Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Parasitol ; 255: 108655, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37981259

RESUMO

In previous studies, the artemisinin derivatives artemisone, its pro-drug artemiside and the bumped-kinase inhibitor BKI-1748 were effective against T. gondii via different modes of action. This suggests that they may act synergistically resulting in improved efficacies in vitro and in vivo. To test this hypothesis, the compounds were applied alone and in combination to T. gondii infected human fibroblast host cells in order to determine their inhibition constants and effects on cellular ultrastructure. In addition, the efficacy of either single- or combined treatments were assessed in an acute TgShSp1-oocyst infection model based on CD1 outbred mice. Whereas the IC50 of the compounds in combination (42 nM) was close to the IC50 of BKI-1748 alone (46 nM) and half of the IC50 of artemisone alone (92 nM), the IC90 of the combination was half of the values found with the single compounds (138 nM vs. ca. 270 nM). Another indication for synergistic effects in vitro were distinct alterations of the cellular ultrastructure of tachyzoites observed in combination, but not with the single compounds. These promising results could not be reproduced in vivo. There was no decrease in number of T. gondii positive brains by either treatment. However, the levels of infection in these brains, i. e. the number of tachyzoites, was significantly decreased upon BKI-1748 treatment alone, and the combination with artemiside did not produce any further decrease. The treatment with artemiside alone had no significant effects. A vertical transmission model could not be established since artemiside strongly interfered with pregnancy and caused abortion. These results show that is difficult to extrapolate from promising in vitro results to the situation in vivo.


Assuntos
Antineoplásicos , Artemisininas , Toxoplasma , Toxoplasmose , Gravidez , Feminino , Camundongos , Humanos , Animais , Toxoplasmose/tratamento farmacológico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Transmissão Vertical de Doenças Infecciosas , Antineoplásicos/farmacologia
2.
Front Pharmacol ; 14: 1308400, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259296

RESUMO

Efforts to develop new artemisinin triple combination therapies effective against artemisinin-tolerant strains of Plasmodium falciparum based on rational combinations comprising artemisone or other amino-artemisinins, a redox active drug and a third drug with a different mode of action have now been extended to evaluation of three potential redox partners. These are the diethyl analogue AD01 of methylene blue (MB), the benzo [α]phenoxazine PhX6, and the thiosemicarbazone DpNEt. IC50 values in vitro against CQ-sensitive and resistant P. falciparum strains ranged from 11.9 nM for AD01-41.8 nM for PhX6. PhX6 possessed the most favourable pharmacokinetic (PK) profile: intrinsic clearance rate CLint was 21.47 ± 1.76 mL/min/kg, bioavailability was 60% and half-life was 7.96 h. AD01 presented weaker, but manageable pharmacokinetic properties with a rapid CLint of 74.41 ± 6.68 mL/min/kg leading to a half-life of 2.51 ± 0.07 h and bioavailability of 15%. DpNEt exhibited a half-life of 1.12 h and bioavailability of 8%, data which discourage its further examination, despite a low CLint of 10.20 mL/min/kg and a high Cmax of 6.32 µM. Efficacies of AD01 and PhX6 were enhanced synergistically when each was paired with artemisone against asexual blood stages of P. falciparum NF54 in vitro. The favourable pharmacokinetics of PhX6 indicate this is the best partner among the compounds examined thus far for artemisone. Future work will focus on extending the drug combination studies to artemiside in vitro, and conducting efficacy studies in vivo for artemisone with each of PhX6 and the related benzo[α]phenoxazine SSJ-183.

3.
Front Pharmacol ; 13: 988748, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120293

RESUMO

Artemisinin, isolated from the traditional Chinese medicinal plant qing hao (Artemisia annua) and its derivatives are used for treatment of malaria. With treatment failures now being recorded for the derivatives and companion drugs used in artemisinin combination therapies new drug combinations are urgently required. The amino-artemisinins artemiside and artemisone display optimal efficacies in vitro against asexual and sexual blood stages of the malaria parasite Plasmodium falciparum and are active against tumour cell lines. In continuing the evolution of combinations of the amino-artemisinins with new drugs, we examine the triterpenoid quinone methide celastrol isolated from the traditional Chinese medicinal plant léi gong téng (Tripterygium wilfordii). This compound is redox active, and has attracted considerable attention because of potent biological activities against manifold targets. We report that celastrol displays good IC50 activities ranging from 0.50-0.82 µM against drug-sensitive and resistant asexual blood stage Pf, and 1.16 and 0.28 µM respectively against immature and late stage Pf NF54 gametocytes. The combinations of celastrol with each of artemisone and methylene blue against asexual blood stage Pf are additive. Given that celastrol displays promising antitumour properties, we examined its activities alone and in combinations with amino-artemisinins against human liver HepG2 and other cell lines. IC50 values of the amino-artemisinins and celastrol against HepG2 cancer cells ranged from 0.55-0.94 µM. Whereas the amino-artemisinins displayed notable selectivities (SI > 171) with respect to normal human hepatocytes, in contrast, celastrol displayed no selectivity (SI < 1). The combinations of celastrol with artemiside or artemisone against HepG2 cells are synergistic. Given the promise of celastrol, judiciously designed formulations or structural modifications are recommended for mitigating its toxicity.

4.
Front Pharmacol ; 11: 558894, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117161

RESUMO

The most frequently occurring cancers are those of the skin, with melanoma being the leading cause of death due to skin cancer. Breakthroughs in chemotherapy have been achieved in certain cases, though only marginal advances have been made in treatment of metastatic melanoma. Strategies aimed at inducing redox dysregulation by use of reactive oxygen species (ROS) inducers present a promising approach to cancer chemotherapy. Here we use a rational combination of an oxidant drug combined with a redox or pro-oxidant drug to optimize the cytotoxic effect. Thus we demonstrate for the first time enhanced activity of the amino-artemisinin artemisone and novel prenylated piperazine derivatives derived from dihydroartemisinin as the oxidant component, and elesclomol-Cu(II) as the redox component, against human malignant melanoma cells A375 in vitro. The combinations caused a dose dependent decrease in cell numbers and increase in apoptosis. The results indicate that oxidant-redox drug combinations have considerable potential and warrant further investigation.

5.
IUBMB Life ; 71(5): 532-538, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30698324

RESUMO

The observations that the innate immune system employs copper to eliminate bacterial infection and that resistance to copper enhances virulence of Mycobacterium tuberculosis (Mtb) prompted us to examine the effects the anti-cancer agent elesclomol on Mtb. As a bis-thionohydrazide, elesclomol chelates with copper to form a copper complex in situ that via redox cycling of the metal ion greatly enhances oxidative stress in tumour cells. Here, we demonstrate that elesclomol is relatively potent against Mtb H37Rv with minimum inhibitory concentration of 10 µM (4 mg/L) and against multidrug resistant clinical isolates of Mtb, displays additive interactions with known tuberculosis drugs such as isoniazid and ethambutol, and a synergistic interaction with rifampicin. Controlled supplementation of elesclomol with copper in culture medium increased Mtb sensitivity by >65 fold. Overall, the activities of elesclomol in principle indicate the possibility of repurposing elesclomol or designing new thionohydrazides as potential drugs for use against Mtb. © 2019 IUBMB Life, 71(5):532-538, 2019.


Assuntos
Antineoplásicos/farmacologia , Antituberculosos/farmacologia , Quelantes/farmacologia , Cobre/química , Hidrazinas/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Cobre/metabolismo , Reposicionamento de Medicamentos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Oxirredução , Tuberculose/microbiologia
6.
Bioorg Med Chem Lett ; 28(19): 3161-3163, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30174153

RESUMO

Artemisinin-ferrocene conjugates incorporating a 1,2-disubstituted ferrocene analogous to that embedded in ferroquine but attached via a piperazine linker to C10 of the artemisinin were prepared from the piperazine artemisinin derivative, and activities were evaluated against asexual blood stages of chloroquine (CQ) sensitive NF54 and CQ resistant K1 and W2 strains of Plasmodium falciparum (Pf). The most active was the morpholino derivative 5 with IC50 of 0.86 nM against Pf K1 and 1.4 nM against Pf W2. The resistance indices were superior to those of current clinical artemisinins. Notably, the compounds were active against Pf NF54 early and late blood stage gametocytes - these exerted >86% inhibition at 1 µM against both stages; they are thus appreciably more active than methylene blue (∼57% inhibition at 1 µM) against late stage gametocytes. The data portends transmission blocking activity. Cytotoxicity was determined against human embryonic kidney cells (Hek293), while human malignant melanoma cells (A375) were used to assess their antitumor activity.


Assuntos
Antimaláricos/síntese química , Antimaláricos/farmacologia , Artemisininas/química , Compostos Ferrosos/química , Metalocenos/química , Plasmodium falciparum/efeitos dos fármacos , Linhagem Celular Tumoral , Células HEK293 , Humanos , Concentração Inibidora 50 , Malária Falciparum/transmissão
7.
Molecules ; 23(7)2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30011856

RESUMO

According to the precepts that C-10 amino-artemisinins display optimum biological activities for the artemisinin drug class, and that attachment of a sugar enhances specificity of drug delivery, polarity and solubility so as to attenuate toxicity, we assessed the effects of attaching sugars to N-4 of the dihydroartemisinin (DHA)-piperazine derivative prepared in one step from DHA and piperazine. N-Glycosylated DHA-piperazine derivatives were obtained according to the Kotchetkov reaction by heating the DHA-piperazine with the sugar in a polar solvent. Structure of the D-glucose derivative is secured by X-ray crystallography. The D-galactose, L-rhamnose and D-xylose derivatives displayed IC50 values of 0.58⁻0.87 nM against different strains of Plasmodium falciparum (Pf) and selectivity indices (SI) >195, on average, with respect to the mouse fibroblast WEHI-164 cell line. These activities are higher than those of the amino-artemisinin, artemisone (IC50 0.9⁻1.1 nM). Notably, the D-glucose, D-maltose and D-ribose derivatives were the most active against the myelogenous leukemia K562 cell line with IC50 values of 0.78⁻0.87 µM and SI > 380 with respect to the human dermal fibroblasts (HDF). In comparison, artemisone has an IC50 of 0.26 µM, and a SI of 88 with the same cell lines. Overall, the N-glycosylated DHA-piperazine derivatives display antimalarial activities that are greatly superior to O-glycosides previously obtained from DHA.


Assuntos
Antimaláricos , Artemisininas , Plasmodium falciparum/crescimento & desenvolvimento , Animais , Antimaláricos/síntese química , Antimaláricos/química , Antimaláricos/farmacocinética , Antimaláricos/farmacologia , Artemisininas/síntese química , Artemisininas/química , Artemisininas/farmacocinética , Artemisininas/farmacologia , Humanos , Células K562 , Camundongos
8.
Bioorg Med Chem Lett ; 28(3): 289-292, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29317166

RESUMO

Novel derivatives bearing a ferrocene attached via a piperazine linker to C-10 of the artemisinin nucleus were prepared from dihydroartemisinin and screened against chloroquine (CQ) sensitive NF54 and CQ resistant K1 and W2 strains of Plasmodium falciparum (Pf) parasites. The overall aim is to imprint oxidant (from the artemisinin) and redox (from the ferrocene) activities. In a preliminary assessment, these compounds were shown to possess activities in the low nM range with the most active being compound 6 with IC50 values of 2.79 nM against Pf K1 and 3.2 nM against Pf W2. Overall the resistance indices indicate that the compounds have a low potential for cross resistance. Cytotoxicities were determined with Hek293 human embryonic kidney cells and activities against proliferating cells were assessed against A375 human malignant melanoma cells. The selectivity indices of the amino-artemisinin ferrocene derivatives indicate there is overall an appreciably higher selectivity towards the malaria parasite than mammalian cells.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Citotoxinas/farmacologia , Compostos Ferrosos/farmacologia , Metalocenos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/síntese química , Antimaláricos/química , Antimaláricos/toxicidade , Artemisininas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/toxicidade , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Ferrosos/química , Células HEK293 , Humanos , Metalocenos/química , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade
9.
ChemMedChem ; 13(1): 67-77, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29193799

RESUMO

To evaluate the feasibility of developing drugs that may be active against both malaria and tuberculosis (TB) by using in part putative cholesterol transporters in the causative pathogens and through enhancement of passive diffusion in granulomatous TB, artemisinin-cholesterol conjugates were synthesized by connecting the component molecules through various linkers. The compounds were screened in vitro against Plasmodium falciparum (Pf) and Mycobacterium tuberculosis (Mtb). Antimalarial activities (IC50 ) against Pf drug-sensitive NF54, and drug-resistant K1 and W2 strains ranged from 0.03-2.6, 0.03-1.9, and 0.02-1.7 µm. Although the compounds are less active than the precursor artemisinin derivatives, the cholesterol moiety renders the compounds relatively insoluble in the culture medium, and variation in solubilities among the different compounds may reflect in the range of efficacies observed. Activities against Mtb H37Rv were assessed using a standardized colony-forming unit (CFU) assay after 24 h pretreatment of cultures with each of the compounds. Percentage inhibition ranged from 3-38 % and 18-52 % at 10 and 80 µm, respectively. Thus, in contrast to the comparator drug artemether, the conjugates display enhanced activities. The immediate aims include the preparation of conjugates with enhanced aqueous solubilities, assays against malaria and TB in vivo, and for TB, assays using an infected macrophage model and assessment of granuloma influx.


Assuntos
Antimaláricos/síntese química , Antituberculosos/síntese química , Artemisininas/química , Colesterol/química , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Humanos , Malária/tratamento farmacológico , Malária/patologia , Mycobacterium tuberculosis/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Relação Estrutura-Atividade , Tuberculose/tratamento farmacológico , Tuberculose/patologia
10.
ChemMedChem ; 12(24): 2094-2098, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29210523

RESUMO

Neosporosis caused by the apicomplexan parasite Neospora caninum is an economically important disease that induces abortion in dairy and beef cattle. There are no vaccines or drugs available on the market for control or treatment of the disease in bovines. The peroxide artemisinin and its derivatives used clinically for treatment of malaria are active against N. caninum and other apicomplexan parasites. We have now evaluated the activities of the readily accessible and chemically robust 11-azaartemisinin 5 and selected N-sulfonyl derivatives prepared as described in the accompanying paper against N. caninum tachyzoites grown in infected human foreskin fibroblasts. Azaartemisinin elicited an IC50 value of 150 nm, and the 2',5'-dichloro-3'-thienylsulfonyl-11-azaartemisinin 17 was found to be the most active, with an IC50 value of 40 nm. Comparison with normal human fetal lung fibroblasts HFLF WI-38 revealed relatively benign cytotoxicity. The compounds were also screened in vitro against TK-10 (renal), UACC-62 (melanoma) and MCF-7 (breast) cancer cell lines; overall, in line with activities against HFLF cells, most compounds in the series were found to be inactive.


Assuntos
Antineoplásicos/farmacologia , Antiprotozoários/farmacologia , Artemisininas/farmacologia , Neospora/efeitos dos fármacos , Sulfonas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antiprotozoários/síntese química , Antiprotozoários/química , Artemisininas/síntese química , Artemisininas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Fibroblastos/efeitos dos fármacos , Prepúcio do Pênis/citologia , Humanos , Masculino , Conformação Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Sulfonas/síntese química , Sulfonas/química
11.
Int J Parasitol Drugs Drug Resist ; 7(2): 241-247, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28511056

RESUMO

The current treatment of schistosomiasis is based on the anti-helminthic drug praziquantel (PZQ). PZQ affects only the adult stages of schistosomes. In addition, resistance to PZQ is emerging. We suggest a drug, which could serve as a potential alternative or complement to PZQ, and as a means of treating infections at earlier, pre-granuloma stage. Derivatives of the peroxidic antimalarial drug artemisinin have been indicated as alternatives, because both plasmodia and schistosomes are blood-feeding parasites. The mechanism of action of artemisinins is related to oxidative effects of the artemisinins on intracellular reductants leading to formation of cytotoxic reactive oxygen species. We used artemisone, which has improved pharmacokinetics and anti-plasmodial activity, and reduced toxicity compared to other artemisinins in clinical use against malaria. We infected adult mice by subcutaneous injection of S. mansoni cercariae (about 200) and treated them at various times post infection by the following methods: i. artemisone suspension administered by gavage (400-450 mg/kg); ii. subcutaneous injection of a gel containing a known concentration of artemisone (115-120 mg/kg); iii. subcutaneous insertion of the drug incorporated in a solid polymer (56-60 mg/kg); iv. intraperitoneal injection of the drug solubilized in DMSO (115-120 mg/kg). Drug administration in polymers was performed to enable slow release of the artemisone that was verified in vivo and in vitro bioassays using drug-sensitive malaria parasites. We found superior strong anti-schistosome effects up to a total reduction of worm number, mainly following repetitive treatments with the drug absorbed in the polymers (73.1% and 95.9% reduction in mice treated with artemisone in gel 7 and 14, and 21, 28 and 35 days post infection, respectively). The results indicate that artemisone has a potent anti-schistosome activity. Its main importance in this context is its effectiveness in treating hosts harboring juvenile schistosomes, before egg-deposition and induction of deleterious immune responses.


Assuntos
Anti-Helmínticos/administração & dosagem , Artemisininas/administração & dosagem , Preparações de Ação Retardada/administração & dosagem , Schistosoma mansoni/efeitos dos fármacos , Esquistossomose mansoni/tratamento farmacológico , Administração Oral , Animais , Modelos Animais de Doenças , Injeções Intraperitoneais , Injeções Subcutâneas , Camundongos , Resultado do Tratamento
12.
ChemMedChem ; 11(13): 1469-79, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27273875

RESUMO

We sought to establish if methylene homologues of artemisone are biologically more active and more stable than artemisone. The analogy is drawn with the conversion of natural O- and N-glycosides into more stable C-glycosides that may possess enhanced biological activities and stabilities. Dihydroartemisinin was converted into 10ß-cyano-10-deoxyartemisinin that was hydrolyzed to the α-primary amide. Reduction of the ß-cyanide and the α-amide provided the respective methylamine epimers that upon treatment with divinyl sulfone gave the ß- and α-methylene homologues, respectively, of artemisone. Surprisingly, the compounds were less active in vitro than artemisone against P. falciparum and displayed no appreciable activity against A549, HCT116, and MCF7 tumor cell lines. This loss in activity may be rationalized in terms of one model for the mechanism of action of artemisinins, namely the cofactor model, wherein the presence of a leaving group at C10 assists in driving hydride transfer from reduced flavin cofactors to the peroxide during perturbation of intracellular redox homeostasis by artemisinins. It is noted that the carba analogue of artemether is less active in vitro than the O-glycoside parent toward P. falciparum, although extrapolation of such activity differences to other artemisinins at this stage is not possible. However, literature data coupled with the leaving group rationale suggest that artemisinins bearing an amino group attached directly to C10 are optimal compounds.


Assuntos
Artemisininas/química , Artemisininas/farmacologia , Células A549 , Antimaláricos/síntese química , Antimaláricos/química , Antimaláricos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Artemisininas/síntese química , Desenho de Fármacos , Proteínas de Escherichia coli/metabolismo , FMN Redutase/metabolismo , Flavina-Adenina Dinucleotídeo/análogos & derivados , Flavina-Adenina Dinucleotídeo/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular , Pontos de Checagem da Fase G2 do Ciclo Celular , Células HCT116 , Humanos , Células MCF-7 , Oxirredução , Plasmodium falciparum/efeitos dos fármacos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA