Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1034, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310105

RESUMO

Obesity, a global health challenge, is a major risk factor for multiple life-threatening diseases, including diabetes, fatty liver, and cancer. There is an ongoing need to identify safe and tolerable therapeutics for obesity management. Herein, we show that treatment with artesunate, an artemisinin derivative approved by the FDA for the treatment of severe malaria, effectively reduces body weight and improves metabolic profiles in preclinical models of obesity, including male mice with overnutrition-induced obesity and male cynomolgus macaques with spontaneous obesity, without inducing nausea and malaise. Artesunate promotes weight loss and reduces food intake in obese mice and cynomolgus macaques by increasing circulating levels of Growth Differentiation Factor 15 (GDF15), an appetite-regulating hormone with a brainstem-restricted receptor, the GDNF family receptor α-like (GFRAL). Mechanistically, artesunate induces the expression of GDF15 in multiple organs, especially the liver, in mice through a C/EBP homologous protein (CHOP)-directed integrated stress response. Inhibition of GDF15/GFRAL signalling by genetic ablation of GFRAL or tissue-specific knockdown of GDF15 abrogates the anti-obesity effect of artesunate in mice with diet-induced obesity, suggesting that artesunate controls bodyweight and appetite in a GDF15/GFRAL signalling-dependent manner. These data highlight the therapeutic benefits of artesunate in the treatment of obesity and related comorbidities.


Assuntos
Fator 15 de Diferenciação de Crescimento , Obesidade , Camundongos , Masculino , Animais , Artesunato/farmacologia , Artesunato/uso terapêutico , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Primatas , Macaca/metabolismo
2.
Cell Commun Signal ; 20(1): 34, 2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-35305671

RESUMO

BACKGROUND: KRAS mutation is one of the dominant gene mutations in colorectal cancer (CRC). Up to present, targeting KRAS for CRC treatment remains a clinical challenge. WNT974 (LGK974) is a porcupine inhibitor that interferes Wnt signaling pathway. Artesunate (ART) is a water-soluble semi-synthetic derivative of artemisinin. METHODS: The synergistic effect of ART and WNT974 combination in reducing CRC cell viability was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RT-PCR was utilized for the mRNA levels of KRAS, CUL7, ANAPC2, UBE2M, RNF123, SYVN1, or ß-TrCP. Western blot assay was utilized for the protein levels of NRAS, HRAS, KRAS, ANAPC2, ß-TrCP, GSK-3ß, p-Akt (Ser473), t-Akt, p-PI3K (Tyr458), t-PI3K, p-mTOR (Ser2448), t-mTOR. Xenograft mouse model assay was performed for the anti-CRC effect of combination of ART and WNT974 in vivo. IHC assay was utilized for the levels of KRAS, ß-TrCP, GSK-3ß or ANAPC2 in tumor tissues. RESULTS: Our study shows that the combination of WNT974 and ART exhibits synergistic effect in reducing CRC growth. The combination treatment significantly reduces KRAS protein level and activity in CRC cells. Interestingly, the combination treatment increases E3 ligases ANAPC2 expression. Our data show that overexpression of ANAPC2 significantly reduces KRAS protein levels, which is reversed by MG132. Knockdown of ANAPC2 in CRC abolishes the combination treatment-reduce KRAS expression. Besides, the treatment also increases the expressions of GSK-3ß and E3 ligase ß-TrCP that is known to degrade GSK-3ß-phosphorylated KRAS protein. Knockdown of ß-TrCP- and inhibition of GSK-3ß abolish the combination treatment-induce KRAS ubiquitination and reduction in expression. Last but not least, combination treatment suppresses PI3K/Akt/m-TOR signaling pathway. CONCLUSIONS: Our data clearly show that the combination treatment significantly enhances KRAS protein degradation via the ubiquitination ubiquitin-proteasome pathway, which is also demonstrated in xenograft mouse model. The study provides strong scientific evidence for the development of the combination of WNT974 and ART as KRAS-targeting therapeutics for CRC treatment. Video Abstract.


Assuntos
Ubiquitina-Proteína Ligases , Proteínas Contendo Repetições de beta-Transducina , Animais , Subunidade Apc2 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Artesunato/farmacologia , Linhagem Celular Tumoral , Proteínas Culina , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Pirazinas , Piridinas , Serina-Treonina Quinases TOR/metabolismo , Enzimas de Conjugação de Ubiquitina , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo , Via de Sinalização Wnt , Proteínas Contendo Repetições de beta-Transducina/genética , Proteínas Contendo Repetições de beta-Transducina/metabolismo
3.
Cell Death Dis ; 12(11): 1053, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34741022

RESUMO

Currently, no frontline treatment is effective for the late-stage colorectal cancer (CRC). Understanding the molecular differences in different stages of CRC can help us to identify the critical therapeutic targets for designing therapeutic strategy. Our data show that c-Myc protein is highly expressed in late-stage CRC when compared with early-stage CRC in both clinical samples and in cell lines representing different cancer stages. Given that c-Myc is a well-known oncogenic driver in CRC, its high expression in the late-stage CRC may represent a critical therapeutic target for treating the cancer. Dihydroartemisinin treatment significantly increases c-Myc protein degradation and hence reduces its expression in CRC. The treatment also reduces CRC cell viability. Interestingly, dihydroartemisinin exhibits a more potent growth-inhibitory effect in late-stage CRC than the early-stage CRC. The treatment also possesses potent growth-inhibitory effects in mouse models bearing c-Myc-overexpressed CRC. The reduced c-Myc level and its reduced transcriptional activity reduce the expressions of acetyl-CoA carboxylase, fatty acid synthase, carnitine-palmitoyltransferase-1, and medium-chain acyl-CoA dehydrogenase in the cancer cells. Lipidomics study also shows that dihydroartemisinin treatment changes the metabolic phenotypes in CRC, reduces oxygen consumption, respiration, and ATP production, hence reduces the cell proliferation and induces apoptosis. Our study provides strong pharmacological evidence to support the translation of dihydroartemisinin for the treatment of late-stage CRC by targeting c-Myc.


Assuntos
Artemisininas/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Animais , Apoptose/efeitos dos fármacos , Artemisininas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Ácidos Graxos/análise , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Antígeno Ki-67/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Medições Luminescentes , Camundongos Endogâmicos BALB C , Camundongos Nus , Estadiamento de Neoplasias , Fenótipo , Análise de Componente Principal , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transcrição Gênica/efeitos dos fármacos
5.
Cell Death Dis ; 12(8): 791, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385421

RESUMO

Although high-fat diet (HFD) has been implicated in the development of colorectal cancer (CRC), the critical signaling molecule that mediates the cancer growth is not well-defined. Identifying the master regulator that controls CRC growth under HFD can facilitate the development of effective therapeutics for the cancer treatment. In this study, the global lipidomics and RNA sequencing data show that, in the tumor tissues of CRC-bearing mouse models, HFD not only increases tumor weight, but also the palmitic acid level and TLR4 expression, which are reduced when HFD is replaced by control diet. These concomitant changes suggest the roles of palmitic acid and TLR4 in CRC growth. Subsequent studies show that palmitic acid regulates TLR4 expression in PU.1-dependent manner. Knockdown of PU.1 or mutations of PU.1-binding site on TLR4 promoter abolish the palmitic acid-increased TLR4 expression. The role of palmitic acid/PU.1/TLR4 axis in CRC growth is further examined in cell model and animal models that are fed either HFD or palmitic acid-rich diet. More importantly, iTRAQ proteomics data show that knockdown of TLR4 changes the metabolic enzyme profiles in the tumor tissues, which completely abolish the HFD-enhanced ATP production and cancer growth. Our data clearly demonstrate that TLR4 is a master regulator for CRC growth under HFD by programming cancer metabolism.


Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Dieta Hiperlipídica , Receptor 4 Toll-Like/metabolismo , Animais , Sítios de Ligação , Peso Corporal , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/genética , Modelos Animais de Doenças , Comportamento Alimentar , Humanos , Linfócitos do Interstício Tumoral , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos BALB C , Fator 88 de Diferenciação Mieloide/metabolismo , Ácido Palmítico/toxicidade , Análise de Componente Principal , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores de Interleucina-1/metabolismo , Receptor 4 Toll-Like/genética , Transativadores/metabolismo
6.
Front Pharmacol ; 12: 657080, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025421

RESUMO

Hepatocellular carcinoma (HCC) is difficult to treat, and is the second leading cause of cancer-related death worldwide. This study aimed to examine whether combination of wogonin and artesunate exhibits synergistic anti-HCC effect. Our data show that the combination treatment exhibits synergistic effect in reducing HCC cell viability by increasing apoptosis as indicated by the elevated cleavage of caspase 8, 3 and PARP. Interestingly, PCR array and the subsequent studies indicate that the combination treatment significantly increases the expression of DNA-damage-inducible, alpha (GADD45A), tumor necrosis factor (TNFα) and TNF receptor-associated factor 3 (TRAF3). Knockdown of GADD45A, TNFα or TRAF3 abolishes the combination treatment-enhanced apoptosis and the synergistic effect in reducing HCC cell viability. In the HCC-bearing xenograft mouse models, although the combination treatment increases the activity of NFκB in the tumor tissues, it exhibits a more potent anti-HCC effect than the mono-treatment, which may due to the enhanced apoptosis as indicated by the increased expression of GADD45A, TNFα, TRAF3 and apoptotic markers. Our study clearly demonstrates that the combination of artesunate and wogonin exhibits synergistic anti-HCC effect, and support the further development of this combination as alternative therapeutics for HCC management.

7.
Cell Death Dis ; 10(10): 711, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31558710

RESUMO

Epidemiology studies indicate that consumption of high-fat diet (HFD) is directly associated with the development of colorectal cancer (CRC). However, the exact component in HFD and the mechanism underlying its effect on CRC growth remained unclear. Our study shows that HFD feeding increases ß2AR expression in the xenograft tissues of CRC-bearing mouse model; the elevated ß2AR expression is reduced when HFD is replaced by control diet, which strongly suggests an association between HFD feeding and ß2AR expression in CRC. HFD feeding increases palmitic acid and stearic acid levels in CRC; however, only palmitic acid increases ß2AR expression, which is dependent upon Sp1. ß2AR plays the dominant role in promoting CRC cell proliferation among all the ß-AR subtypes. More importantly, knockout of ß2AR or knockdown of Sp1 abolishes the palmitic acid increased CRC cell proliferation, suggesting palmitic acid increases CRC cell proliferation in ß2AR-dependent manner. HFD or palmitic acid-rich diet (PAD) also fails to increase the tumor growth in xenograft mouse models bearing ß2AR-knockout CRC cells. ß2AR promotes CRC growth by increasing the phosphorylation of HSL at the residue S552. The phosphorylated and activated HSL (S552) changes the metabolic phenotype of CRC and increases energy production, which promotes CRC growth. Our study has revealed the unique tumorigenic properties of palmitic acid in promoting CRC growth, and have delineated the underlying mechanism of action. We are also the first to report the linkage between HFD feeding and ß-adrenergic signaling pathway in relation to CRC growth.


Assuntos
Neoplasias Colorretais/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácido Palmítico/metabolismo , Receptores Adrenérgicos beta/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Biologia Computacional , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Nus , Ácido Palmítico/farmacologia , Fosforilação , RNA Interferente Pequeno , Receptores Adrenérgicos beta/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Ácidos Esteáricos/metabolismo , Esterol Esterase/química , Esterol Esterase/metabolismo
8.
Cell Death Dis ; 10(9): 637, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31474764

RESUMO

Prostate cancer (PCa) is the second leading cause of cancer death in men. PCa progression can be associated with obesity. Signal transducer and activator of transcription-3 (STAT3) plays a crucial role in PCa growth. However, whether STAT3 plays a role in high-fat diet (HFD)-associated PCa growth is unknown. Our data show that HFD feeding increases tumor size, STAT3 phosphorylation, and palmitic acid (PA) level in the xenograft tissues of the PCa-bearing xenograft mouse model. In vitro studies show that PA increases STAT3 expression and phosphorylation (STAT3-Y705) in PCa. Computational modeling suggests strong and stable binding between PA and unphosphorylated STAT3 at R593 and N538. The binding changes STAT3 structure and activity. Functional studies show that both STAT3 mutants (R583A and N538A) and STAT3 dominant negative significantly reduce PA-enhanced STAT3 phosphorylation, PA-increased PCa cell proliferation, migration, and invasion. In the xenograft mouse models, the HFD-increased tumor growth and STAT3 phosphorylation in tumors are reversed by STAT3 inhibition. Our study not only demonstrates the regulatory role of PA/STAT3 axis in HFD-associated PCa growth but also suggests a novel mechanism of how STAT3 is activated by PA. Our data suggest STAT3 as a therapeutic target for the treatment of HFD-associated PCa.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Fator de Transcrição STAT3/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Xenoenxertos , Humanos , Masculino , Camundongos , Células PC-3 , Neoplasias da Próstata/etiologia , Neoplasias de Próstata Resistentes à Castração/etiologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia
9.
Cell Cycle ; 18(16): 1824-1829, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31272268

RESUMO

Environmental stressors in early childhood can have a detrimental impact later in life, manifesting in functional gastrointestinal disorders including irritable bowel syndrome (IBS). The phenomenon is also observed in rodents, where neonatal-maternal separation, a model of early life stress, induces phenotypes similar to IBS; however, the underlying mechanisms remain unelucidated. Our recent study provided a mechanism for the pathogenesis in the gut, demonstrating that increased visceral hyperalgesia resulted from the expansion of the intestinal stem cell compartment leading to increased differentiation and proliferation of serotonin (5-hydroxytryptamine/5-HT)-producing enterochromaffin cells. Moreover, it identified nerve growth factor (NGF) as a key mediator of the pathogenesis; surprisingly, it exerts its effect via cross talk with Wnt/ß-catenin signaling. This article addresses the roles of NGF in driving IBS and its potential clinical implications, outstanding questions in how psychological stimuli are transduced into physical phenotypes, as well as future directions of our findings. Abbreviations: 5-HT: 5-hydroxytryptamine/serotonin; BDNF: brain-derived neurotrophic factor; CRF: corticotrophin-releasing factor; EC: enterochromaffin; ENS: enteric nervous system; GI: gastrointestinal; GPCR: G-protein-coupled receptor; IBS (-D): irritable bowel syndrome (diarrhea predominant); LRP5/6: low-density lipoprotein receptor-related protein 5/6; MAPK: mitogen-activated protein kinase; NGF: nerve growth factor; NMS: neonatal-maternal separation; PI3K: phosphoinositode3-kinase; PLCγ: phospholipase c, gamma subtype; TrkA: tropomyosin receptor kinase A.


Assuntos
Adultos Sobreviventes de Eventos Adversos na Infância , Motilidade Gastrointestinal , Síndrome do Intestino Irritável/etiologia , Síndrome do Intestino Irritável/patologia , Fator de Crescimento Neural/metabolismo , Estresse Psicológico/complicações , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Células Enterocromafins/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Privação Materna , Camundongos , Receptor trkA/metabolismo , Serotonina/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo
10.
Cell Mol Life Sci ; 76(13): 2547-2557, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30968170

RESUMO

Emerging evidence shows that palmitic acid (PA), a common fatty acid in the human diet, serves as a signaling molecule regulating the progression and development of many diseases at the molecular level. In this review, we focus on its regulatory roles in the development of five pathological conditions, namely, metabolic syndrome, cardiovascular diseases, cancer, neurodegenerative diseases, and inflammation. We summarize the clinical and epidemiological studies; and also the mechanistic studies which have identified the molecular targets for PA in these pathological conditions. Activation or inactivation of these molecular targets by PA controls disease development. Therefore, identifying the specific targets and signaling pathways that are regulated by PA can give us a better understanding of how these diseases develop for the design of effective targeted therapeutics.


Assuntos
Autofagia , Doenças Cardiovasculares/patologia , Inflamação/patologia , Síndrome Metabólica/patologia , Neoplasias/patologia , Doenças Neurodegenerativas/patologia , Ácido Palmítico/metabolismo , Animais , Doenças Cardiovasculares/metabolismo , Humanos , Inflamação/metabolismo , Síndrome Metabólica/metabolismo , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Transdução de Sinais
11.
Nat Commun ; 10(1): 1745, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30988299

RESUMO

Early childhood is a critical period for development, and early life stress may increase the risk of gastrointestinal diseases including irritable bowel syndrome (IBS). In rodents, neonatal maternal separation (NMS) induces bowel dysfunctions that resemble IBS. However, the underlying mechanisms remain unclear. Here we show that NMS induces expansion of intestinal stem cells (ISCs) and their differentiation toward secretory lineages including enterochromaffin (EC) and Paneth cells, leading to EC hyperplasia, increased serotonin production, and visceral hyperalgesia. This is reversed by inhibition of nerve growth factor (NGF)-mediated tropomyosin receptor kinase A (TrkA) signalling, and treatment with NGF recapitulates the intestinal phenotype of NMS mice in vivo and in mouse intestinal organoids in vitro. Mechanistically, NGF transactivates Wnt/ß-catenin signalling. NGF and serotonin are positively correlated in the sera of diarrhea-predominant IBS patients. Together, our findings provide mechanistic insights into early life stress-induced intestinal changes that may translate into treatments for gastrointestinal diseases.


Assuntos
Gastroenteropatias/etiologia , Estresse Fisiológico , Animais , Células Enterocromafins/patologia , Humanos , Hiperplasia/patologia , Privação Materna , Camundongos , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/fisiologia , Receptor trkA/genética , Receptor trkA/metabolismo , Receptor trkA/fisiologia , Transdução de Sinais , Via de Sinalização Wnt
12.
Nat Commun ; 7: 10824, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26926389

RESUMO

Lymphangiogensis is involved in various pathological conditions, such as arthritis and cancer metastasis. Although many factors have been identified to stimulate lymphatic vessel growth, little is known about lymphangiogenesis inhibitors. Here we report that membrane type 1-matrix metalloproteinase (MT1-MMP) is an endogenous suppressor of lymphatic vessel growth. MT1-MMP-deficient mice exhibit spontaneous corneal lymphangiogenesis without concomitant changes in angiogenesis. Mice lacking MT1-MMP in either lymphatic endothelial cells or macrophages recapitulate corneal lymphangiogenic phenotypes observed in Mmp14(-/-) mice, suggesting that the spontaneous lymphangiogenesis is both lymphatic endothelial cells autonomous and macrophage associated. Mechanistically, MT1-MMP directly cleaves LYVE-1 on lymphatic endothelial cells to inhibit LYVE-1-mediated lymphangiogenic responses. In addition, MT1-MMP-mediated PI3Kδ signalling restrains the production of VEGF-C from prolymphangiogenic macrophages through repressing the activation of NF-κB signalling. Thus, we identify MT1-MMP as an endogenous inhibitor of physiological lymphangiogenesis.


Assuntos
Células Endoteliais/fisiologia , Glicoproteínas/metabolismo , Linfangiogênese/fisiologia , Metaloproteinase 14 da Matriz/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Animais , Transplante Ósseo , Células Cultivadas , Córnea , Regulação da Expressão Gênica/fisiologia , Glicoproteínas/genética , Macrófagos/fisiologia , Metaloproteinase 14 da Matriz/genética , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Knockout , Fator C de Crescimento do Endotélio Vascular/genética
13.
Cell Cycle ; 11(15): 2793-8, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22801544

RESUMO

MT1-MMP is a membrane-tethered enzyme capable of remodeling extracellular matrix. MT1-MMP-deficient mice exhibit systematic defects during development, especially in craniofacial development characterized by retarded calvarial bone formation. Recently, we identified MT1-MMP as a critical positive modulator of FGF signaling during intramembranous ossification. MT1-MMP cleaves ADAM9 to protect FGFR2 from ectodomain shedding. Depletion of ADAM9 in MT1-MMP-deficient mice significantly rescued the calvarial defects via restoring FGF signaling. Interestingly, this regulatory mechanism seems to be highly tissue-specific, as defective FGF2-induced corneal angiogenesis in Mmp14-/- mice could not be rescued by removal of ADAM9. In addition, MT1-MMP also cleaves another ADAM family member, ADAM15. Our current findings not only present a novel regulatory mechanism for FGF signaling but also reveal a functional crosstalk between MMP and ADAM families. Better understanding of the interplay between ADAMs and MT1-MMP and its consequences for signaling pathways will provide new insights into therapeutic approaches for the management of developmental disorders and various diseases, such as cancer.


Assuntos
Proteínas ADAM/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Proteínas de Membrana/metabolismo , Osteogênese , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Osso e Ossos/metabolismo , Membrana Celular/enzimologia , Neovascularização da Córnea , Metaloproteinase 14 da Matriz/genética , Camundongos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA