Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Res Commun ; 4(4): 1024-1040, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592451

RESUMO

Non-Hodgkin lymphoma (NHL) is a common cancer in both men and women and represents a significant cancer burden worldwide. Primary effusion lymphoma (PEL) is a subtype of NHL infected with Kaposi sarcoma-associated herpesvirus (KSHV). PEL is an aggressive and lethal cancer with no current standard of care, owing largely to its propensity to develop resistance to current chemotherapeutic regimens. Here, we report a reliance of KSHV-positive PEL on the mitotic kinase, NEK2, for survival. Inhibition of NEK2 with the inhibitor, JH295, resulted in caspase 3-mediated apoptotic cell death of PEL. Furthermore, NEK2 inhibition significantly prolonged survival and reduced tumor burden in a PEL mouse model. We also demonstrate that the ABC transporter proteins, MDR1 and MRP, are most active in PEL and that inhibition of NEK2 in PEL reduced the expression and activity of these ABC transporter proteins, which are known to mediate drug resistance in cancer. Finally, we report that JH295 treatment sensitized lymphomas to other chemotherapeutic agents such as rapamycin, resulting in enhanced cancer cell death. Overall, these data offer important insight into the mechanisms underlying PEL survival and drug resistance, and suggest that NEK2 is a viable therapeutic target for PEL. SIGNIFICANCE: The mitotic kinase, NEK2, is important for the survival of KSHV-positive PEL. NEK2 inhibition resulted in PEL apoptosis and reduced tumor burden in a mouse model. NEK2 inhibition also reduced drug resistance.


Assuntos
Herpesvirus Humano 8 , Linfoma não Hodgkin , Linfoma de Efusão Primária , Masculino , Animais , Camundongos , Humanos , Feminino , Linfoma de Efusão Primária/tratamento farmacológico , Transportadores de Cassetes de Ligação de ATP , Agressão , Modelos Animais de Doenças , Quinases Relacionadas a NIMA/genética
2.
Cell Death Dis ; 14(10): 688, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37852997

RESUMO

Oncogenic viruses have developed various strategies to antagonize cell death and maintain lifelong persistence in their host, a relationship that may contribute to cancer development. Understanding how viruses inhibit cell death is essential for understanding viral oncogenesis. Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with three different cancers in the human population, including Kaposi's sarcoma (KS), the most common cancer in HIV patients. Previous studies have indicated that the KSHV-encoded viral protein kinase (vPK) impacts many processes dysregulated in tumorigenesis. Here, we report that vPK protects cells from apoptosis mediated by Caspase-3. Human umbilical vein endothelial cells (HUVECs) expressing vPK (HUVEC-vPK) have a survival advantage over control HUVEC under conditions of extrinsic- and intrinsic-mediated apoptosis. Abolishing the catalytic activity of vPK attenuated this survival advantage. We found that KSHV vPK-expressing HUVECs exhibited increased activation of cellular AKT kinase, a cell survival kinase, compared to control cells without vPK. In addition, we report that vPK directly binds the pleckstrin homology (PH) domain of AKT1 but not AKT2 or AKT3. Treatment of HUVEC-vPK cells with a pan-AKT inhibitor Miransertib (ARQ 092) reduced the overall phosphorylation of AKT, resulting in the cleavage of Caspase-3 and the induction of apoptosis. Furthermore, vPK expression activated VEGF/VEGFR2 in HUVECs and promoted angiogenesis through the AKT pathway. vPK expression also inhibited the cytotoxicity of cisplatin in vitro and in vivo. Collectively, our findings demonstrate that vPK's ability to augment cell survival and promote angiogenesis is critically dependent on AKT signaling, which is relevant for future therapies for treating KSHV-associated cancers.


Assuntos
Infecções por HIV , Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiologia , Proteínas Virais/metabolismo , Caspase 3/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sobrevivência Celular , Células Endoteliais da Veia Umbilical Humana/metabolismo
3.
J Virol ; 97(3): e0176322, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36995092

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi sarcoma (KS), the plasmablastic form of multicentric Castleman's disease, and primary effusion lymphoma. In sub-Saharan Africa, KS is the most common HIV-related malignancy and one of the most common childhood cancers. Immunosuppressed patients, including HIV-infected patients, are more prone to KSHV-associated disease. KSHV encodes a viral protein kinase (vPK) that is expressed from ORF36. KSHV vPK contributes to the optimal production of infectious viral progeny and upregulation of protein synthesis. To elucidate the interactions of vPK with cellular proteins in KSHV-infected cells, we used a bottom-up proteomics approach and identified host protein ubiquitin-specific peptidase 9X-linked (USP9X) as a potential interactor of vPK. Subsequently, we validated this interaction using a co-immunoprecipitation assay. We report that both the ubiquitin-like and the catalytic domains of USP9X are important for association with vPK. To uncover the biological relevance of the USP9X/vPK interaction, we investigated whether the knockdown of USP9X would modulate viral reactivation. Our data suggest that depletion of USP9X inhibits both viral reactivation and the production of infectious virions. Understanding how USP9X influences the reactivation of KSHV will provide insights into how cellular deubiquitinases regulate viral kinase activity and how viruses co-opt cellular deubiquitinases to propagate infection. Hence, characterizing the roles of USP9X and vPK during KSHV infection constitutes a first step toward identifying a potentially critical interaction that could be targeted by future therapeutics. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi sarcoma (KS), the plasmablastic form of multicentric Castleman's disease, and primary effusion lymphoma. In sub-Saharan Africa, KS is the most common HIV-related malignancy. KSHV encodes a viral protein kinase (vPK) that aids viral replication. To elucidate the interactions of vPK with cellular proteins in KSHV-infected cells, we used an affinity purification approach and identified host protein ubiquitin-specific peptidase 9X-linked (USP9X) as a potential interactor of vPK. Depletion of USP9X inhibits both viral reactivation and the production of infectious virions. Overall, our data suggest a proviral role for USP9X.


Assuntos
Herpesvirus Humano 8 , Sarcoma de Kaposi , Ubiquitina Tiolesterase , Criança , Humanos , Enzimas Desubiquitinantes , Herpesvirus Humano 8/fisiologia , Infecções por HIV/complicações , Linfoma de Efusão Primária , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/patologia , Sarcoma de Kaposi/virologia , Ubiquitina Tiolesterase/genética , Proteínas Virais/genética
4.
PLoS Pathog ; 18(11): e1010990, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36417478

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr (EBV) are gammaherpesviruses associated with multiple human malignancies. KSHV is the etiological agent of Kaposi's Sarcoma, primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD). EBV is associated with Burkitt's lymphoma (BL), Hodgkin's lymphoma (HL), nasopharyngeal carcinoma (NPC) and gastric carcinoma (GC). KSHV and EBV establish life-long latency in the human host with intermittent periods of lytic reactivation. Here, we identified a cellular factor named transforming growth factor-beta regulator 4 (TBRG4) that plays a role in the gammaherpesvirus lifecycle. We find that TBRG4, a protein that is localized to the mitochondria, can regulate lytic reactivation from latency of both KSHV and EBV. Knockdown of TBRG4 in cells latently infected with KSHV or EBV induced viral lytic gene transcription and replication. TBRG4 deficiency causes mitochondrial stress and increases reactive oxygen species (ROS) production. Treatment with a ROS scavenger decreased viral reactivation from latency in TBRG4-depleted cells. These data suggest that TBRG4 serves as a cellular repressor of KSHV and EBV reactivation through the regulation of ROS production.


Assuntos
Herpesvirus Humano 4 , Herpesvirus Humano 8 , Proteínas Mitocondriais , Latência Viral , Humanos , Herpesvirus Humano 4/fisiologia , Herpesvirus Humano 8/fisiologia , Proteínas Mitocondriais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Ligação a RNA/metabolismo
5.
mBio ; 11(4)2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753499

RESUMO

Stimulator of interferon genes (STING) is an essential adaptor protein of the innate DNA-sensing signaling pathway, which recognizes genomic DNA from invading pathogens to establish antiviral responses in host cells. STING activity is tightly regulated by several posttranslational modifications, including phosphorylation. However, specifically how the phosphorylation status of STING is modulated by kinases and phosphatases remains to be fully elucidated. In this study, we identified protein phosphatase 6 catalytic subunit (PPP6C) as a binding partner of Kaposi's sarcoma-associated herpesvirus (KSHV) open reading frame 48 (ORF48), which is a negative regulator of the cyclic GMP-AMP synthase (cGAS)-STING pathway. PPP6C depletion enhances double-stranded DNA (dsDNA)-induced and 5'ppp double-stranded RNA (dsRNA)-induced but not poly(I:C)-induced innate immune responses. PPP6C negatively regulates dsDNA-induced IRF3 activation but not NF-κB activation. Deficiency of PPP6C greatly inhibits the replication of herpes simplex virus 1 (HSV-1) and vesicular stomatitis virus (VSV) as well as the reactivation of KSHV, due to increased type I interferon production. We further demonstrated that PPP6C interacts with STING and that loss of PPP6C enhances STING phosphorylation. These data demonstrate the important role of PPP6C in regulating STING phosphorylation and activation, which provides an additional mechanism by which the host responds to viral infection.IMPORTANCE Cytosolic DNA, which usually comes from invading microbes, is a dangerous signal to the host. The cGAS-STING pathway is the major player that detects cytosolic DNA and then evokes the innate immune response. As an adaptor protein, STING plays a central role in controlling activation of the cGAS-STING pathway. Although transient activation of STING is essential to trigger the host defense during pathogen invasion, chronic STING activation has been shown to be associated with several autoinflammatory diseases. Here, we report that PPP6C negatively regulates the cGAS-STING pathway by removing STING phosphorylation, which is required for its activation. Dephosphorylation of STING by PPP6C helps prevent the sustained production of STING-dependent cytokines, which would otherwise lead to severe autoimmune disorders. This work provides additional mechanisms on the regulation of STING activity and might facilitate the development of novel therapeutics designed to prevent a variety of autoinflammatory disorders.


Assuntos
Herpesvirus Humano 1/genética , Imunidade Inata , Proteínas de Membrana/imunologia , Fosfoproteínas Fosfatases/imunologia , Vesiculovirus/genética , Animais , Chlorocebus aethiops , Regulação da Expressão Gênica , Células HEK293 , Herpesvirus Humano 1/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Fosfoproteínas Fosfatases/genética , Fosforilação , Células Vero , Vesiculovirus/fisiologia , Replicação Viral/genética , Replicação Viral/imunologia
6.
Proc Natl Acad Sci U S A ; 116(33): 16541-16550, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31346082

RESUMO

Non-Hodgkin lymphomas (NHLs) make up the majority of lymphoma diagnoses and represent a very diverse set of malignancies. We sought to identify kinases uniquely up-regulated in different NHL subtypes. Using multiplexed inhibitor bead-mass spectrometry (MIB/MS), we found Tyro3 was uniquely up-regulated and important for cell survival in primary effusion lymphoma (PEL), which is a viral lymphoma infected with Kaposi's sarcoma-associated herpesvirus (KSHV). Tyro3 was also highly expressed in PEL cell lines as well as in primary PEL exudates. Based on this discovery, we developed an inhibitor against Tyro3 named UNC3810A, which hindered cell growth in PEL, but not in other NHL subtypes where Tyro3 was not highly expressed. UNC3810A also significantly inhibited tumor progression in a PEL xenograft mouse model that was not seen in a non-PEL NHL model. Taken together, our data suggest Tyro3 is a therapeutic target for PEL.


Assuntos
Linfoma não Hodgkin/enzimologia , Linfoma de Efusão Primária/enzimologia , Terapia de Alvo Molecular , Proteoma/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Linfócitos B/virologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
7.
Biol Chem ; 398(8): 911-918, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28284028

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of three human malignancies: Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. To persist and replicate within host cells, KSHV encodes proteins that modulate different signaling pathways. Manipulation of cell survival and proliferative networks by KSHV can promote the development of KSHV-associated malignancies. In this review, we discuss recent updates on KSHV pathogenesis and the viral life cycle. We focus on proteins encoded by KSHV that modulate the phosphatidylinositol-4,5-bisphosphate 3 kinase and extracellular signal-regulated kinases 1/2 pathways to create an environment favorable for viral replication and the development of KSHV malignancies.


Assuntos
Carcinogênese , Herpesvirus Humano 8/fisiologia , Transdução de Sinais , Animais , Humanos , Internalização do Vírus , Latência Viral
8.
Proc Natl Acad Sci U S A ; 113(28): 7876-81, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27342859

RESUMO

Viruses depend upon the host cell for manufacturing components of progeny virions. To mitigate the inextricable dependence on host cell protein synthesis, viruses can modulate protein synthesis through a variety of mechanisms. We report that the viral protein kinase (vPK) encoded by open reading frame 36 (ORF36) of Kaposi's sarcoma-associated herpesvirus (KSHV) enhances protein synthesis by mimicking the function of the cellular protein S6 kinase (S6KB1). Similar to S6KB1, vPK phosphorylates the ribosomal S6 protein and up-regulates global protein synthesis. vPK also augments cellular proliferation and anchorage-independent growth. Furthermore, we report that both vPK and S6KB1 phosphorylate the enzyme 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 2 (PFKFB2) and that both kinases promote endothelial capillary tubule formation.


Assuntos
Herpesvirus Humano 8/enzimologia , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Virais/metabolismo , Simulação por Computador , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Modelos Moleculares , Proteínas Quinases S6 Ribossômicas 70-kDa/química , Especificidade por Substrato , Proteínas Virais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA