Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36901808

RESUMO

The modulation of P-glycoprotein (P-gp, ABCB1) can reverse multidrug resistance (MDR) and potentiate the efficacy of anticancer drugs. Tea polyphenols, such as epigallocatechin gallate (EGCG), have low P-gp-modulating activity, with an EC50 over 10 µM. In this study, we optimized a series of tea polyphenol derivatives and demonstrated that epicatechin EC31 was a potent and nontoxic P-gp inhibitor. Its EC50 for reversing paclitaxel, doxorubicin, and vincristine resistance in three P-gp-overexpressing cell lines ranged from 37 to 249 nM. Mechanistic studies revealed that EC31 restored intracellular drug accumulation by inhibiting P-gp-mediated drug efflux. It did not downregulate the plasma membrane P-gp level nor inhibit P-gp ATPase. It was not a transport substrate of P-gp. A pharmacokinetic study revealed that the intraperitoneal administration of 30 mg/kg of EC31 could achieve a plasma concentration above its in vitro EC50 (94 nM) for more than 18 h. It did not affect the pharmacokinetic profile of coadministered paclitaxel. In the xenograft model of the P-gp-overexpressing LCC6MDR cell line, EC31 reversed P-gp-mediated paclitaxel resistance and inhibited tumor growth by 27.4 to 36.1% (p < 0.001). Moreover, it also increased the intratumor paclitaxel level in the LCC6MDR xenograft by 6 fold (p < 0.001). In both murine leukemia P388ADR and human leukemia K562/P-gp mice models, the cotreatment of EC31 and doxorubicin significantly prolonged the survival of the mice (p < 0.001 and p < 0.01) as compared to the doxorubicin alone group, respectively. Our results suggested that EC31 was a promising candidate for further investigation on combination therapy for treating P-gp-overexpressing cancers.


Assuntos
Antineoplásicos , Neoplasias da Mama , Catequina , Leucemia , Animais , Feminino , Humanos , Camundongos , Antineoplásicos/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Xenoenxertos , Leucemia/tratamento farmacológico , Paclitaxel/farmacologia , Polifenóis/farmacologia , Chá
2.
Int J Mol Sci ; 23(23)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36499627

RESUMO

Biotransformation of flavonoid dimer FD18 resulted in an active metabolite FM04. It was more druggable because of its improved physicochemical properties. FM04 (EC50 = 83 nM) was 1.8-fold more potent than FD18 in reversing P-glycoprotein (P-gp)-mediated paclitaxel (PTX) resistance in vitro. Similar to FD18, FM04 chemosensitized LCC6MDR cells towards multiple anticancer drugs by inhibiting the transport activity of P-gp and restoring intracellular drug levels. It stimulated the P-gp ATPase by 3.3-fold at 100 µM. Different from FD18, FM04 itself was not a transport substrate of P-gp and presumably, it cannot work as a competitive inhibitor. In the human melanoma MDA435/LCC6MDR xenograft, the co-administration of FM04 (28 mg/kg, I.P.) with PTX (12 mg/kg, I.V.) directly modulated P-gp-mediated PTX resistance and caused a 56% (*, p < 0.05) reduction in tumor volume without toxicity or animal death. When FM04 was administered orally at 45 mg/kg as a dual inhibitor of P-gp/CYP2C8 or 3A4 enzymes in the intestine, it increased the intestinal absorption of PTX from 0.2% to 14% in mice and caused about 57- to 66-fold improvement of AUC as compared to a single oral dose of PTX. Oral co-administration of FM04 (45 mg/kg) with PTX (40, 60 or 70 mg/kg) suppressed the human melanoma MDA435/LCC6 tumor growth with at least a 73% (***, p < 0.001) reduction in tumor volume without serious toxicity. Therefore, FM04 can be developed into a novel combination chemotherapy to treat cancer by directly targeting the P-gp overexpressed tumors or potentiating the oral bioavailability of P-gp substrate drugs.


Assuntos
Melanoma , Paclitaxel , Humanos , Camundongos , Animais , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Flavonoides/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Resistencia a Medicamentos Antineoplásicos , Melanoma/tratamento farmacológico
3.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362047

RESUMO

Overexpression of breast cancer resistance transporter (BCRP/ABCG2) in cancers has been explained for the failure of chemotherapy in clinic. Inhibition of the transport activity of BCRP during chemotherapy should reverse multidrug resistance. In this study, a triazole-bridged flavonoid dimer Ac15(Az8)2 was identified as a potent, nontoxic, and selective BCRP inhibitor. Using BCRP-overexpressing cell lines, its EC50 for reversing BCRP-mediated topotecan resistance was 3 nM in MCF7/MX100 and 72 nM in S1M180 in vitro. Mechanistic studies revealed that Ac15(Az8)2 restored intracellular drug accumulation by inhibiting BCRP-ATPase activity and drug efflux. It did not down-regulate the cell surface BCRP level to enhance drug retention. It was not a transport substrate of BCRP and showed a non-competitive relationship with DOX in binding to BCRP. A pharmacokinetic study revealed that I.P. administration of 45 mg/kg of Ac15(Az8)2 resulted in plasma concentration above its EC50 (72 nM) for longer than 24 h. It increased the AUC of topotecan by 2-fold. In an in vivo model of BCRP-overexpressing S1M180 xenograft in Balb/c nude mice, it significantly reversed BCRP-mediated topotecan resistance and inhibited tumor growth by 40% with no serious body weight loss or death incidence. Moreover, it also increased the topotecan level in the S1M180 xenograft by 2-fold. Our results suggest that Ac15(Az8)2 is a promising candidate for further investigation into combination therapy for treating BCRP-overexpressing cancers.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Camundongos Nus , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Topotecan/farmacologia , Flavonoides/farmacologia , Triazóis/farmacologia
4.
Eur Urol Focus ; 8(1): 200-209, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33495133

RESUMO

BACKGROUND: Kidney cancer is a major urological disease globally, with more than 400 000 new cases diagnosed every year. OBJECTIVE: To investigate incidence and mortality trends for kidney cancer and their associations with modifiable risk factors for kidney cancer. DESIGN, SETTING, AND PARTICIPANTS: The most up-to-date figures on kidney cancer incidence and mortality were collected from the GLOBOCAN database and the Cancer Incidence in Five Continents (CI5). Data on total alcohol consumption and the prevalence of smoking, overweight, diabetes, and hypertension were extracted from the World Health Organization Global Health Observatory data repository. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Age-standardized rates (ASRs) for incidence and mortality and their correlations with potential risk factors for kidney cancer were investigated. Multivariable linear regression analysis was also conducted. The 10-yr temporal patterns for incidence are presented as the average annual percent change with 95% confidence interval using joinpoint regression analysis. RESULTS AND LIMITATIONS: Globally, there is wide variation in kidney cancer incidence and mortality. There were positive correlations between rates of smoking, alcohol consumption, and overweight and ASRs of kidney cancer incidence and mortality. Multivariable regression analysis revealed that alcohol consumption and overweight were significant risk factors for kidney cancer incidence, while smoking and alcohol consumption were significant risk factors for kidney cancer mortality. There was an increasing trend for the incidence of kidney cancer globally, with a particularly prominent trend for European countries. Of note, increasing incidence of kidney cancer is evident even for younger individuals aged <50 yr. However, cancer registries vary by country and period and there is a lack of data regarding the severity of risk factors and disease characteristics such as the distribution of histological groups, tumor grading, and staging. CONCLUSIONS: There is an increasing trend for kidney cancer incidence globally, particularly in European countries and the younger population. Modifiable risk factors for kidney cancer incidence and mortality have been identified. The increasing incidence of kidney cancer among younger individuals is worrying and warrants early action on possible preventive measures. PATIENT SUMMARY: The incidence of kidney cancer has been increasing globally, particularly in European countries and the younger population. Risk factors include smoking, alcohol consumption, overweight, and hypertension, and these factors are all modifiable.


Assuntos
Hipertensão , Neoplasias Renais , Síndrome Metabólica , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/epidemiologia , Humanos , Incidência , Neoplasias Renais/epidemiologia , Síndrome Metabólica/epidemiologia , Sobrepeso , Fumar/efeitos adversos , Fumar/epidemiologia
5.
Clin Cancer Res ; 28(1): 227-237, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34667030

RESUMO

PURPOSE: Mutations in STK11 (LKB1) occur in 17% of lung adenocarcinoma (LUAD) and drive a suppressive (cold) tumor immune microenvironment (TIME) and resistance to immunotherapy. The mechanisms underpinning the establishment and maintenance of a cold TIME in LKB1-mutant LUAD remain poorly understood. In this study, we investigated the role of the LKB1 substrate AMPK in immune evasion in human non-small cell lung cancer (NSCLC) and mouse models and explored the mechanisms involved. EXPERIMENTAL DESIGN: We addressed the role of AMPK in immune evasion in NSCLC by correlating AMPK phosphorylation and immune-suppressive signatures and by deleting AMPKα1 (Prkaa1) and AMPKα2 (Prkaa2) in a KrasG12D -driven LUAD. Furthermore, we dissected the molecular mechanisms involved in immune evasion by comparing gene-expression signatures, AMPK activity, and immune infiltration in mouse and human LUAD and gain or loss-of-function experiments with LKB1- or AMPK-deficient cell lines. RESULTS: Inactivation of both AMPKα1 and AMPKα2 together with Kras activation accelerated tumorigenesis and led to tumors with reduced infiltration of CD8+/CD4+ T cells and gene signatures associated with a suppressive TIME. These signatures recapitulate those in Lkb1-deleted murine LUAD and in LKB1-deficient human NSCLC. Interestingly, a similar signature is noted in human NSCLC with low AMPK activity. In mechanistic studies, we find that compromised LKB1 and AMPK activity leads to attenuated antigen presentation in both LUAD mouse models and human NSCLC. CONCLUSIONS: The results provide evidence that the immune evasion noted in LKB1-inactivated lung cancer is due to subsequent inactivation of AMPK and attenuation of antigen presentation.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Adenocarcinoma de Pulmão/genética , Animais , Apresentação de Antígeno , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Evasão da Resposta Imune , Neoplasias Pulmonares/patologia , Camundongos , Microambiente Tumoral
6.
Eur J Med Chem ; 226: 113795, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34597896

RESUMO

P-glycoprotein (P-gp; ABCB1)-mediated drug efflux causes multidrug resistance in cancer. Previous synthetic methylated epigallocatechin (EGC) possessed promising P-gp modulating activity. In order to further improve the potency, we have synthesized some novel stereoisomers of methylated epigallocatechin (EGC) and gallocatechin (GC) as well as epicatechin (EC) and catechin (C). The (2R, 3S)-trans-methylated C derivative 25 and the (2R, 3R)-cis-methylated EC derivative 31, both containing dimethyoxylation at ring B, tri-methoxylation at ring D and oxycarbonylphenylcarbamoyl linker between ring D and C3, are the most potent in reversing P-gp mediated drug resistance with EC50 ranged from 32 nM to 93 nM. They are non-toxic to fibroblast with IC50 > 100 µM. They can inhibit the P-gp mediated drug efflux and restore the intracellular drug concentration to a cytotoxic level. They do not downregulate surface P-gp protein level to enhance drug retention. They are specific for P-gp with no or low modulating activity towards MRP1- or BCRP-mediated drug resistance. In summary, methylated C 25 and EC 31 derivatives represent a new class of potent, specific and non-toxic P-gp modulator.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Catequina/análogos & derivados , Catequina/farmacologia , Doxorrubicina/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Catequina/síntese química , Catequina/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Metilação , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade
7.
J Med Chem ; 64(19): 14311-14331, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34606270

RESUMO

We synthesize various substituted triazole-containing flavonoids and identify potent, nontoxic, and highly selective BCRP inhibitors. Ac18Az8, Ac32Az19, and Ac36Az9 possess m-methoxycarbonylbenzyloxy substitution at C-3 of the flavone moiety and substituted triazole at C-4' of the B-ring. They show low toxicity (IC50 toward L929 > 100 µM), potent BCRP-inhibitory activity (EC50 = 1-15 nM), and high BCRP selectivity (BCRP selectivity over MRP1 and P-gp > 67-714). They inhibit the efflux activity of BCRP, elevate the intracellular drug accumulation, and restore the drug sensitivity of BCRP-overexpressing cells. Like Ko143, Ac32Az19 remarkably exhibits a 100% 5D3 shift, indicating that it can bind and cause a conformational change of BCRP. Moreover, it significantly reduces the abundance of functional BCRP dimers/oligomers by half to retain more mitoxantrone in the BCRP-overexpressing cell line and that may account for its inhibitory activity. They are promising candidates to be developed into combination therapy to overcome MDR cancers with BCRP overexpression.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Flavonoides/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Anticorpos Monoclonais/imunologia , Antineoplásicos/química , Flavonoides/química , Células HEK293 , Humanos , Mitoxantrona/farmacologia , Proteínas de Neoplasias/química , Relação Estrutura-Atividade , Especificidade por Substrato
8.
Oncogene ; 40(13): 2367-2381, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33658627

RESUMO

Histone deacetylase (HDAC) inhibitors are effective in MYCN-driven cancers, because of a unique need for HDAC recruitment by the MYCN oncogenic signal. However, HDAC inhibitors are much more effective in combination with other anti-cancer agents. To identify novel compounds which act synergistically with HDAC inhibitor, such as suberanoyl hydroxamic acid (SAHA), we performed a cell-based, high-throughput drug screen of 10,560 small molecule compounds from a drug-like diversity library and identified a small molecule compound (SE486-11) which synergistically enhanced the cytotoxic effects of SAHA. Effects of drug combinations on cell viability, proliferation, apoptosis and colony forming were assessed in a panel of neuroblastoma cell lines. Treatment with SAHA and SE486-11 increased MYCN ubiquitination and degradation, and markedly inhibited tumorigenesis in neuroblastoma xenografts, and, MYCN transgenic zebrafish and mice. The combination reduced ubiquitin-specific protease 5 (USP5) levels and increased unanchored polyubiquitin chains. Overexpression of USP5 rescued neuroblastoma cells from the cytopathic effects of the combination and reduced unanchored polyubiquitin, suggesting USP5 is a therapeutic target of the combination. SAHA and SE486-11 directly bound to USP5 and the drug combination exhibited a 100-fold higher binding to USP5 than individual drugs alone in microscale thermophoresis assays. MYCN bound to the USP5 promoter and induced USP5 gene expression suggesting that USP5 and MYCN expression created a forward positive feedback loop in neuroblastoma cells. Thus, USP5 acts as an oncogenic cofactor with MYCN in neuroblastoma and the novel combination of HDAC inhibitor with SE486-11 represents a novel therapeutic approach for the treatment of MYCN-driven neuroblastoma.


Assuntos
Carcinogênese/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/tratamento farmacológico , Proteases Específicas de Ubiquitina/genética , Proteínas de Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados/genética , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Xenoenxertos , Humanos , Camundongos , Neuroblastoma/genética , Neuroblastoma/patologia , Bibliotecas de Moléculas Pequenas/farmacologia , Vorinostat/farmacologia , Peixe-Zebra/genética
9.
Mol Cancer Ther ; 20(1): 76-84, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33268570

RESUMO

Staphylococcal nuclease domain-containing protein 1 (SND1) is a multifunctional oncoprotein overexpressed in breast cancer. Binding of metadherin (MTDH) to SND1 results in the stabilization of SND1 and is important in the initiation and progression of breast cancer. Disruption of such interaction is a potential therapeutic for breast cancer. SN1/2 domain of SND1 was used as bait in a phage display screening to identify a 12-amino acid peptide 4-2. The activity of peptide 4-2 was evaluated by ELISA, coimmunoprecipitation, MTS, Western blot analysis, and xenograft mouse model. Peptide 4-2 could disrupt SND1-MTDH interaction. Cell penetrating derivative of peptide 4-2 (CPP-4-2) could penetrate and kill breast cancer cells by disrupting SND1-MTDH interaction and degrading SND1. Tryptophan 10 (W10) of peptide 4-2 was essential in mediating cytotoxicity, SND1 interaction, SND1-MTDH disruption, and SND1 degradation. CPP-4-2 could inhibit the growth of breast cancer in a xenograft mouse model. The SND1-interacting peptide 4-2 could kill breast cancer cells both in vitro and in vivo by interacting with SND1, disrupting SND1-MTDH interaction, and inducing SND1 degradation. W10 was an essential amino acid in the activity of peptide 4-2.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Endonucleases/metabolismo , Proteínas de Membrana/metabolismo , Peptídeos/farmacologia , Proteólise , Proteínas de Ligação a RNA/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Visualização da Superfície Celular , Regulação para Baixo/efeitos dos fármacos , Feminino , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Biológicos , Ligação Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Triptofano/metabolismo
10.
Mol Carcinog ; 59(10): 1209-1226, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32835442

RESUMO

Sal-like protein 4 (SALL4) is overexpressed in breast cancer and might contribute to breast cancer progression, but the molecular mechanism remains unknown. Here, we found that within a group of 371 ethnic Chinese breast cancer patients, SALL4 was associated with lower grade (P = .002) and progesterone receptor positivity (P = .004) for overall cases; lower Ki67 (P = .045) and high vimentin (P = .007) for luminal cases. Patients with high SALL4 expression in lymph node metastasis showed a significantly worse survival than those with low expression. Knockout of SALL4 in a triple-negative breast cancer cell line MDA-MB-231-Red-FLuc-GFP led to suppressed ability in proliferation, clonogenic formation, migration, and mammosphere formation in vitro, tumorigenicity and lung colonization in vivo. On the other hand, overexpression of SALL4 enhanced migration and mammosphere formation in vitro and tumorigenicity in vivo. Mechanistically, there was a positive correlation between SALL4 expression and mesenchymal markers including Zinc finger E-box binding homeobox 1 (ZEB1), vimentin, Slug, and Snail in vivo. Chromatin immunoprecipitation experiment indicated that SALL4 can bind to the promoter region of vimentin (-778 to -550 bp). Taken together, we hypothesize that SALL4 promotes tumor progression in breast cancer by inducing the mesenchymal markers like vimentin through directly binding to its promoter. Increased SALL4 level in metastatic lymph node relative to the primary site is an important poor survival marker in breast cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/secundário , Fatores de Transcrição/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose , Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica , Prognóstico , Fatores de Transcrição/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem
11.
Gastroenterology ; 158(5): 1389-1401.e10, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31930988

RESUMO

BACKGROUND & AIMS: In addition to the Notch and Wnt signaling pathways, energy metabolism also regulates intestinal stem cell (ISC) function. Tumor suppressor and kinase STK11 (also called LKB1) regulates stem cells and cell metabolism. We investigated whether loss of LKB1 alters ISC homeostasis in mice. METHODS: We deleted LKB1 from ISCs in mice using Lgr5-regulated CRE-ERT2 (Lkb1Lgr5-KO mice) and the traced lineages by using a CRE-dependent TdTomato reporter. Intestinal tissues were collected and analyzed by immunohistochemical and immunofluorescence analyses. We purified ISCs and intestinal progenitors using flow cytometry and performed RNA-sequencing analysis. We measured organoid-forming capacity and ISC percentages using intestinal tissues from Lkb1Lgr5-KO mice. We analyzed human Ls174t cells with knockdown of LKB1 or other proteins by immunoblotting, real-time quantitative polymerase chain reaction, and the Seahorse live-cell metabolic assay. RESULTS: Some intestinal crypts from Lkb1Lgr5-KO mice lost ISCs compared with crypts from control mice. However, most crypts from Lkb1Lgr5-KO mice contained functional ISCs that expressed increased levels of Atoh1 messenger RNA (mRNA), acquired a gene expression signature associated with secretory cells, and generated more cells in the secretory lineage compared with control mice. Knockdown of LKB1 in Ls174t cells induced expression of Atoh1 mRNA and a phenotype of increased mucin production; knockdown of ATOH1 prevented induction of this phenotype. The increased expression of Atoh1 mRNA after LKB1 loss from ISCs or Ls174t cells did not involve Notch or Wnt signaling. Knockdown of pyruvate dehydrogenase kinase 4 (PDK4) or inhibition with dichloroacetate reduced the up-regulation of Atoh1 mRNA after LKB1 knockdown in Ls174t cells. Cells with LKB1 knockdown had a reduced rate of oxygen consumption, which was partially restored by PDK4 inhibition with dichloroacetate. ISCs with knockout of LKB1 increased the expression of PDK4 and had an altered metabolic profile. CONCLUSIONS: LKB1 represses transcription of ATOH1, via PDK4, in ISCs, restricting their differentiation into secretory lineages. These findings provide a connection between metabolism and the fate determination of ISCs.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Metabolismo Energético/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Células-Tronco/fisiologia , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular Tumoral , Ácido Dicloroacético/farmacologia , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Mucosa Intestinal/citologia , Intestino Delgado/citologia , Camundongos , Camundongos Knockout , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , RNA-Seq , Transcrição Gênica , Regulação para Cima/efeitos dos fármacos
12.
J Med Chem ; 62(18): 8578-8608, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31465686

RESUMO

The present work describes the syntheses of diverse triazole bridged flavonoid dimers and identifies potent, nontoxic, and highly selective BCRP inhibitors. A homodimer, Ac22(Az8)2, with m-methoxycarbonylbenzyloxy substitution at C-3 of the flavone moieties and a bis-triazole-containing linker (21 atoms between the two flavones) showed low toxicity (IC50 toward L929, 3T3, and HFF-1 > 100 µM), potent BCRP-inhibitory activity (EC50 = 1-2 nM), and high BCRP selectivity (BCRP selectivity over MRP1 and P-gp > 455-909). Ac22(Az8)2 inhibits BCRP-ATPase activity, blocks the drug efflux activity of BCRP, elevates the intracellular drug accumulation, and finally restores the drug sensitivity of BCRP-overexpressing cells. It does not down-regulate the surface BCRP protein expression to enhance the drug retention. Therefore, Ac22(Az8)2 and similar flavonoid dimers appear to be promising candidates for further development into combination therapy to overcome MDR cancers with BCRP overexpression.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Flavonoides/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Triazóis/química , Células 3T3 , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Animais , Antineoplásicos/química , Simulação por Computador , Cobre/química , Dimerização , Desenho de Fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Flavonas/química , Flavonoides/química , Células HEK293 , Humanos , Camundongos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química
13.
Biomaterials ; 217: 119286, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31284125

RESUMO

Antimicrobial peptides (AMPs) have recently attracted great attention due to their rapid action, broad spectrum of activity, and low propensity of resistance development. The successful application of AMPs in the treatment of intracellular infections, however, remains a challenge because of their low penetration efficiency into the pathogen's intracellular niche. Herein, we report that sub-micrometer-sized crystals of the protein Cry3Aa formed within Bacillus thuringiensis are readily and specifically taken up by macrophages. We demonstrate that these protein crystals efficiently encapsulate a known antileishmanial peptide, dermaseptin S1 (DS1), and thereby promote improved cellular uptake of DS1 and its lysosomal accumulation in macrophages. Notably, this targeted delivery of DS1 results in enhanced in vitro and in vivo antileishmanial activity, as well as reduced toxicity to the host macrophages. These findings suggest that the Cry3Aa crystal can be an effective delivery platform for AMPs to treat intramacrophage infections.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Bactérias/química , Sistemas de Liberação de Medicamentos , Endotoxinas/química , Proteínas Hemolisinas/química , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/parasitologia , Proteínas de Anfíbios/farmacologia , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/toxicidade , Proteínas de Bactérias/ultraestrutura , Linhagem Celular Tumoral , Endotoxinas/toxicidade , Feminino , Proteínas Hemolisinas/toxicidade , Proteínas Hemolisinas/ultraestrutura , Hemólise/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Leishmania/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos Endogâmicos BALB C
14.
J Med Chem ; 61(22): 9931-9951, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30351934

RESUMO

A 300-member flavonoid dimer library of multidrug resistance-associated protein 1 (MRP1, ABCC1) modulators was rapidly assembled using "click chemistry". Subsequent high-throughput screening has led to the discovery of highly potent (EC50 ranging from 53 to 298 nM) and safe (selective indexes ranging from >190 to >1887) MRP1 modulators. Some dimers have potency about 6.5- to 36-fold and 64- to 358-fold higher than the well-known MRP1 inhibitors, verapamil, and MK571, respectively. They inhibited DOX efflux and restored intracellular DOX concentration. The most potent modulator, Ac3Az11, was predicted to bind to the bipartite substrate-binding site of MRP1 in a competitive manner. Moreover, it provided sufficient concentration to maintain its plasma level above its in vitro EC50 (53 nM for DOX) for about 90 min. Overall, we demonstrate that "click chemistry" coupled with high throughput screening is a rapid, reliable, and efficient tool in the discovery of compounds having potent MRP1-modualting activity.


Assuntos
Dimerização , Desenho de Fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Flavonoides/química , Flavonoides/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Alcinos/química , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Azidas/química , Linhagem Celular Tumoral , Química Click , Doxorrubicina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Flavonoides/metabolismo , Flavonoides/farmacocinética , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Conformação Proteica
15.
J Clin Invest ; 128(1): 402-414, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29202476

RESUMO

Germline mutations in the gene encoding tumor suppressor kinase LKB1 lead to gastrointestinal tumorigenesis in Peutz-Jeghers syndrome (PJS) patients and mouse models; however, the cell types and signaling pathways underlying tumor formation are unknown. Here, we demonstrated that mesenchymal progenitor- or stromal fibroblast-specific deletion of Lkb1 results in fully penetrant polyposis in mice. Lineage tracing and immunohistochemical analyses revealed clonal expansion of Lkb1-deficient myofibroblast-like cell foci in the tumor stroma. Loss of Lkb1 in stromal cells was associated with induction of an inflammatory program including IL-11 production and activation of the JAK/STAT3 pathway in tumor epithelia concomitant with proliferation. Importantly, treatment of LKB1-defcient mice with the JAK1/2 inhibitor ruxolitinib dramatically decreased polyposis. These data indicate that IL-11-mediated induction of JAK/STAT3 is critical in gastrointestinal tumorigenesis following Lkb1 mutations and suggest that targeting this pathway has therapeutic potential in Peutz-Jeghers syndrome.


Assuntos
Transformação Celular Neoplásica , Interleucina-11/metabolismo , Neoplasias Intestinais/metabolismo , Janus Quinase 1/metabolismo , Janus Quinase 2/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/deficiência , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Neoplasias Gástricas/metabolismo , Proteínas Quinases Ativadas por AMP , Animais , Interleucina-11/genética , Neoplasias Intestinais/genética , Neoplasias Intestinais/patologia , Janus Quinase 1/genética , Janus Quinase 2/genética , Camundongos , Camundongos Knockout , Mutação , Proteínas de Neoplasias/genética , Fator de Transcrição STAT3/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
16.
Biochem Pharmacol ; 124: 10-18, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27984000

RESUMO

MRP1 overexpression in multidrug-resistant cancer cells has been shown to be responsible for collateral sensitivity to some flavonoids that stimulate a huge MRP1-mediated GSH efflux. This massive GSH depletion triggers the death of these cancer cells. We describe here that bivalent flavonoid dimers strikingly stimulate such MRP1-mediated GSH efflux and trigger a 50-100 fold more potent cell death than their corresponding monomers. This selective and massive cell death of MRP1-overexpressing cells (both transfected and drug-selected cell lines) is no longer observed either upon catalytic inactivation of MRP1 or its knockdown by siRNA. The best flavonoid dimer, 4e, kills MRP1-overexpressing cells with a selective ratio higher than 1000 compared to control cells and an EC50 value of 0.1 µM, so far unequaled as a collateral sensitivity agent targeting ABC transporters. This result portends the flavonoid dimer 4e as a very promising compound to appraise in vivo the therapeutic potential of collateral sensitivity for eradication of MRP1-overexpressing chemoresistant cancer cells in tumors.


Assuntos
Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Flavonoides/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Animais , Linhagem Celular Tumoral , Dimerização , Glutationa/metabolismo , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética
17.
Bioorg Chem ; 70: 100-106, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27939960

RESUMO

In the present study, we have reported synthesis and biological evaluation of a series of fifteen 1-(thiophen-2-yl)-9H-pyrido[3,4-b]indole derivatives against both promastigotes and amastigotes of Leishmania parasites responsible for visceral (L. donovani) and cutaneous (L. amazonensis) leishmaniasis. Among these reported analogues, compounds 7b, 7c, 7f, 7g, 7i, 7j, 7m, 7o displayed potent activity (15.55, 7.70, 7.00, 3.80, 14.10, 9.25, 3.10, 4.85µM, respectively) against L. donovani promastigotes than standard drugs miltefosine (15.70µM) and pentamidine (32.70µM) with good selectivity index. In further, in-vitro evaluation against amastigote forms, two compounds 7g (8.80µM) and 7i (7.50µM) showed significant inhibition of L. donovani amastigotes. Standard drug amphotericin B is also used as control to compare inhibition potency of compounds against both promastigote (0.24µM) and amastigote (0.05µM) forms.


Assuntos
Antiprotozoários/química , Antiprotozoários/farmacologia , Indóis/química , Indóis/farmacologia , Leishmania/efeitos dos fármacos , Tiofenos/química , Tiofenos/farmacologia , Animais , Células Cultivadas , Humanos , Leishmania donovani/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Leishmaniose/parasitologia , Macrófagos/parasitologia , Camundongos
18.
Eur J Med Chem ; 125: 795-806, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27750197

RESUMO

In the present study, a total of 25 novel ningalin B analogues were synthesized and evaluated for their P-gp modulating activity in a P-gp overexpressed breast cancer cell line LCC6MDR. Preliminary structure-activity study shows that A ring and its two methoxy groups are important pharmacophores for P-gp inhibiting activity. Among all derivatives, 23 is the most potent P-gp modulator with EC50 of 120-165 nM in reversing paclitaxel, DOX, vinblastine and vincristine resistance. It is relatively safe to use with selective index at least greater than 606 compared to verapamil. Mechanistic study demonstrates that compound 23 reverses P-gp mediated drug resistance by inhibiting transport activity of P-gp, thereby restoring intracellular drug accumulation. In summary, our study demonstrates that ningalin B analogue 23 is a non-cytotoxic and effective P-gp chemosensitizer that can be used in the future for reversing P-gp mediated clinical cancer drug resistance.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Compostos Heterocíclicos com 3 Anéis/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/efeitos dos fármacos , Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Organismos Aquáticos/química , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Relação Estrutura-Atividade
19.
Nat Commun ; 6: 8979, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-26616021

RESUMO

AMP-activated protein kinase (AMPK) inhibits several anabolic pathways such as fatty acid and protein synthesis, and identification of AMPK substrate specificity would be useful to understand its role in particular cellular processes and develop strategies to modulate AMPK activity in a substrate-specific manner. Here we show that SUMOylation of AMPKα1 attenuates AMPK activation specifically towards mTORC1 signalling. SUMOylation is also important for rapid inactivation of AMPK, to allow prompt restoration of mTORC1 signalling. PIAS4 and its SUMO E3 ligase activity are specifically required for the AMPKα1 SUMOylation and the inhibition of AMPKα1 activity towards mTORC1 signalling. The activity of a SUMOylation-deficient AMPKα1 mutant is higher than the wild type towards mTORC1 signalling when reconstituted in AMPKα-deficient cells. PIAS4 depletion reduced growth of breast cancer cells, specifically when combined with direct AMPK activator A769662, suggesting that inhibiting AMPKα1 SUMOylation can be explored to modulate AMPK activation and thereby suppress cancer cell growth.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/genética , Fosforilação , Proteínas de Ligação a Poli-ADP-Ribose , Proteínas Inibidoras de STAT Ativados/genética , Transdução de Sinais , Sumoilação , Serina-Treonina Quinases TOR/genética
20.
Bioorg Med Chem ; 23(17): 5566-73, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26233798

RESUMO

In the present study, a total of 9 novel permethyl ningalin B analogs have been synthesized and evaluated for their P-gp modulating activity in a P-gp overexpressed breast cancer cell line LCC6MDR. Among these derivatives, compound 12 with dimethoxy groups at rings A and B and tri-substitution at ring C with ortho-methoxyethylmorpholine, meta-bromo and para-benzyloxy groups displays the most potent P-gp modulating activity with EC50 of 423 nM to reverse paclitaxel resistance. It is non-toxic towards L929 fibroblast with IC50 greater than 100 µM and with selective index greater than 236. Its mechanism to reverse P-gp mediated drug resistance is by virtue of inhibiting transport activity of P-gp, restoring intracellular drug accumulation and eventually chemosensitizing the cancer cells to anticancer drug again. Moreover, compound 12 showed better solubility (405 ng/mL) than hit compound 1 in phosphate buffer (pH 4.0). In summary, our study demonstrates that permethyl ningalin B derivative 12 is non-toxic and efficient P-gp inhibitor that is a potential candidate to be used clinically to reverse P-gp mediated cancer drug resistance.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/metabolismo , Compostos Heterocíclicos com 3 Anéis/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA