livers of both obese mice and NAFLD patients. Stearoyl-coA desaturase 1 (Scd1), a crucial enzyme in hepatic de novo lipogenesis, was identified as a downstream target of Adgrf1 by RNA-sequencing analysis. Treatment with the liver-specific Scd1 inhibitor MK8245 and specific shRNAs against Scd1 in primary hepatocytes improved the hepatic steatosis of Adgrf1-overexpressing mice and lipid profile of hepatocytes, respectively. Conclusions: These results indicate Adgrf1 regulates hepatic lipid metabolism through controlling the expression of Scd1. Downregulation of Adgrf1 expression can potentially serve as a protective mechanism to stop the overaccumulation of fat in the liver in obese subjects. Overall, the above findings not only reveal a new mechanism regulating the progression of NAFLD, but also proposed a novel therapeutic approach to combat NAFLD by targeting Adgrf1. Funding: This work was supported by the National Natural Science Foundation of China (81870586), Area of Excellence (AoE/M-707/18), and General Research Fund (15101520) to CMW, and the National Natural Science Foundation of China (82270941, 81974117) to SJ.


Being overweight or obese increases the risk of developing numerous medical conditions including non-alcoholic fatty liver disease (NAFLD), where excess fat accumulates in the liver. NAFLD is a major global health issue affecting about 25% of the world's population and, if left untreated, can lead to liver inflammation as well as serious complications such as type 2 diabetes, heart disease, and liver cancer. Currently, there are no medications which specifically treat NFALD. Instead, only medications which help to manage the associated health complications are available. Therefore, a better understanding of NFALD is required to help to develop new strategies for diagnosing and treating the progression of this disease. A family of proteins known as GPCRs have crucial roles in regulating various bodily processes and are therefore commonly targeted for the treatment of disease. By identifying the GPCRs specifically involved in liver fat accumulation, new treatments for NFALD could be identified. Previous studies identified a GPCR known as Adgrf1 that is mainly found in liver cells, but its role remained unclear. To investigate the function of Adgrf1 in the liver, Wu et al. studied obese mice and human patients with NAFLD. The experiments showed that elevated levels of Adgrf1 in human and mouse livers led to increased fat accumulation. On the other hand, livers with lower levels of Adgrf1 exhibited reduced fat levels. A technique called RNA sequencing revealed that Adgrf1 induces expression of enzymes involved in fat synthesis, including a key regulator called Scd1. Treating mice with high levels of liver fat with molecules that inhibit Scd1 decreased the symptoms of Adgrf1-mediated fatty liver disease. These findings suggest therapies that decrease the levels of Adgrf1 may help to stop too much fat accumulating in the liver of human patients who are at risk of developing NAFLD. Further research is needed to confirm the effectiveness and safety of targeting Adgrf1 in humans and to develop suitable candidate drugs for the task.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Receptores Acoplados a Proteínas G , Animais , Camundongos , Dieta Hiperlipídica , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Obesidade/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
2.
Cells ; 11(11)2022 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-35681467

RESUMO

Peroxiredoxins are multifunctional enzymes that play a key role in protecting cells from stresses and maintaining the homeostasis of many cellular processes. Peroxiredoxins were firstly identified as antioxidant enzymes that can be found in all living organisms. Later studies demonstrated that peroxiredoxins also act as redox signaling regulators, chaperones, and proinflammatory factors and play important roles in oxidative defense, redox signaling, protein folding, cycle cell progression, DNA integrity, inflammation, and carcinogenesis. The versatility of peroxiredoxins is mainly based on their unique active center cysteine with a wide range of redox states and the ability to switch between low- and high-molecular-weight species for regulating their peroxidase and chaperone activities. Understanding the molecular mechanisms of peroxiredoxin in these processes will allow the development of new approaches to enhance longevity and to treat various cancers. In this article, we briefly review the history of peroxiredoxins, summarize recent advances in our understanding of peroxiredoxins in aging- and cancer-related biological processes, and discuss the future perspectives of using peroxiredoxins in disease diagnostics and treatments.


Assuntos
Neoplasias , Peroxirredoxinas , Antioxidantes/metabolismo , Humanos , Neoplasias/metabolismo , Oxirredução , Peroxidase/metabolismo , Peroxirredoxinas/metabolismo
3.
Theranostics ; 12(6): 2502-2518, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401831

RESUMO

Rationale: Over-nutrition will lead to overexpression of PRMT1 but protein hypomethylation is observed in the liver of obese subjects. The dynamic alteration of the expression and methyltransferase activity of PRMT1 in the progression of fatty liver diseases remains elusive. Methods: We used recombinant adeno-associated virus-mediated gene delivery system to manipulate the hepatic PRMT1 expression level in diet-induced obese mice to investigate the role of PRMT1 in hepatic steatosis. We further utilized a cohort of obese humans with biopsy-proven nonalcoholic fatty liver disease to support our observations in mouse model. Results: We demonstrated that knockdown of PRMT1 promoted steatosis development in liver of high-fat diet (HFD) fed mice. Over-expression of wild-type PRMT1, but not methyltransferase-defective mutant PRMT1G80R, could alleviate diet-induced hepatic steatosis. The observation is conserved in the specimens of obese humans with biopsy-proven nonalcoholic fatty liver disease. Mechanistically, methyltransferase activity of PRMT1 was required to induce PGC-1α mRNA expression via recruitment of HNF-4α to the promoter of PGC-1α, and hence attenuated HFD-induced hepatic steatosis by enhancing PGC-1α-mediated fatty acid oxidation. Conclusions: Our results identify that activation of the PRMT1/HNF-4α/PGC-1α signaling is a potential therapeutic strategy for combating non-alcoholic fatty liver disease of obese subjects.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Dieta Hiperlipídica/efeitos adversos , Humanos , Fígado/metabolismo , Metiltransferases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo
4.
Cell Mol Gastroenterol Hepatol ; 13(5): 1365-1391, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35093589

RESUMO

BACKGROUND & AIMS: CREB-H is a key liver-enriched transcription factor governing lipid metabolism. Additional targets of CREB-H remain to be identified and characterized. Here, we identified a novel fasting- and CREB-H-induced (FACI) protein that inhibits intestinal lipid absorption and alleviates diet-induced obesity in mice. METHODS: FACI was identified by reanalysis of existing transcriptomic data. Faci-/- mice were generated by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9)-mediated genome engineering. RNA sequencing was performed to identify differentially expressed genes in Faci-/- mice. Lipid accumulation in the villi was assessed by triglyceride measurement and Oil red O staining. In vitro fatty acid uptake assay was performed to verify in vivo findings. RESULTS: FACI expression was enriched in liver and intestine. FACI is a phospholipid-binding protein that localizes to plasma membrane and recycling endosomes. Hepatic transcription of Faci was regulated by not only CREB-H, but also nutrient-responsive transcription factors sterol regulatory element-binding protein 1 (SREBP1), hepatocyte nuclear factor 4α (HNF4α), peroxisome proliferator-activated receptor γ coactivator-1α (PGC1α), and CREB, as well as fasting-related cyclic adenosine monophosphate (cAMP) signaling. Genetic knockout of Faci in mice showed an increase in intestinal fat absorption. In accordance with this, Faci deficiency aggravated high-fat diet-induced obesity, hyperlipidemia, steatosis, and other obesity-related metabolic dysfunction in mice. CONCLUSIONS: FACI is a novel CREB-H-induced protein. Genetic disruption of Faci in mice showed its inhibitory effect on fat absorption and obesity. Our findings shed light on a new target of CREB-H implicated in lipid homeostasis.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Fígado , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Dieta Hiperlipídica/efeitos adversos , Lipídeos , Fígado/metabolismo , Camundongos , Obesidade/metabolismo
5.
J Am Heart Assoc ; 9(6): e010240, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32157956

RESUMO

Background Pin2/TRF1-interacting protein, PinX1, was previously identified as a tumor suppressor. Here, we discovered a novel transcript variant of mPinX1 (mouse PinX1), mPinX1t (mouse PinX1t), in embryonic stem cells (ESCs). The aims of this investigation were (1) to detect the presence of mPinX1 and mPinX1t in ESCs and their differentiation derivatives; (2) to investigate the role of mPinX1 and mPinX1t on regulating the characteristics of undifferentiated ESCs and the cardiac differentiation of ESCs; (3) to elucidate the molecular mechanisms of how mPinX1 and mPinX1t regulate the cardiac differentiation of ESCs. Methods and Results By 5' rapid amplification of cDNA ends, 3' rapid amplification of cDNA ends, and polysome fractionation followed by reverse transcription-polymerase chain reaction, mPinX1t transcript was confirmed to be an intact mRNA that is actively translated. Western blot confirmed the existence of mPinX1t protein. Overexpression or knockdown of mPinX1 (both decreased mPinX1t expression) both decreased while overexpression of mPinX1t increased the cardiac differentiation of ESCs. Although both mPinX1 and mPinX1t proteins were found to bind to cardiac transcription factor mRNAs, only mPinX1t protein but not mPinX1 protein was found to bind to nucleoporin 133 protein, a nuclear pore complex component. In addition, mPinX1t-containing cells were found to have a higher cytosol-to-nucleus ratio of cardiac transcription factor mRNAs when compared with that in the control cells. Our data suggested that mPinX1t may positively regulate cardiac differentiation by enhancing export of cardiac transcription factor mRNAs through interacting with nucleoporin 133. Conclusions We discovered a novel transcript variant of mPinX1, the mPinX1t, which positively regulates the cardiac differentiation of ESCs.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Células-Tronco Embrionárias Murinas/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular , Linhagem da Célula , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Morfogênese , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Isoformas de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteínas Supressoras de Tumor/genética
6.
Free Radic Biol Med ; 145: 321-329, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31580947

RESUMO

Peroxiredoxins (Prxs), scavenge cellular peroxides by forming recyclable disulfides but under high oxidative stress, hyperoxidation of their active-site Cys residue results in loss of their peroxidase activity. Saccharomyces cerevisiae deficient in human Prx (hPrx) orthologue TSA1 show growth defects under oxidative stress. They can be complemented with hPRXI but not by hPRXII, but it is not clear how the disulfide and hyperoxidation states of the hPrx vary in yeast under oxidative stress. To understand this, we used oxidative-stress sensitive tsa1tsa2Δ yeast strain to express hPRXI or hPRXII. We found that hPrxI in yeast exists as a mixture of disulfide-linked dimer and reduced monomer but becomes hyperoxidized upon elevated oxidative stress as analyzed under denaturing conditions (SDS-PAGE). In contrast, hPrxII was present predominantly as the disulfide in unstressed cells and readily converted to its hyperoxidized, peroxidase-inactive form even with mild oxidative stress. Interestingly, we found that plant extracts containing polyphenol antioxidants provided further protection against the growth defects of the tsa1tsa2Δ strain expressing hPrx and preserved the peroxidase-active forms of the Prxs. The extracts also helped to protect against hyperoxidation of hPrxs in HeLa cells. Based on these findings we can conclude that resistance to oxidative stress of yeast cells expressing individual hPrxs requires the hPrx to be maintained in a redox state that permits redox cycling and peroxidase activity. Peroxidase activity decreases as the hPrx becomes hyperoxidized and the limited protection by hPrxII compared with hPrxI can be explained by its greater sensitivity to hyperoxidation.


Assuntos
Proteínas de Homeodomínio/genética , Estresse Oxidativo/genética , Peroxidases/genética , Proteínas de Saccharomyces cerevisiae/genética , Antioxidantes/metabolismo , Domínio Catalítico/genética , Cisteína/metabolismo , Dissulfetos/metabolismo , Células HeLa , Proteínas de Homeodomínio/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Oxirredução/efeitos dos fármacos , Peroxidases/metabolismo , Peróxidos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Noncoding RNA ; 4(3)2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154386

RESUMO

Many mechanisms of obesity-induced cancers have been proposed. However, it remains unclear whether or not long non-coding RNAs (lncRNAs) play any role in obesity-induced cancers. In this article, we briefly discuss the generally accepted hypotheses explaining the mechanisms of obesity-induced cancers, summarize the latest evidence for the expression of a number of well-known cancer-associated lncRNAs in obese subjects, and propose the potential contribution of lncRNAs to obesity-induced cancers. We hope this review can serve as an inspiration to scientists to further explore the regulatory roles of lncRNAs in the development of obesity-induced cancers. Those findings will be fundamental in the development of effective therapeutics or interventions to combat this life-threatening adverse effect of obesity.

8.
Sci Signal ; 10(491)2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28790196

RESUMO

Nonalcoholic fatty liver disease (NAFLD) includes a spectrum of diseases that ranges in severity from hepatic steatosis to steatohepatitis, the latter of which is a major predisposing factor for liver cirrhosis and cancer. Toll-like receptor (TLR) signaling, which is critical for innate immunity, is generally believed to aggravate disease progression by inducing inflammation. Unexpectedly, we found that deficiency in TIR domain-containing adaptor-inducing interferon-ß (TRIF), a cytosolic adaptor that transduces some TLR signals, worsened hepatic steatosis induced by a high-fat diet (HFD) and that such exacerbation was independent of myeloid cells. The aggravated steatosis in Trif-/- mice was due to the increased hepatocyte transcription of the gene encoding stearoyl-coenzyme A (CoA) desaturase 1 (SCD1), the rate-limiting enzyme for lipogenesis. Activation of the TRIF pathway by polyinosinic:polycytidylic acid [poly(I:C)] suppressed the increase in SCD1 abundance induced by palmitic acid or an HFD and subsequently prevented lipid accumulation in hepatocytes. Interferon regulatory factor 3 (IRF3), a transcriptional regulator downstream of TRIF, acted as a transcriptional suppressor by directly binding to the Scd1 promoter. These results suggest an unconventional metabolic function for TLR/TRIF signaling that should be taken into consideration when seeking to pharmacologically inhibit this pathway.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Fígado Gorduroso/genética , Hepatócitos/metabolismo , Estearoil-CoA Dessaturase/genética , Receptores Toll-Like/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/metabolismo , Células HEK293 , Humanos , Inflamação/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Ácido Palmítico/metabolismo , Poli C/metabolismo , Cultura Primária de Células
9.
Cell Metab ; 26(3): 493-508.e4, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28844880

RESUMO

Type 2 cytokines are important signals triggering biogenesis of thermogenic beige adipocytes in white adipose tissue (WAT) during cold acclimation. However, how cold activates type 2 immunity in WAT remains obscure. Here we show that cold-induced type 2 immune responses and beiging in subcutaneous WAT (scWAT) are abrogated in mice with adipose-selective ablation of FGF21 or its co-receptor ß-Klotho, whereas such impairments are reversed by replenishment with chemokine CCL11. Mechanistically, FGF21 acts on adipocytes in an autocrine manner to promote the expression and secretion of CCL11 via activation of ERK1/2, which drives recruitment of eosinophils into scWAT, leading to increases in accumulation of M2 macrophages, and proliferation and commitment of adipocyte precursors into beige adipocytes. These FGF21-elicited type 2 immune responses and beiging are blocked by CCL11 neutralization. Thus, the adipose-derived FGF21-CCL11 axis triggers cold-induced beiging and thermogenesis by coupling sympathetic nervous system to activation of type 2 immunity in scWAT.


Assuntos
Tecido Adiposo Branco/metabolismo , Quimiocina CCL11/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Imunidade , Sistema Nervoso Simpático/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo Bege/efeitos dos fármacos , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Animais , Comunicação Autócrina/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Temperatura Baixa , Eosinófilos/efeitos dos fármacos , Eosinófilos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fatores de Crescimento de Fibroblastos/deficiência , Glucuronidase/metabolismo , Imunidade/efeitos dos fármacos , Proteínas Klotho , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Sistema Nervoso Simpático/efeitos dos fármacos , Termogênese/efeitos dos fármacos
10.
Br J Pharmacol ; 174(8): 718-733, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28138957

RESUMO

BACKGROUND AND PURPOSE: Raloxifene can induce both endothelium-dependent and -independent relaxation in different arteries. However, the underlying mechanisms by which raloxifene triggers endothelium-independent relaxation are still incompletely understood. The purpose of present study was to examine the roles of NOSs and Ca2+ channels in the relaxant response to raloxifene in the rat isolated, endothelium-denuded aorta. EXPERIMENTAL APPROACH: Changes in isometric tension, cGMP, nitrite, inducible NOS protein expression and distribution in response to raloxifene in endothelium-denuded aortic rings were studied by organ baths, radioimmunoassay, Griess reaction, western blot and immunohistochemistry respectively. KEY RESULTS: Raloxifene reduced the contraction to CaCl2 in a Ca2+ -free, high K+ -containing solution in intact aortic rings. Raloxifene also acutely relaxed the aorta primarily through an endothelium-independent mechanism involving NO, mostly from inducible NOS (iNOS) in vascular smooth muscle layers. This effect of raloxifene involved the generation of cGMP and nitrite. Also, it was genomic in nature, as it was inhibited by a classical oestrogen receptor antagonist and inhibitors of RNA and protein synthesis. Raloxifene-induced stimulation of iNOS gene expression was partly mediated through activation of the NF-κB pathway. Raloxifene was more potent than 17ß-estradiol or tamoxifen at relaxing endothelium-denuded aortic rings by stimulation of iNOS. CONCLUSIONS AND IMPLICATIONS: Raloxifene-mediated vasorelaxation in rat aorta is independent of a functional endothelium and is mediated by oestrogen receptors and NF-κB. This effect is mainly mediated through an enhanced production of NO, cGMP and nitrite, via the induction of iNOS and inhibition of calcium influx through Ca2+ channels in rat aortic smooth muscle.


Assuntos
Aorta/efeitos dos fármacos , Endotélio/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Cloridrato de Raloxifeno/farmacologia , Animais , Aorta/metabolismo , Cálcio/metabolismo , Relação Dose-Resposta a Droga , Endotélio/metabolismo , Masculino , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico Sintase Tipo II/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
11.
Sci Rep ; 6: 23938, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-27029215

RESUMO

CREB-H is an endoplasmic reticulum-resident bZIP transcription factor which critically regulates lipid homeostasis and gluconeogenesis in the liver. CREB-H is proteolytically activated by regulated intramembrane proteolysis to generate a C-terminally truncated form known as CREB-H-ΔTC, which translocates to the nucleus to activate target gene expression. CREB-H-ΔTC is a fast turnover protein but the mechanism governing its destruction was not well understood. In this study, we report on ß-TrCP-dependent ubiquitination and proteasomal degradation of CREB-H-ΔTC. The degradation of CREB-H-ΔTC was mediated by lysine 48-linked polyubiquitination and could be inhibited by proteasome inhibitor. CREB-H-ΔTC physically interacted with ß-TrCP, a substrate recognition subunit of the SCF(ß-TrCP) E3 ubiquitin ligase. Forced expression of ß-TrCP increased the polyubiquitination and decreased the stability of CREB-H-ΔTC, whereas knockdown of ß-TrCP had the opposite effect. An evolutionarily conserved sequence, SDSGIS, was identified in CREB-H-ΔTC, which functioned as the ß-TrCP-binding motif. CREB-H-ΔTC lacking this motif was stabilized and resistant to ß-TrCP-induced polyubiquitination. This motif was a phosphodegron and its phosphorylation was required for ß-TrCP recognition. Furthermore, two inhibitory phosphorylation sites close to the phosphodegron were identified. Taken together, our work revealed a new intracellular signaling pathway that controls ubiquitination and degradation of the active form of CREB-H transcription factor.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Fígado/metabolismo , Transdução de Sinais , Transcrição Gênica , Proteínas Contendo Repetições de beta-Transducina/genética , Sequência de Aminoácidos , Sítios de Ligação , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Células Hep G2 , Humanos , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Transporte Proteico , Proteólise , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Ubiquitinação , Proteínas Contendo Repetições de beta-Transducina/antagonistas & inibidores , Proteínas Contendo Repetições de beta-Transducina/metabolismo
12.
Diabetologia ; 59(3): 604-13, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26592241

RESUMO

AIMS/HYPOTHESIS: Growing evidence supports that dysregulation of adipose tissue-derived factors contributes to the pathogenesis of diabetes and its complications. Since our global gene profiling analysis has identified lipocalin-14 (LCN14)-a secretory protein with lipid-binding properties-as a potential adipokine highly expressed in white adipose tissue (WAT), this study aims to explore the metabolic roles of LCN14 in obese mice, and to investigate the functional mechanisms involved. METHODS: Immunoassays and western blotting were performed to determine the circulating level and tissue distribution of LCN14, respectively. Recombinant adeno-associated virus (rAAV)-mediated gene delivery was used to overexpress LCN14 in diet-induced obese (DIO) mice and the effects on glucose and lipid metabolism were examined. RESULTS: LCN14 is expressed predominantly in WAT. Both circulating levels of LCN14 and its expression in adipose tissues are repressed in DIO and genetically inherited diabetic (db/db) mice. Overexpression of LCN14 by rAAV-mediated gene delivery in DIO mice significantly increased insulin sensitivity in major metabolic tissues and ameliorated hyperglycaemia by inhibiting hepatic gluconeogenesis. The reduced hepatic glucose production is attributed to the suppressive effects of LCN14 on the expression of gluconeogenic genes and on glycerol efflux in adipocytes, possibly by reducing the expression of aquaporin-7. CONCLUSIONS/INTERPRETATION: Reduced LCN14 expression is involved in the pathogenesis of obesity-related metabolic dysregulation. LCN14 exerts its beneficial effects on glucose homeostasis and insulin sensitivity via its actions in both adipocytes and hepatocytes.


Assuntos
Adipócitos/metabolismo , Glicerol/metabolismo , Hiperglicemia/metabolismo , Lipocalinas/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Gluconeogênese/fisiologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
13.
Antioxid Redox Signal ; 23(11): 880-92, 2015 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25867182

RESUMO

AIMS: Angiotensin-converting enzyme 2 (ACE2)-angiotensin (1-7) [Ang (1-7)]-Mas constitutes the vasoprotective axis and is demonstrated to antagonize the vascular pathophysiological effects of the classical renin-angiotensin system. We sought to study the hypothesis that upregulation of ACE2-Ang (1-7) signaling protects endothelial function through reducing oxidative stress that would result in beneficial outcome in diabetes. RESULTS: Ex vivo treatment with Ang (1-7) enhanced endothelium-dependent relaxation (EDR) in renal arteries from diabetic patients. Both Ang (1-7) infusion via osmotic pump (500 ng/kg/min) for 2 weeks and exogenous ACE2 overexpression mediated by adenoviral ACE2 via tail vein injection (10(9) pfu/mouse) rescued the impaired EDR and flow-mediated dilatation (FMD) in db/db mice. Diminazene aceturate treatment (15 mg/kg/day) activated ACE2, increased the circulating Ang (1-7) level, and augmented EDR and FMD in db/db mouse arteries. In addition, activation of the ACE2-Ang (1-7) axis reduced reactive oxygen species (ROS) overproduction determined by dihydroethidium staining, CM-H2DCFDA fluorescence imaging, and chemiluminescence assay in db/db mouse aortas and also in high-glucose-treated endothelial cells. Pharmacological benefits of ACE2-Ang (1-7) upregulation on endothelial function were confirmed in ACE2 knockout (ACE2 KO) mice both ex vivo and in vitro. INNOVATION: We elucidate that the ACE2-Ang (1-7)-Mas axis serves as an important signal pathway in endothelial cell protection in diabetic mice, especially in diabetic human arteries. CONCLUSION: Endogenous ACE2-Ang (1-7) activation or ACE2 overexpression preserves endothelial function in diabetic mice through increasing nitric oxide bioavailability and inhibiting oxidative stress, suggesting the therapeutic potential of ACE2-Ang(1-7) axis activation against diabetic vasculopathy. Antioxid.


Assuntos
Angiotensina I/fisiologia , Diabetes Mellitus Tipo 2/fisiopatologia , Células Endoteliais da Veia Umbilical Humana/fisiologia , Fragmentos de Peptídeos/fisiologia , Acetilcolina/farmacologia , Idoso , Enzima de Conversão de Angiotensina 2 , Animais , Aorta/efeitos dos fármacos , Aorta/fisiopatologia , Células Cultivadas , Diminazena/farmacologia , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Estresse Oxidativo , Peptidil Dipeptidase A/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Artéria Renal/efeitos dos fármacos , Artéria Renal/fisiopatologia , Regulação para Cima , Vasodilatadores/farmacologia
14.
Sci Rep ; 5: 7897, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25600293

RESUMO

Ferredoxins are iron-sulfur proteins that play important roles in electron transport and redox homeostasis. Yeast Apd1p is a novel member of the family of thioredoxin-like ferredoxins. In this study, we characterized the hydroxyurea (HU)-hypersensitive phenotype of apd1Δ cells. HU is an inhibitor of DNA synthesis, a cellular stressor and an anticancer agent. Although the loss of APD1 did not influence cell proliferation or cell cycle progression, it resulted in HU sensitivity. This sensitivity was reverted in the presence of antioxidant N-acetyl-cysteine, implicating a role for intracellular redox. Mutation of the iron-binding motifs in Apd1p abrogated its ability to rescue HU sensitivity in apd1Δ cells. The iron-binding activity of Apd1p was verified by a color assay. By mass spectrometry two irons were found to be incorporated into one Apd1p protein molecule. Surprisingly, ribonucleotide reductase genes were not induced in apd1Δ cells and the HU sensitivity was unaffected when dNTP production was boosted. A suppressor screen was performed and the expression of stress-regulated transcription factor Yap1p was found to effectively rescue the HU sensitivity in apd1Δ cells. Taken together, our work identified Apd1p as a new ferredoxin which serves critical roles in cellular defense against HU.


Assuntos
Replicação do DNA/genética , Ferredoxinas/genética , Hidroxiureia/farmacologia , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Acetilcisteína/química , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Replicação do DNA/efeitos dos fármacos , Ferredoxinas/química , Ferro/química , Oxirredução , Fenótipo , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
15.
J Biol Chem ; 289(37): 25976-86, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25074942

RESUMO

Adropin is a highly conserved polypeptide that has been suggested to act as an endocrine factor that plays important roles in metabolic regulation, insulin sensitivity, and endothelial functions. However, in this study, we provide evidence demonstrating that adropin is a plasma membrane protein expressed abundantly in the brain. Using a yeast two-hybrid screening approach, we identified NB-3/Contactin 6, a brain-specific, non-canonical, membrane-tethered Notch1 ligand, as an interaction partner of adropin. Furthermore, this interaction promotes NB3-induced activation of Notch signaling and the expression of Notch target genes. We also generated and characterized adropin knockout mice to explore the role of adropin in vivo. Adropin knockout mice exhibited decreased locomotor activity and impaired motor coordination coupled with defective synapse formation, a phenotype similar to NB-3 knockout mice. Taken together, our data suggest that adropin is a membrane-bound protein that interacts with the brain-specific Notch1 ligand NB3. It regulates physical activity and motor coordination via the NB-3/Notch signaling pathway and plays an important role in cerebellum development in mice.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Atividade Motora/genética , Proteínas/metabolismo , Receptor Notch1/metabolismo , Animais , Encéfalo/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Peptídeos e Proteínas de Sinalização Intercelular , Ligantes , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Atividade Motora/fisiologia , Proteínas/genética , Receptor Notch1/genética , Transdução de Sinais/genética
16.
J Am Heart Assoc ; 3(1): e000520, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24572252

RESUMO

BACKGROUND: Pulmonary arterial hypertension remains a devastating disease without a cure. The major complication of this disease is the abnormal growth of vascular cells, resulting in pulmonary vascular remodeling. Thus, agents, which affect the remodeled vessels by killing unwanted cells, should improve treatment strategies. The present study reports that antitumor drugs selectively kill vascular cells in remodeled pulmonary vessels in rat models of pulmonary hypertension. METHODS AND RESULTS: After developing pulmonary vascular remodeling in chronic hypoxia or chronic hypoxia/SU-5416 models, rats were injected with antitumor drugs including proteasome inhibitors (bortezomib and MG-132) and daunorubicin. Within 1 to 3 days, these agents reduced the media and intima thickness of remodeled pulmonary vascular walls, but not the thickness of normal pulmonary vessels. These drugs also promoted apoptotic and autophagic death of vascular cells in the remodeled vessels, but not in normal vessels. We provide evidence that the upregulation of annexin A1, leading to GATA4-dependent downregulation of Bcl-xL, is a mechanism for specific apoptotic killing, and for the role of parkin in defining specificity of autophagic killing of remodeled vascular cells. The reversal of pulmonary vascular remodeling increased the capacity of vasodilators to reduce pulmonary arterial pressure. CONCLUSIONS: These results suggest that antitumor drugs can specifically kill cells in remodeled pulmonary vascular walls and may be useful for improving the efficacy of current therapeutic strategies to treat pulmonary arterial hypertension.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Hipertensão Pulmonar/patologia , Artéria Pulmonar/efeitos dos fármacos , Animais , Anexina A1/metabolismo , Antineoplásicos/administração & dosagem , Pressão Arterial/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Hipertensão Pulmonar Primária Familiar , Fator de Transcrição GATA4/metabolismo , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Hipóxia/complicações , Masculino , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Ubiquitina-Proteína Ligases , Vasodilatadores/farmacologia , Proteína bcl-X/metabolismo
17.
Free Radic Biol Med ; 65: 1126-1133, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24044890

RESUMO

Ligand/receptor stimulation of cells promotes protein carbonylation that is followed by the decarbonylation process, which might involve thiol-dependent reduction (C.M. Wong et al., Circ. Res. 102:301-318; 2008). This study further investigated the properties of this protein decarbonylation mechanism. We found that the thiol-mediated reduction of protein carbonyls is dependent on heat-labile biologic components. Cysteine and glutathione were efficient substrates for decarbonylation. Thiols decreased the protein carbonyl content, as detected by 2,4-dinitrophenylhydrazine, but not the levels of malondialdehyde or 4-hydroxynonenal protein adducts. Mass spectrometry identified proteins that undergo thiol-dependent decarbonylation, which include peroxiredoxins. Peroxiredoxin-2 and -6 were carbonylated and subsequently decarbonylated in response to the ligand/receptor stimulation of cells. siRNA knockdown of glutaredoxin inhibited the decarbonylation of peroxiredoxin. These results strengthen the concept that thiol-dependent decarbonylation defines the kinetics of protein carbonylation signaling.


Assuntos
Glutarredoxinas/química , Peroxirredoxinas/química , Carbonilação Proteica/fisiologia , Espécies Reativas de Oxigênio/química , Aldeídos/química , Animais , Células Cultivadas , Dinitroclorobenzeno/química , Glutarredoxinas/genética , Humanos , Masculino , Malondialdeído/química , Mercaptoetanol/química , Estresse Oxidativo , Fenil-Hidrazinas/química , Interferência de RNA , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley , Compostos de Sulfidrila/química , Tiorredoxinas/genética
18.
Retrovirology ; 10: 40, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23577667

RESUMO

BACKGROUND: Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL). Treatment options are limited and prophylactic agents are not available. We have previously demonstrated an essential role for CREB-regulating transcriptional coactivators (CRTCs) in HTLV-1 transcription. RESULTS: In this study we report on the negative regulatory role of LKB1 tumor suppressor and salt-inducible kinases (SIKs) in the activation of HTLV-1 long terminal repeats (LTR) by the oncoprotein Tax. Activation of LKB1 and SIKs effectively blunted Tax activity in a phosphorylation-dependent manner, whereas compromising these kinases, but not AMP-dependent protein kinases, augmented Tax function. Activated LKB1 and SIKs associated with Tax and suppressed Tax-induced LTR activation by counteracting CRTCs and CREB. Enforced expression of LKB1 or SIK1 in cells transfected with HTLV-1 molecular clone pX1MT repressed proviral transcription. On the contrary, depletion of LKB1 in pX1MT-transfected cells and in HTLV-1-transformed T cells boosted the expression of Tax. Treatment of HTLV-1 transformed cells with metformin led to LKB1/SIK1 activation, reduction in Tax expression, and inhibition of cell proliferation. CONCLUSIONS: Our findings revealed a new function of LKB1 and SIKs as negative regulators of HTLV-1 transcription. Pharmaceutical activation of LKB1 and SIKs might be considered as a new strategy in anti-HTLV-1 and anti-ATL therapy.


Assuntos
Regulação Viral da Expressão Gênica , Produtos do Gene tax/antagonistas & inibidores , Interações Hospedeiro-Patógeno , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transcrição Gênica , Quinases Proteína-Quinases Ativadas por AMP , Linhagem Celular , Humanos
19.
Genetics ; 193(3): 829-51, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23335340

RESUMO

There is increasing evidence that certain Vacuolar protein sorting (Vps) proteins, factors that mediate vesicular protein trafficking, have additional roles in regulating transcription factors at the endosome. We found that yeast mutants lacking the phosphatidylinositol 3-phosphate [PI(3)P] kinase Vps34 or its associated protein kinase Vps15 display multiple phenotypes indicating impaired transcription elongation. These phenotypes include reduced mRNA production from long or G+C-rich coding sequences (CDS) without affecting the associated GAL1 promoter activity, and a reduced rate of RNA polymerase II (Pol II) progression through lacZ CDS in vivo. Consistent with reported genetic interactions with mutations affecting the histone acetyltransferase complex NuA4, vps15Δ and vps34Δ mutations reduce NuA4 occupancy in certain transcribed CDS. vps15Δ and vps34Δ mutants also exhibit impaired localization of the induced GAL1 gene to the nuclear periphery. We found unexpectedly that, similar to known transcription elongation factors, these and several other Vps factors can be cross-linked to the CDS of genes induced by Gcn4 or Gal4 in a manner dependent on transcriptional induction and stimulated by Cdk7/Kin28-dependent phosphorylation of the Pol II C-terminal domain (CTD). We also observed colocalization of a fraction of Vps15-GFP and Vps34-GFP with nuclear pores at nucleus-vacuole (NV) junctions in live cells. These findings suggest that Vps factors enhance the efficiency of transcription elongation in a manner involving their physical proximity to nuclear pores and transcribed chromatin.


Assuntos
Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Elongação da Transcrição Genética , Proteína VPS15 de Distribuição Vacuolar/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Núcleo Celular/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/genética , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Sequência Rica em GC , Galactoquinase/genética , Galactoquinase/metabolismo , Deleção de Genes , Histona Acetiltransferases/metabolismo , Poro Nuclear/metabolismo , Fenótipo , Fosforilação , Regiões Promotoras Genéticas , Transporte Proteico , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína VPS15 de Distribuição Vacuolar/genética , Vacúolos/metabolismo
20.
Free Radic Biol Med ; 53(9): 1738-47, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22974762

RESUMO

Reactive oxygen species (ROS) have been implicated in the pathogenesis of pulmonary hypertension. Because iron is an important regulator of ROS biology, this study examined the effects of iron chelation on the development of pulmonary vascular remodeling. The administration of an iron chelator, deferoxamine, to rats prevented chronic hypoxia-induced pulmonary hypertension and pulmonary vascular remodeling. Various iron chelators inhibited the growth of cultured pulmonary artery smooth muscle cells. Protein carbonylation, an important iron-dependent biological event, was promoted in association with pulmonary vascular remodeling and cell growth. A proteomic approach identified that Rho GDP-dissociation inhibitor (a negative regulator of RhoA) is carbonylated. In human plasma, the protein carbonyl content was significantly higher in patients with idiopathic pulmonary arterial hypertension than in healthy controls. These results suggest that iron plays an important role in the ROS-dependent mechanism underlying the development of pulmonary hypertension.


Assuntos
Desferroxamina/farmacologia , Quelantes de Ferro/farmacologia , Animais , Proteínas Sanguíneas/metabolismo , Estudos de Casos e Controles , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Desferroxamina/uso terapêutico , Feminino , Humanos , Hidralazina/farmacologia , Hipertensão Pulmonar/sangue , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/prevenção & controle , Quelantes de Ferro/uso terapêutico , Masculino , Pessoa de Meia-Idade , Contração Miocárdica/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Oxirredução , Carbonilação Proteica , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Vasodilatadores/farmacologia , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA