Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 11(20): 9967-9987, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34815798

RESUMO

Background: BRCA1 plays critical roles in mammary gland development and mammary tumorigenesis. And loss of BRCA1 induces mammary tumors in a stochastic manner. These tumors present great heterogeneity at both intertumor and intratumor levels. Methods: To comprehensively elucidate the heterogeneity of BRCA1 deficient mammary tumors and the underlying mechanisms for tumor initiation and progression, we conducted bulk and single cell RNA sequencing (scRNA-seq) on both mammary gland cells and mammary tumor cells isolated from Brca1 knockout mice. Results: We found the BRCA1 deficient tumors could be classified into four subtypes with distinct molecular features and different sensitivities to anti-cancer drugs at the intertumor level. Whereas within the tumors, heterogeneous subgroups were classified mainly due to the different activities of cell proliferation, DNA damage response/repair and epithelial-to-mesenchymal transition (EMT). Besides, we reconstructed the BRCA1 related mammary tumorigenesis to uncover the transcriptomes alterations during this process via pseudo-temporal analysis of the scRNA-seq data. Furthermore, from candidate markers for BRCA1 mutant tumors, we discovered and validated one oncogene Mrc2, whose loss could reduce mammary tumor growth in vitro and in vivo. Conclusion: Our study provides a useful resource for better understanding of mammary tumorigenesis induced by BRCA1 deficiency.


Assuntos
Proteína BRCA1/genética , Neoplasias da Mama/genética , Carcinogênese/genética , Animais , Proteína BRCA1/metabolismo , Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Reparo do DNA/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Genes BRCA1/fisiologia , Heterogeneidade Genética , Humanos , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Transcriptoma/genética
2.
Cancer Res ; 81(24): 6219-6232, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34666996

RESUMO

Systematic testing of existing drugs and their combinations is an attractive strategy to exploit approved drugs for repurposing and identifying the best actionable treatment options. To expedite the search among many possible drug combinations, we designed a combinatorial CRISPR-Cas9 screen to inhibit druggable targets. Coblockade of the N-methyl-d-aspartate receptor (NMDAR) with targets of first-line kinase inhibitors reduced hepatocellular carcinoma (HCC) cell growth. Clinically, HCC patients with low NMDAR1 expression showed better survival. The clinically approved NMDAR antagonist ifenprodil synergized with sorafenib to induce the unfolded protein response, trigger cell-cycle arrest, downregulate genes associated with WNT signaling and stemness, and reduce self-renewal ability of HCC cells. In multiple HCC patient-derived organoids and human tumor xenograft models, the drug combination, but neither single drug alone, markedly reduced tumor-initiating cancer cell frequency. Because ifenprodil has an established safety history for its use as a vasodilator in humans, our findings support the repurposing of this drug as an adjunct for HCC treatment to improve clinical outcome and reduce tumor recurrence. These results also validate an approach for readily discovering actionable combinations for cancer therapy. SIGNIFICANCE: Combinatorial CRISPR-Cas9 screening identifies actionable targets for HCC therapy, uncovering the potential of combining the clinically approved drugs ifenprodil and sorafenib as a new effective treatment regimen.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Biomarcadores Tumorais/metabolismo , Sistemas CRISPR-Cas , Carcinoma Hepatocelular/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Animais , Apoptose , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Piperidinas/administração & dosagem , Sorafenibe/administração & dosagem , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Front Immunol ; 12: 679184, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276666

RESUMO

Macrophages play an important role in the host defense mechanism. In response to infection, macrophages activate a genetic program of pro-inflammatory response to kill any invading pathogen, and initiate an adaptive immune response. We have identified RUVBL2 - an ATP-binding protein belonging to the AAA+ (ATPase associated with diverse cellular activities) superfamily of ATPases - as a novel regulator in pro-inflammatory response of macrophages. Gene knockdown of Ruvbl2, or pharmacological inhibition of RUVBL1/2 activity, compromises type-2 nitric oxide synthase (Nos2) gene expression, nitric oxide production and anti-bacterial activity of mouse macrophages in response to lipopolysaccharides (LPS). RUVBL1/2 inhibitor similarly inhibits pro-inflammatory response in human monocytes, suggesting functional conservation of RUVBL1/2 in humans. Transcriptome analysis further revealed that major LPS-induced pro-inflammatory pathways in macrophages are regulated in a RUVBL1/2-dependent manner. Furthermore, RUVBL1/2 inhibition significantly reduced the level of histone H3K4me3 at the promoter region of Nos2 and Il6, two prototypical pro-inflammatory genes, and diminished the recruitment of NF-kappaB to the corresponding enhancers. Our study reveals RUVBL1/2 as an integral component of macrophage pro-inflammatory responses through epigenetic regulations, and the therapeutic potentials of RUVBL1/2 inhibitors in the treatment of diseases caused by aberrant activation of pro-inflammatory pathways.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Transporte/metabolismo , DNA Helicases/metabolismo , Histonas/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Complexos Multiproteicos/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Animais , Proteínas de Transporte/genética , Citocinas/metabolismo , DNA Helicases/genética , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/imunologia , Metilação , Camundongos , Óxido Nítrico/metabolismo , Processamento de Proteína Pós-Traducional , Células RAW 264.7
4.
Theranostics ; 11(5): 2442-2459, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33500735

RESUMO

Cancer growth is usually accompanied by metastasis which kills most cancer patients. Here we aim to study the effect of cisplatin at different doses on breast cancer growth and metastasis. Methods: We used cisplatin to treat breast cancer cells, then detected the migration of cells and the changes of epithelial-mesenchymal transition (EMT) markers by migration assay, Western blot, and immunofluorescent staining. Next, we analyzed the changes of RNA expression of genes by RNA-seq and confirmed the binding of activating transcription factor 3 (ATF3) to cytoskeleton related genes by ChIP-seq. Thereafter, we combined cisplatin and paclitaxel in a neoadjuvant setting to treat xenograft mouse models. Furthermore, we analyzed the association of disease prognosis with cytoskeletal genes and ATF3 by clinical data analysis. Results: When administered at a higher dose (6 mg/kg), cisplatin inhibits both cancer growth and metastasis, yet with strong side effects, whereas a lower dose (2 mg/kg) cisplatin blocks cancer metastasis without obvious killing effects. Cisplatin inhibits cancer metastasis through blocking early steps of EMT. It antagonizes transforming growth factor beta (TGFß) signaling through suppressing transcription of many genes involved in cytoskeleton reorganization and filopodia formation which occur early in EMT and are responsible for cancer metastasis. Mechanistically, TGFß and fibronectin-1 (FN1) constitute a positive reciprocal regulation loop that is critical for activating TGFß/SMAD3 signaling, which is repressed by cisplatin induced expression of ATF3. Furthermore, neoadjuvant administration of cisplatin at 2 mg/kg in conjunction with paclitaxel inhibits cancer growth and blocks metastasis without causing obvious side effects by inhibiting colonization of cancer cells in the target organs. Conclusion: Thus, cisplatin prevents breast cancer metastasis through blocking early EMT, and the combination of cisplatin and paclitaxel represents a promising therapy for killing breast cancer and blocking tumor metastasis.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Movimento Celular , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares/tratamento farmacológico , Animais , Apoptose , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Cisplatino/administração & dosagem , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Nus , Paclitaxel/administração & dosagem , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Comput Struct Biotechnol J ; 18: 2610-2620, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33033581

RESUMO

Gastric neuroendocrine carcinoma (GNEC) is rare cancer detected in the stomach. Previously, we demonstrated that the poorer prognosis of GNEC patients compared with gastric adenocarcinoma (GAC) patients was probably due to the lack of response to chemotherapy. Thus, it is crucial to study the specific GNEC gene expression pattern and investigate chemoresistance mechanism of GNEC. The transcriptome of GNEC patients was compared with that of GAC patients using RNA-seq. The KEGG analysis was employed to explore the specific differential expression gene function enrichment pattern. In addition, the transcriptomes of two GNEC cell lines, ECC10 and ECC12, were also compared with those of two GAC cell lines, MGC-803 and AGS, using RNA-seq. Comparing patient samples and cell lines transcriptome data, we try to uncover the potential targets and pathways which may affect the chemoresistance of GNEC. By combing all transcriptome data, we identified 22 key genes that were specifically up-regulated in GNEC. This panel of genes probably involves in the chemoresistance of GNEC. From our current experimental data, NeuroD1, one of the 22 genes, is associated with the prognosis of GNEC patients. Knockdown of NeuroD1 enhanced the sensitivity to irinotecan of GNEC cell lines. Our research sheds light in identifying a panel of novel therapeutic target specifically for GNEC clinical treatment which has not been reported before.

6.
Nat Commun ; 11(1): 4875, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978388

RESUMO

Single-cell whole-exome sequencing (scWES) is a powerful approach for deciphering intratumor heterogeneity and identifying cancer drivers. So far, however, simultaneous analysis of single nucleotide variants (SNVs) and copy number variations (CNVs) of a single cell has been challenging. By analyzing SNVs and CNVs simultaneously in bulk and single cells of premalignant tissues and tumors from mouse and human BRCA1-associated breast cancers, we discover an evolution process through which the tumors initiate from cells with SNVs affecting driver genes in the premalignant stage and malignantly progress later via CNVs acquired in chromosome regions with cancer driver genes. These events occur randomly and hit many putative cancer drivers besides p53 to generate unique genetic and pathological features for each tumor. Upon this, we finally identify a tumor metastasis suppressor Plekha5, whose deficiency promotes cancer metastasis to the liver and/or lung.


Assuntos
Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Predisposição Genética para Doença/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lesões Pré-Cancerosas/genética , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA , Modelos Animais de Doenças , Heterogeneidade Genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fígado/patologia , Pulmão/patologia , Camundongos , Camundongos Knockout , Mutação , Lesões Pré-Cancerosas/patologia , Transcriptoma
7.
Cell Rep ; 32(6): 108020, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32783942

RESUMO

We present a CRISPR-based multi-gene knockout screening system and toolkits for extensible assembly of barcoded high-order combinatorial guide RNA libraries en masse. We apply this system for systematically identifying not only pairwise but also three-way synergistic therapeutic target combinations and successfully validate double- and triple-combination regimens for suppression of cancer cell growth and protection against Parkinson's disease-associated toxicity. This system overcomes the practical challenges of experimenting on a large number of high-order genetic and drug combinations and can be applied to uncover the rare synergistic interactions between druggable targets.


Assuntos
Sistemas CRISPR-Cas , Combinação de Medicamentos , Sistemas de Liberação de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Animais , Antineoplásicos/farmacologia , Drosophila melanogaster , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , RNA Guia de Cinetoplastídeos
8.
Nat Commun ; 11(1): 3256, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591500

RESUMO

BRCA1 mutation carriers have a higher risk of developing triple-negative breast cancer (TNBC), which is a refractory disease due to its non-responsiveness to current clinical targeted therapies. Using the Sleeping Beauty transposon system in Brca1-deficient mice, we identified 169 putative cancer drivers, among which Notch1 is a top candidate for accelerating TNBC by promoting the epithelial-mesenchymal transition (EMT) and regulating the cell cycle. Activation of NOTCH1 suppresses mitotic catastrophe caused by BRCA1 deficiency by restoring S/G2 and G2/M cell cycle checkpoints, which may through activation of ATR-CHK1 signalling pathway. Consistently, analysis of human breast cancer tissue demonstrates NOTCH1 is highly expressed in TNBCs, and the activated form of NOTCH1 correlates positively with increased phosphorylation of ATR. Additionally, we demonstrate that inhibition of the NOTCH1-ATR-CHK1 cascade together with cisplatin synergistically kills TNBC by targeting the cell cycle checkpoint, DNA damage and EMT, providing a potent clinical option for this fatal disease.


Assuntos
Proteína BRCA1/deficiência , Carcinogênese/patologia , Receptor Notch1/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Alelos , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA1/metabolismo , Morte Celular , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/metabolismo , Elementos de DNA Transponíveis/genética , Progressão da Doença , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Knockout , Mitose , Mutação/genética , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/genética
9.
Oncogene ; 37(49): 6341-6356, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30042414

RESUMO

BRCA1 is a tumor suppressor frequently mutated in breast and ovarian cancer, serving it as a target for therapeutic exploitation. Here, we show that BRCA1 has a synthetic lethality interaction with an epigenetics regulator, bromodomain and extra-terminal domain (BET). BET inhibition led to gene expression changes reversing MYC-dependent transcription repression of a redox regulator, thioredoxin-interacting protein (TXNIP), via switching the promoter occupant from MYC to MondoA:MLX complex. Reversing the MYC-TXNIP axis inhibited thioredoxin activity and elevated cellular oxidative stress, causing DNA damages that are detrimental to BRCA1-deficient breast cancer cells. Tumor xenograft models and breast cancer clinical data analyses further demonstrated an in vivo synthetic lethality interaction and clinical association between BET/TXNIP and BRCA1 deficiency in the survival of breast cancer patients.


Assuntos
Proteína BRCA1/deficiência , Neoplasias da Mama/patologia , Inibidores Enzimáticos/farmacologia , Proteínas/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Proteína BRCA1/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/fisiologia , Genes BRCA1 , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Quinazolinonas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Biomaterials ; 133: 275-286, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28460350

RESUMO

Human stem cells are vulnerable to unfavorable conditions, and their transportation relies on costly and inconvenient cryopreservation. We report here that human mesenchymal stem cells (MSC) in spheroids survived ambient conditions (AC) many days longer than in monolayer. Under AC, the viability of MSC in spheroids remained >90% even after seven days, whereas MSC in monolayer mostly died fast. AC-exposed MSC spheroids, after recovery under normal monolayer culture conditions with controlled carbon dioxide and humidity contents, resumed typical morphology and proliferation, and retained differentiating and immunosuppressive capabilities. RNA-sequencing and other assays demonstrate that reduced cell metabolism and proliferation correlates to the enhanced survival of AC-exposed MSC in spheroids versus monolayer. Moreover, AC-exposed MSC, when injected as either single cells or spheroids, retained therapeutic effects in vivo in mouse colitis models. Spheroidal formation also prolonged survival and sustained pluripotency of human embryonic stem cells kept under AC. Therefore, this work offers an alternative and relatively simple method termed spheropreservation versus the conventional method cryopreservation. It shall remarkably simplify long-distance transportation of stem cells of these and probably also other types within temperature-mild areas, and facilitate therapeutic application of MSC as spheroids without further processing.


Assuntos
Técnicas de Cultura de Células/métodos , Esferoides Celulares/citologia , Células-Tronco/citologia , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA