Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35710053

RESUMO

Evolutionary medicine has been a fast-growing field of biological research in the past decade. One of the strengths of evolutionary medicine is to use non-traditional model organisms which often exhibit unusual characteristics shaped by natural selection. Studying these unusual traits could provide valuable insight to understand biomedical questions, since natural selection likely discovers solutions to those complex biological problems. Because of many unusual traits, the naked mole-rat (NMR) has attracted attention from different research areas such as aging, cancer, and hypoxia- and hypercapnia-related disorders. However, such uniqueness of NMR physiology may sometimes make the translational study to human research difficult. Damaraland mole-rat (DMR) shares multiple characteristics in common with NMR, but shows higher degree of similarity with human in some aspects of their physiology. Research on DMR could therefore offer alternative insights and might bridge the gap between experimental findings from NMR to human biomedical research. In this review, we discuss studies of DMR as an extension of the current set of model organisms to help better understand different aspects of human biology and disease. We hope to encourage researchers to consider studying DMR together with NMR. By studying these two similar but evolutionarily distinct species, we can harvest the power of convergent evolution and avoid the potential biased conclusions based on life-history of a single species.


Assuntos
Envelhecimento , Ratos-Toupeira , Animais , Humanos , Ratos-Toupeira/fisiologia
2.
Nat Metab ; 2(11): 1265-1283, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33199924

RESUMO

Declining tissue nicotinamide adenine dinucleotide (NAD) levels are linked to ageing and its associated diseases. However, the mechanism for this decline is unclear. Here, we show that pro-inflammatory M1-like macrophages, but not naive or M2 macrophages, accumulate in metabolic tissues, including visceral white adipose tissue and liver, during ageing and acute responses to inflammation. These M1-like macrophages express high levels of the NAD-consuming enzyme CD38 and have enhanced CD38-dependent NADase activity, thereby reducing tissue NAD levels. We also find that senescent cells progressively accumulate in visceral white adipose tissue and liver during ageing and that inflammatory cytokines secreted by senescent cells (the senescence-associated secretory phenotype, SASP) induce macrophages to proliferate and express CD38. These results uncover a new causal link among resident tissue macrophages, cellular senescence and tissue NAD decline during ageing and offer novel therapeutic opportunities to maintain NAD levels during ageing.


Assuntos
ADP-Ribosil Ciclase 1/genética , Envelhecimento/metabolismo , Senescência Celular , Ativação de Macrófagos , Glicoproteínas de Membrana/genética , NAD/metabolismo , ADP-Ribosil Ciclase/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Antígenos CD/metabolismo , Citocinas/metabolismo , Feminino , Proteínas Ligadas por GPI/metabolismo , Expressão Gênica , Glicólise/genética , Humanos , Fígado/metabolismo , Masculino , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , NAD+ Nucleosidase/metabolismo
3.
Redox Biol ; 37: 101722, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32971363

RESUMO

Understanding how mitochondria contribute to cellular oxidative stress and drive signaling and disease is critical, but quantitative assessment is difficult. Our previous studies of cultured C2C12 cells used inhibitors of specific sites of superoxide and hydrogen peroxide production to show that mitochondria generate about half of the hydrogen peroxide released by the cells, and site IQ of respiratory complex I produces up to two thirds of the superoxide and hydrogen peroxide generated in the mitochondrial matrix. Here, we used the same approach to measure the engagement of these sites in seven diverse cell lines to determine whether this pattern is specific to C2C12 cells, or more general. These diverse cell lines covered primary, immortalized, and cancerous cells, from seven tissues (liver, cervix, lung, skin, neuron, heart, bone) of three species (human, rat, mouse). The rate of appearance of hydrogen peroxide in the extracellular medium spanned a 30-fold range from HeLa cancer cells (3 pmol/min/mg protein) to AML12 liver cells (84 pmol/min/mg protein). The mean contribution of identified mitochondrial sites to this extracellular hydrogen peroxide signal was 30 ± 7% SD; the mean contribution of NADPH oxidases was 60 ± 14%. The relative contributions of different sites in the mitochondrial electron transport chain were broadly similar in all seven cell types (and similar to published results for C2C12 cells). 70 ± 4% of identified superoxide/hydrogen peroxide generation in the mitochondrial matrix was from site IQ; 30 ± 4% was from site IIIQo. We conclude that although absolute rates vary considerably, the relative contributions of different sources of hydrogen peroxide production are similar in nine diverse cell types under unstressed conditions in vitro. Identified mitochondrial sites account for one third of total cellular hydrogen peroxide production (half each from sites IQ and IIIQo); in the mitochondrial matrix the majority (two thirds) of superoxide/hydrogen peroxide is from site IQ.


Assuntos
Complexo I de Transporte de Elétrons , Superóxidos , Animais , Linhagem Celular , Complexo I de Transporte de Elétrons/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Camundongos , Mitocôndrias/metabolismo , Ratos , Superóxidos/metabolismo
4.
Phytomedicine ; 73: 153038, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31378503

RESUMO

BACKGROUND: HCY2, a triterpenoid-enriched extract of Cynomorii Herba, has been shown to reduce body weight and adiposity and attenuate manifestations of the associated metabolic syndrome in high-fat-diet (HFD)-fed mice. PURPOSE: The current study aimed to investigate the biochemical mechanism underlying the anti-obesity effect produced by HCY2. STUDY DESIGN: An HCY2-containing extract was examined for its effects on the regulation of adenosine monophosphate-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor gamma co-activator-1 (PGC1) pathways and the protein expression related to mitochondrial uncoupling and biogenesis in skeletal muscle using an HFD-induced obese mouse model. METHODS: The obese mouse model was produced by providing HFD (60% kcal from fat) ad libitum. The effects and signaling mechanisms of HCY2 were examined using analytical procedures which included enzyme-linked immunosorbent assay kits, Western blot analysis, and the use of a Clark-type oxygen electrode. RESULTS: The current study revealed that the weight reduction produced by HCY2 is associated with the activation of the AMPK signaling pathway, with resultant increases in mitochondrial biogenesis and expression of uncoupling protein 3 in skeletal muscle in vivo. The use of a recoupler, ketocholestanol, delineated the precise role of mitochondrial uncoupling in the anti-obesity effect afforded by HCY2 in obese mice. CONCLUSION: Our experimental findings offer a promising prospect for the use of HCY2 in the management of obesity through the regulation of AMPK/PGC1 pathways.


Assuntos
Fármacos Antiobesidade/farmacologia , Cynomorium/química , Obesidade/tratamento farmacológico , Obesidade/etiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Fármacos Antiobesidade/química , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos Endogâmicos ICR , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Triterpenos/farmacologia , Redução de Peso/efeitos dos fármacos
5.
Methods Mol Biol ; 1782: 157-170, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29850999

RESUMO

Oxidative phosphorylation is an important energy-conserving mechanism coupling mitochondrial electron transfer to ATP synthesis. Coupling between respiration and phosphorylation is not fully efficient due to proton leaks. In this chapter, we present a method to measure proton leak activity in isolated mitochondria. The relative strength of a modular kinetic approach to probe oxidative phosphorylation is emphasized.


Assuntos
Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Fosforilação Oxidativa , Oxigênio/metabolismo , Prótons , Trifosfato de Adenosina/biossíntese , Animais , Respiração Celular , Eletrodos , Cinética , Potencial da Membrana Mitocondrial , Músculo Esquelético/citologia , Oniocompostos/metabolismo , Consumo de Oxigênio , Ratos , Compostos de Tritil/metabolismo
6.
Food Funct ; 8(7): 2425-2436, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28675237

RESUMO

Mitochondrial biogenesis, which involves an increase in mitochondrial number and the overall capacity of oxidative phosphorylation, is a critical determinant of skeletal muscle function. Recent findings have shown that some natural products can enhance mitochondrial adaptation to aerobic exercise, which in turn improves exercise performance, presumably by delaying muscle fatigue. Ursolic acid (UA), a natural triterpene, is commonly found in various vegetables and fruits. In the current study, UA was shown to increase mitochondrial mass and ATP generation capacity, with a concomitant production of a low level of mitochondrial reactive oxygen species (ROS) in C2C12 myotubes. Mitochondrial ROS, in turn, activated the redox sensitive adenosine monophosphate-dependent protein kinase (AMPK)/peroxisome proliferator-activated receptor γ coactivator-1(PGC-1) pathway. The activation of AMPK/PGC-1 further increased the expression of cytochrome c oxidase (COX) and uncoupling protein 3. Animal studies showed that UA can also dose-dependently increase the endurance exercise capacity in mice, as assessed by a weight-loaded swimming test and a hanging wire test. Our findings suggest that UA may induce mitochondrial biogenesis through the activation of AMPK and PGC-1 pathways in skeletal muscle, thereby offering a promising prospect for its use to enhance exercise endurance and alleviating fatigue in humans.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Fadiga/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Triterpenos/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Monofosfato de Adenosina/metabolismo , Animais , Fadiga/genética , Fadiga/metabolismo , Fadiga/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Oxirredução , Fosforilação , Resistência Física , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/genética , Ácido Ursólico
7.
PLoS One ; 11(5): e0155879, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27195753

RESUMO

Schisandrin A (Sch A) and schisandrin B (Sch B) are active components of Schisandrae Fructus. We compared the biochemical mechanism underlying the anti-inflammatory action of Sch A and Sch B, using cultured lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and concanavalin (ConA)-stimulated mouse splenocytes. Pre-incubation with Sch A or Sch B produced an anti-inflammatory action in LPS-stimulated RAW264.7 cells, as evidenced by the inhibition of the pro-inflammatory c-Jun N-terminal kinases/p38 kinase/nuclear factor-κB signaling pathway as well as the suppression of various pro-inflammatory cytokines and effectors, with the extent of inhibition by Sch A being more pronounced. The greater activity of Sch A in anti-inflammatory response was associated with a greater decrease in cellular reduced glutathione (GSH) level and a greater increase in glutathione S-transferase activity than corresponding changes produced by Sch B. However, upon incubation, only Sch B resulted in the activation of the nuclear factor (erythroid-derived 2)-like factor 2 and the induction of a significant increase in the expression of thioredoxin (TRX) in RAW264.7 cells. The Sch B-induced increase in TRX expression was associated with the suppression of pro-inflammatory cytokines and effectors in LPS-stimulated macrophages. Studies in a mouse model of inflammation (carrageenan-induced paw edema) indicated that while long-term treatment with either Sch A or Sch B suppressed the extent of paw edema, only acute treatment with Sch A produced a significant degree of inhibition on the inflammatory response. Although only Sch A decreased the cellular GSH level and suppressed the release of pro-inflammatory cytokines and cell proliferation in ConA-simulated splenocytes in vitro, both Sch A and Sch B treatments, while not altering cellular GSH levels, suppressed ConA-stimulated splenocyte proliferation ex vivo. These results suggest that Sch A and Sch B may act differentially on activating GST/ depleting cellular GSH and inducing an antioxidant response involved in their anti-inflammatory actions.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Ciclo-Octanos/farmacologia , Glutationa/metabolismo , Lignanas/farmacologia , Compostos Policíclicos/farmacologia , Acetilcisteína/metabolismo , Animais , Concanavalina A , Citocinas/metabolismo , Edema , Ensaio de Imunoadsorção Enzimática , Feminino , Glutationa Transferase/metabolismo , Inflamação , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos ICR , Células RAW 264.7
8.
Artigo em Inglês | MEDLINE | ID: mdl-25709708

RESUMO

Previous studies have demonstrated that HCF1, a semipurified fraction of Cistanches Herba, causes weight reduction in normal diet- and high fat diet-fed mice. The weight reduction was associated with the induction of mitochondrial uncoupling and changes in metabolic enzyme activities in mouse skeletal muscle. To further investigate the biochemical mechanism underlying the HCF1-induced weight reduction, the effect of HCF1 and its active component, ß-sitosterol (BSS), on C2C12 myotubes was examined. Incubation with HCF1/BSS caused a transient increase in mitochondrial membrane potential (MMP), possibly by fluidizing the mitochondrial inner membrane. The increase in MMP was paralleled to an increase in mitochondrial reactive oxygen species (ROS) production. Mitochondrial ROS, in turn, triggered a redox-sensitive induction of mitochondrial uncoupling by uncoupling protein 3 (UCP3). Biochemical analysis indicated that HCF1 was capable of activating an adenosine monophosphate-dependent protein kinase/peroxisome proliferator-activated receptor γ coactivator-1 pathway and thereby increased the expression of cytochrome c oxidase and UCP3. Animal studies using mitochondrial recoupler also confirmed the role of mitochondrial uncoupling in the HCF1-induced weight reduction. In conclusion, a HCF1/BSS causes the redox-sensitive induction of mitochondrial uncoupling and activation of AMPK/PGC-1 in C2C12 myotubes, with resultant reductions in body weight and adiposity by increased energy consumption.

9.
Food Funct ; 6(2): 549-57, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25515785

RESUMO

Ursolic acid (UA), a natural pentacyclic triterpenoid carboxylic acid, is a ubiquitous compound widely distributed in many plants, fruits and medicinal herbs worldwide. A previous study in our laboratory has shown that UA can increase the mitochondrial ATP generation capacity (ATP-GC) and a glutathione-dependent antioxidant response, thereby protecting against oxidant injury in H9c2 cells in vitro and rat hearts ex vivo. However, the mechanism underlying the cellular protective effects induced by UA remains largely unknown. The present study has shown that pre-incubation with UA produces a transient increase in the mitochondrial membrane potential in H9c2 cells, which was accompanied by increases in mitochondrial reactive oxygen species (ROS) production. Studies using an antioxidant (dimethylthiourea) indicated that the suppression of mitochondrial ROS completely abrogated the UA-induced enhancement of mitochondrial uncoupling and glutathione reductase (GR)-mediated glutathione redox cycling, as well as protection against menadione cytotoxicity in H9c2 cells. Co-incubation with specific inhibitors of uncoupling proteins and GR almost completely prevented the cytoprotection afforded by UA against menadione-induced cytotoxicity in H9c2 cells. The results obtained so far suggest that UA-induced mitochondrial ROS production can elicit mitochondrial uncoupling and glutathione-dependent antioxidant responses, which offer cytoprotection against oxidant injury in H9c2 cells.


Assuntos
Glutationa/metabolismo , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Triterpenos/efeitos adversos , Animais , Antioxidantes/farmacologia , Linhagem Celular , Citoproteção/efeitos dos fármacos , Glutationa Redutase/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Ratos , Tioureia/análogos & derivados , Tioureia/farmacologia , Desacopladores/efeitos adversos , Vitamina K 3/efeitos adversos , Ácido Ursólico
10.
Molecules ; 19(11): 17649-62, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25361427

RESUMO

Previous findings have demonstrated that ß-sitosterol (BSS), an active component of Cistanches Herba, protected against oxidant injury in H9c2 cardiomyocytes and in rat hearts by enhancing mitochondrial glutathione redox cycling, possibly through the intermediacy of mitochondrial reactive oxygen species production. We therefore hypothesized that BSS pretreatment can also confer tissue protection against oxidant injury in other vital organs such as liver and kidney of rats. In this study, the effects of BSS pretreatment on rat models of carbon tetrachloride (CCl4) hepatotoxicity and gentamicin nephrotoxicity were investigated. The findings showed that BSS pretreatment protected against CCl4-induced hepatotoxicity, but not gentamicin nephrotoxicity in rats. The hepatoprotection afforded by BSS was associated with the improvement in mitochondrial glutathione redox status, presumably through the glutathione reductase-mediated enhancement in mitochondrial glutathione redox cycling. The hepatoprotection afforded by BSS was also accompanied by the improved mitochondrial functional ability in rat livers. The inability of BSS to protect against gentamicin nephrotoxicity was likely due to the relatively low bioavailability of BSS in rat kidneys. BSS may serve as potential mitohormetic agent for the prevention of oxidative stress-induced injury in livers.


Assuntos
Tetracloreto de Carbono/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Gentamicinas/efeitos adversos , Glutationa/metabolismo , Mitocôndrias/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Sitosteroides/farmacologia , Animais , Antioxidantes/farmacologia , Disponibilidade Biológica , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Feminino , Glutationa Redutase/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Nefropatias/prevenção & controle , Fígado/efeitos dos fármacos , Fígado/metabolismo , Mitocôndrias/metabolismo , Oxidantes/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
11.
Molecules ; 19(2): 1576-91, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24473214

RESUMO

Herba Cynomorii (Cynomorium songaricum Rupr., Cynomoriaceae) is one of the most commonly used 'Yang-invigorating' tonic herbs in Traditional Chinese Medicine (TCM). An earlier study in our laboratory has demonstrated that HCY2, an ursolic acid-enriched fraction derived from Herba Cynomorii, increased mitochondrial ATP generation capacity (ATP-GC) and induced mitochondrial uncoupling as well as a cellular glutathione response, thereby protecting against oxidant injury in H9c2 cells. In this study, we demonstrated that pre-incubation of H9c2 cells with HCY2 increased mitochondrial reactive oxygen species (ROS) generation in these cells, which is likely an event secondary to the stimulation of the mitochondrial electron transport chain. The suppression of mitochondrial ROS by the antioxidant dimethylthiourea abrogated the HCY2-induced enhancement of mitochondrial uncoupling and glutathione reductase (GR)-mediated glutathione redox cycling, and also protected against menadione-induced cytotoxicity. Studies using specific inhibitors of uncoupling protein and GR suggested that the HCY2-induced mitochondrial uncoupling and glutathione redox cycling play a determining role in the cytoprotection against menadione-induced oxidant injury in H9c2 cells. Experimental evidence obtained thus far supports the causal role of HCY2-induced mitochondrial ROS production in eliciting mitochondrial uncoupling and glutathione antioxidant responses, which offer cytoprotection against oxidant injury in H9c2 cells.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Exossomos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Triterpenos/farmacologia , Animais , Linhagem Celular , Medicamentos de Ervas Chinesas/química , Glutationa/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução , Ratos , Espécies Reativas de Oxigênio/química , Traqueófitas/química , Triterpenos/química , Vitamina K 3/toxicidade , Ácido Ursólico
12.
Phytother Res ; 28(7): 999-1006, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24281915

RESUMO

Herba Cistanches (Cistanche deserticola Y. C. Ma) is a 'Yang-invigorating' tonic herb in Chinese medicine. Preliminary chemical analysis indicated that ß-sitosterol (BS) is one of the chemical constituents in an active fraction of Herba Cistanches. To investigate whether BS is an active ingredient of Herba Cistanches, the effects of BS on H9c2 cells and rat hearts were examined. The results indicated that BS stimulated the mitochondrial ATP generation capacity in H9c2 cells, which was associated with the increased production of mitochondrial reactive oxygen species. BS also stimulated mitochondrial state 3 and state 4 respiration, with the resultant decrease in coupling efficiency. BS produced an up-regulation of cellular glutathione redox cycling and protected against hypoxia/reoxygenation-induced apoptosis in H9c2 cells. However, the protective effect of BS against myocardial ischemia/reperfusion injury was seen in female but not male rats ex vivo. The cardioprotection afforded by BS was likely mediated by an up-regulation of mitochondrial glutathione redox cycling in female rat hearts. In conclusion, the ensemble of results suggests that BS is an active ingredient of Herba Cistanches. The gender-dependent effect of BS on myocardial protection will further be investigated.


Assuntos
Cistanche/química , Medicamentos de Ervas Chinesas/farmacologia , Coração/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sitosteroides/farmacologia , Animais , Apoptose/efeitos dos fármacos , Cardiotônicos/farmacologia , Linhagem Celular , Respiração Celular/efeitos dos fármacos , Feminino , Glutationa/metabolismo , Masculino , Traumatismo por Reperfusão Miocárdica , Oxidantes/efeitos adversos , Oxirredução , Ratos , Ratos Sprague-Dawley
13.
Pharm Biol ; 51(1): 64-73, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23035909

RESUMO

CONTEXT: Earlier findings demonstrated that pretreatment of Herba Cistanches [the dried whole plant of Cistanche deserticola Y.C. Ma (Orobanchaceae)], a "Yang-invigorating" Chinese tonic herb, stimulated the ATP-generation capacity (ATP-GC) in mitochondria isolated from rat heart ex vivo. The enhancement of mitochondrial ATP-GC by Herba Cistanches was associated with induction of glutathione antioxidant status and protection against ischemia/reperfusion (I/R) injury in rat hearts. OBJECTIVES: This study investigated the relationship between enhancements in mitochondrial ATP-GC and glutathione antioxidant status in H9c2 cardiomyocytes using a semipurified fraction of Herba Cistanches (HCF1). MATERIALS AND METHODS: HCF1 (10-300 ng/mL) was tested for its effects on mitochondrial ATP generation, glutathione antioxidant status and protection against oxidant injury in H9c2 cardiomyocytes and rat hearts. RESULTS AND DISCUSSION: HCF1 at 30 ng/mL increased mitochondrial ATP-GC and ADP-stimulated state 3 respiration (by 50 and 100%, respectively) in H9c2 cardiomyocytes. The stimulation of mitochondrial respiration was associated with the induction of mitochondrial uncoupling (27%) and enhancement of cellular glutathione redox cycling as well as protection against hypoxia/reoxygenation (hypox/reoxy)-induced apoptosis (by 60%). While HCF1 treatment increased reactive oxygen species generation from mitochondrial respiration in H9c2 cardiomyocytes, pretreatment with antioxidants (DMTU) abrogated the HCF1-induced cellular responses and the associated cytoprotective effect. HCF1 pretreatment (1.14 and 3.41 mg/kg × 14) also protected against myocardial I/R injury in rats (by 13 and 32%), presumably mediated by the induction of glutathione antioxidant response. CONCLUSION: The long-term intake of HCF1 may offer a prospect for the prevention of ischemic heart disease.


Assuntos
Cistanche/química , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Linhagem Celular , Respiração Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Glutationa/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/patologia , Oxirredução/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA