Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cell Mol Gastroenterol Hepatol ; 17(5): 687-695, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38246591

RESUMO

Cancer-associated fibroblasts (CAFs), a heterogenous population, can promote cancer cell proliferation, migration, invasion, immunosuppression, and therapeutic resistance in solid tumors. These effects are mediated through secretion of cytokines and growth factors, remodeling of the extracellular matrix, and providing metabolic support for cancer cells. The presence of CAFs in esophageal carcinoma are associated with reduced overall survival and increased resistance to chemotherapy and radiotherapy; thus, identifying therapeutic vulnerabilities of CAFs is a necessity. In esophageal cancer, the mechanisms for CAF recruitment, CAF-mediated promotion of tumorigenesis, metastatic dissemination, and therapeutic resistance have yet to be fully evaluated. Here, we provide an overview of the current understanding of CAFs in esophageal cancer, namely in esophageal squamous cell carcinoma and esophageal adenocarcinoma, as well as in the preneoplastic conditions that predispose to these cancers. Interestingly, there is a discrepancy in our knowledge of CAF biology between esophageal cancer subtypes, with very few studies in esophageal adenocarcinoma, and its precursor lesion Barrett's esophagus, compared with esophageal squamous cell carcinoma. We propose that although great strides have been made, certain questions remain to which answers hopefully will emerge to have an impact on biomarker diagnostics and translational therapeutics.


Assuntos
Adenocarcinoma , Fibroblastos Associados a Câncer , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Adenocarcinoma/patologia
2.
Oncoimmunology ; 11(1): 2029298, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35127252

RESUMO

The oncogenic MUC1-C protein drives dedifferentiation of castrate resistant prostate cancer (CRPC) cells in association with chromatin remodeling. The present work demonstrates that MUC1-C is necessary for expression of IFNGR1 and activation of the type II interferon-gamma (IFN-γ) pathway. We show that MUC1-C→ARID1A/BAF signaling induces IFNGR1 transcription and that MUC1-C-induced activation of the NuRD complex suppresses FBXW7 in stabilizing the IFNGR1 protein. MUC1-C and NuRD were also necessary for expression of the downstream STAT1 and IRF1 transcription factors. We further demonstrate that MUC1-C and PBRM1/PBAF are necessary for IRF1-induced expression of (i) IDO1, WARS and PTGES, which metabolically suppress the immune tumor microenvironment (TME), and (ii) the ISG15 and SERPINB9 inhibitors of T cell function. Of translational relevance, we show that MUC1 associates with expression of IFNGR1, STAT1 and IRF1, as well as the downstream IDO1, WARS, PTGES, ISG15 and SERPINB9 immunosuppressive effectors in CRPC tumors. Analyses of scRNA-seq data further demonstrate that MUC1 correlates with cancer stem cell (CSC) and IFN gene signatures across CRPC cells. Consistent with these results, MUC1 associates with immune cell-depleted "cold" CRPC TMEs. These findings demonstrate that MUC1-C integrates chronic activation of the type II IFN-γ pathway and induction of chromatin remodeling complexes in linking the CSC state with immune evasion.


Assuntos
Montagem e Desmontagem da Cromatina , Interferon gama , Mucina-1 , Neoplasias de Próstata Resistentes à Castração , Montagem e Desmontagem da Cromatina/imunologia , Humanos , Terapia de Imunossupressão , Masculino , Mucina-1/imunologia , Neoplasias de Próstata Resistentes à Castração/imunologia , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores de Interferon/imunologia , Transdução de Sinais/imunologia , Microambiente Tumoral , Receptor de Interferon gama
3.
Genes Dev ; 35(7-8): 528-541, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33737385

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the most lethal cancers worldwide and evolves often to lung metastasis. P53R175H (homologous to Trp53R172H in mice) is a common hot spot mutation. How metastasis is regulated by p53R175H in ESCC remains to be investigated. To investigate p53R175H-mediated molecular mechanisms, we used a carcinogen-induced approach in Trp53R172H/- mice to model ESCC. In the primary Trp53R172H/- tumor cell lines, we depleted Trp53R172H (shTrp53) and observed a marked reduction in cell invasion in vitro and lung metastasis burden in a tail-vein injection model in comparing isogenic cells (shCtrl). Furthermore, we performed bulk RNA-seq to compare gene expression profiles of metastatic and primary shCtrl and shTrp53 cells. We identified the YAP-BIRC5 axis as a potential mediator of Trp53R172H -mediated metastasis. We demonstrate that expression of Survivin, an antiapoptotic protein encoded by BIRC5, increases in the presence of Trp53R172H Furthermore, depletion of Survivin specifically decreases Trp53R172H-driven lung metastasis. Mechanistically, Trp53R172H but not wild-type Trp53, binds with YAP in ESCC cells, suggesting their cooperation to induce Survivin expression. Furthermore, Survivin high expression level is associated with increased metastasis in several GI cancers. Taken together, this study unravels new insights into how mutant p53 mediates metastasis.


Assuntos
Neoplasias Pulmonares/fisiopatologia , Survivina/genética , Survivina/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Pulmonares/genética , Camundongos , Mutação , Metástase Neoplásica , Transcriptoma , Proteína Supressora de Tumor p53/metabolismo
5.
Nat Commun ; 11(1): 338, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31953400

RESUMO

Neuroendocrine prostate cancer (NEPC) is an aggressive malignancy with no effective targeted therapies. The oncogenic MUC1-C protein is overexpressed in castration-resistant prostate cancer (CRPC) and NEPC, but its specific role is unknown. Here, we demonstrate that upregulation of MUC1-C in androgen-dependent PC cells suppresses androgen receptor (AR) axis signaling and induces the neural BRN2 transcription factor. MUC1-C activates a MYC→BRN2 pathway in association with induction of MYCN, EZH2 and NE differentiation markers (ASCL1, AURKA and SYP) linked to NEPC progression. Moreover, MUC1-C suppresses the p53 pathway, induces the Yamanaka pluripotency factors (OCT4, SOX2, KLF4 and MYC) and drives stemness. Targeting MUC1-C decreases PC self-renewal capacity and tumorigenicity, suggesting a potential therapeutic approach for CRPC and NEPC. In PC tissues, MUC1 expression associates with suppression of AR signaling and increases in BRN2 expression and NEPC score. These results highlight MUC1-C as a master effector of lineage plasticity driving progression to NEPC.


Assuntos
Carcinoma Neuroendócrino/metabolismo , Progressão da Doença , Mucina-1/metabolismo , Plasticidade Neuronal/fisiologia , Neoplasias da Próstata/metabolismo , Animais , Aurora Quinase A/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinogênese/genética , Carcinoma Neuroendócrino/genética , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Camundongos , Camundongos Nus , Mucina-1/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores do Domínio POU/metabolismo , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Proteínas Proto-Oncogênicas c-myc , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais , Sinaptofisina/metabolismo , Proteína Supressora de Tumor p53/metabolismo
6.
Nat Med ; 25(2): 292-300, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30664779

RESUMO

Chordoma is a primary bone cancer with no approved therapy1. The identification of therapeutic targets in this disease has been challenging due to the infrequent occurrence of clinically actionable somatic mutations in chordoma tumors2,3. Here we describe the discovery of therapeutically targetable chordoma dependencies via genome-scale CRISPR-Cas9 screening and focused small-molecule sensitivity profiling. These systematic approaches reveal that the developmental transcription factor T (brachyury; TBXT) is the top selectively essential gene in chordoma, and that transcriptional cyclin-dependent kinase (CDK) inhibitors targeting CDK7/12/13 and CDK9 potently suppress chordoma cell proliferation. In other cancer types, transcriptional CDK inhibitors have been observed to downregulate highly expressed, enhancer-associated oncogenic transcription factors4,5. In chordoma, we find that T is associated with a 1.5-Mb region containing 'super-enhancers' and is the most highly expressed super-enhancer-associated transcription factor. Notably, transcriptional CDK inhibition leads to preferential and concentration-dependent downregulation of cellular brachyury protein levels in all models tested. In vivo, CDK7/12/13-inhibitor treatment substantially reduces tumor growth. Together, these data demonstrate small-molecule targeting of brachyury transcription factor addiction in chordoma, identify a mechanism of T gene regulation that underlies this therapeutic strategy, and provide a blueprint for applying systematic genetic and chemical screening approaches to discover vulnerabilities in genomically quiet cancers.


Assuntos
Cordoma/metabolismo , Proteínas Fetais/metabolismo , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo , Proliferação de Células/efeitos dos fármacos , Cordoma/genética , Cordoma/patologia , Quinases Ciclina-Dependentes/metabolismo , Regulação para Baixo/efeitos dos fármacos , Genes Essenciais , Humanos , Inibidores de Proteínas Quinases/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia
7.
PLoS Genet ; 13(8): e1006938, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28787442

RESUMO

Advances in genomics in recent years have provided key insights into defining cancer subtypes "within-a-tissue"-that is, respecting traditional anatomically driven divisions of medicine. However, there remains a dearth of data regarding molecular profiles that are shared across tissues, an understanding of which could lead to the development of highly versatile, broadly applicable therapies. Using data acquired from The Cancer Genome Atlas (TCGA), we performed a transcriptomics-centered analysis on 1494 patient samples, comparing the two major histological subtypes of solid tumors (adenocarcinomas and squamous cell carcinomas) across organs, with a focus on tissues in which both subtypes arise: esophagus, lung, and uterine cervix. Via principal component and hierarchical clustering analysis, we discovered that histology-driven differences accounted for a greater degree of inherent molecular variation in the tumors than did tissue of origin. We then analyzed differential gene expression, DNA methylation, and non-coding RNA expression between adenocarcinomas and squamous cell carcinomas and found 1733 genes, 346 CpG sites, and 42 microRNAs in common between organ sites, indicating specific adenocarcinoma-associated and squamous cell carcinoma-associated molecular patterns that were conserved across tissues. We then identified specific pathways that may be critical to the development of adenocarcinomas and squamous cell carcinomas, including Liver X receptor activation, which was upregulated in adenocarcinomas but downregulated in squamous cell carcinomas, possibly indicating important differences in cancer cell metabolism between these two histological subtypes of cancer. In addition, we highlighted genes that may be common drivers of adenocarcinomas specifically, such as IGF2BP1, which suggests a possible link between embryonic development and tumor subtype. Altogether, we demonstrate the need to consider biological similarities that transcend anatomical boundaries to inform the development of novel therapeutic strategies. All data sets from our analysis are available as a resource for further investigation.


Assuntos
Adenocarcinoma/genética , Carcinoma de Células Escamosas/genética , Regulação Neoplásica da Expressão Gênica , Transcriptoma , Adenocarcinoma/diagnóstico , Carcinoma de Células Escamosas/diagnóstico , Colo do Útero/patologia , Metilação de DNA , Regulação para Baixo , Epigenômica , Esôfago/patologia , Feminino , Marcadores Genéticos , Variação Genética , Humanos , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Pulmão/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Análise de Componente Principal , Prognóstico , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Reprodutibilidade dos Testes , Regulação para Cima
8.
Am J Hematol ; 92(8): E138-E145, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28474779

RESUMO

The tumor suppressors B-lymphocyte-induced maturation protein-1 (BLIMP-1) and p53 play a crucial role in B-cell lymphomas, and their inactivation contributes to the pathogenesis of a wide spectrum of lymphoid malignancies, including diffuse large B-cell lymphomas (DLBCLs). Patients with activated B-cell-like (ABC) DLBCL may present with loss of BLIMP-1, c-Myc over-expression, decreased p53, and poor prognosis. Nevertheless, there is a lack of in vivo models recapitulating the biology of high-grade ABC DLBCL. We therefore aimed to develop an in vivo model aiming to recapitulate the phenotype observed in this cohort of patients. A Cre-Lox approach was used to achieve inactivation of both p53 and BLIMP-1 in murine B-cells. Contextual ablation of BLIMP-1 and p53 led to development of IgM-positive B-cell lymphoma with an aggressive phenotype, supported by c-Myc up-regulation, and accumulation of somatic mutations, as demonstrated by whole exome sequencing. Sensitivity of B-tumor cells to BTK inhibition was demonstrated. This model mirrors what reported in patients with ABC DLBLC, and therefore represents a novel model for studying the biology of ABC-DLBCL harboring the dual loss of BLIMP-1/p53 and c-Myc over-expression.


Assuntos
Linfócitos B/metabolismo , Linfócitos B/patologia , Transformação Celular Neoplásica/genética , Proteínas Repressoras/deficiência , Proteína Supressora de Tumor p53/deficiência , Animais , Linfócitos B/efeitos dos fármacos , Biomarcadores , Evolução Clonal/genética , Modelos Animais de Doenças , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genes myc , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Camundongos Transgênicos , Fator 1 de Ligação ao Domínio I Regulador Positivo , Inibidores de Proteínas Quinases/farmacologia
9.
Aust N Z J Psychiatry ; 51(1): 23-31, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27313138

RESUMO

INTRODUCTION: There is mixed evidence in the literature on the role of inflammation in major depressive disorder. Contradictory findings are attributed to lack of rigorous characterization of study subjects, to the presence of concomitant medical illnesses, to the small sample sizes, and to the limited number of cytokines tested. METHODS: Subjects aged 18-70 years, diagnosed with major depressive disorder and presenting with chronic course of illness, as well as matched controls ( n = 236), were evaluated by trained raters and provided blood for cytokine measurements. Cytokine levels in EDTA plasma were measured with the MILLIPLEX Multi-Analyte Profiling Human Cytokine/Chemokine Assay employing Luminex technology. The Wilcoxon rank-sum test was used to compare cytokine levels between major depressive disorder subjects and healthy volunteers, before (interleukin [IL]-1ß, IL-6, and tumor necrosis factor-α) and after Bonferroni correction for multiple comparisons (IL-1α, IL-2, IL-3, IL-4, IL-5, IL-7, IL-8, IL-10, IL-12(p40), IL-12(p70), IL-13, IL-15, IFN-γ-inducible protein 10, Eotaxin, interferon-γ, monotype chemoattractant protein-1, macrophage inflammatory protein-1α, granulocyte-macrophage colony-stimulating factor and vascular endothelial growth factor). RESULTS: There were no significant differences in cytokine levels between major depressive disorder subjects and controls, both prior to and after correction for multiple analyses (significance set at p ⩽ 0.05 and p ⩽ 0.002, respectively). CONCLUSION: Our well-characterized examination of cytokine plasma levels did not support the association of major depressive disorder with systemic inflammation. The heterogeneity of major depressive disorder, as well as a potential sampling bias selecting for non-inflammatory depression, might have determined our findings discordant with the literature.


Assuntos
Citocinas/sangue , Transtorno Depressivo Maior/sangue , Inflamação/sangue , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
10.
Cancer Immunol Res ; 4(6): 520-30, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27068336

RESUMO

Autophagy promotes tumor progression downstream of oncogenic KRAS, yet also restrains inflammation and dysplasia through mechanisms that remain incompletely characterized. Understanding the basis of this paradox has important implications for the optimal targeting of autophagy in cancer. Using a mouse model of cerulein-induced pancreatitis, we found that loss of autophagy by deletion of Atg5 enhanced activation of the IκB kinase (IKK)-related kinase TBK1 in vivo, associated with increased neutrophil and T-cell infiltration and PD-L1 upregulation. Consistent with this observation, pharmacologic or genetic inhibition of autophagy in pancreatic ductal adenocarcinoma cells, including suppression of the autophagy receptors NDP52 or p62, prolonged TBK1 activation and increased expression of CCL5, IL6, and several other T-cell and neutrophil chemotactic cytokines in vitro Defective autophagy also promoted PD-L1 upregulation, which is particularly pronounced downstream of IFNγ signaling and involves JAK pathway activation. Treatment with the TBK1/IKKε/JAK inhibitor CYT387 (also known as momelotinib) not only inhibits autophagy, but also suppresses this feedback inflammation and reduces PD-L1 expression, limiting KRAS-driven pancreatic dysplasia. These findings could contribute to the dual role of autophagy in oncogenesis and have important consequences for its therapeutic targeting. Cancer Immunol Res; 4(6); 520-30. ©2016 AACR.


Assuntos
Autofagia/fisiologia , Pancreatite/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Doença Aguda , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Proteína 5 Relacionada à Autofagia/genética , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/biossíntese , Benzamidas/farmacologia , Transformação Celular Neoplásica/efeitos dos fármacos , Ceruletídeo , Quimiocina CCL5/antagonistas & inibidores , Quimiocina CCL5/metabolismo , Citocinas/metabolismo , Ativação Enzimática/genética , Deleção de Genes , Camundongos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Pancreatite/induzido quimicamente , Pancreatite/genética , Pancreatite/patologia , Pancreatite/prevenção & controle , Proteínas Proto-Oncogênicas p21(ras)/genética , Pirimidinas/farmacologia , Transdução de Sinais/fisiologia , Células Tumorais Cultivadas
11.
Cancer Biol Ther ; 16(5): 750-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25801820

RESUMO

Cyclin D1 is frequently overexpressed in esophageal squamous cell carcinoma (ESCC) and is considered a key driver of this disease. Mutations in FBXO4, F-box specificity factor that directs SCF-mediated ubiquitylation of cyclin D1, occur in ESCC with concurrent overexpression of cyclin D1 suggesting a potential tumor suppressor role for FBXO4. To evaluate the contribution of FBXO4-dependent regulation cyclin D1 in esophageal squamous cell homeostasis, we exposed FBXO4 knockout mice to N-nitrosomethylbenzylamine (NMBA), an esophageal carcinogen. Our results revealed that loss of FBXO4 function facilitates NMBA induced papillomas in FBXO4 het (+/-) and null (-/-) mice both by numbers and sizes 11 months after single dose NMBA treatment at 2mg/kg by gavage when compared to that in wt (+/+) mice (P < 0.01). No significant difference was noted between heterozygous or nullizygous mice consistent with previous work. To assess cyclin D1/CDK4 dependence, mice were treated with the CDK4/6 specific inhibitor, PD0332991, for 4 weeks. PD0332991 treatment (150mg/kg daily), reduced tumor size and tumor number. Collectively, our data support a role for FBXO4 as a suppressor of esophageal tumorigenesis.


Assuntos
Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/terapia , Ciclina D1/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/terapia , Proteínas F-Box/genética , Animais , Carcinoma de Células Escamosas/patologia , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago , Proteínas F-Box/metabolismo , Humanos , Camundongos , Mutação
12.
J Clin Invest ; 123(7): 2921-34, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23921124

RESUMO

The mechanisms by which deregulated nuclear factor erythroid-2-related factor 2 (NRF2) and kelch-like ECH-associated protein 1 (KEAP1) signaling promote cellular proliferation and tumorigenesis are poorly understood. Using an integrated genomics and ¹³C-based targeted tracer fate association (TTFA) study, we found that NRF2 regulates miR-1 and miR-206 to direct carbon flux toward the pentose phosphate pathway (PPP) and the tricarboxylic acid (TCA) cycle, reprogramming glucose metabolism. Sustained activation of NRF2 signaling in cancer cells attenuated miR-1 and miR-206 expression, leading to enhanced expression of PPP genes. Conversely, overexpression of miR-1 and miR-206 decreased the expression of metabolic genes and dramatically impaired NADPH production, ribose synthesis, and in vivo tumor growth in mice. Loss of NRF2 decreased the expression of the redox-sensitive histone deacetylase, HDAC4, resulting in increased expression of miR-1 and miR-206, and not only inhibiting PPP expression and activity but functioning as a regulatory feedback loop that repressed HDAC4 expression. In primary tumor samples, the expression of miR-1 and miR-206 was inversely correlated with PPP gene expression, and increased expression of NRF2-dependent genes was associated with poor prognosis. Our results demonstrate that microRNA-dependent (miRNA-dependent) regulation of the PPP via NRF2 and HDAC4 represents a novel link between miRNA regulation, glucose metabolism, and ROS homeostasis in cancer cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Transformação Celular Neoplásica/metabolismo , Neoplasias Pulmonares/metabolismo , MicroRNAs/genética , Fator 2 Relacionado a NF-E2/fisiologia , Regiões 3' não Traduzidas , Animais , Sequência de Bases , Sítios de Ligação , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Ciclo do Ácido Cítrico , Regulação Neoplásica da Expressão Gênica , Glucose/metabolismo , Humanos , Neoplasias Pulmonares/mortalidade , Camundongos , Camundongos Nus , MicroRNAs/metabolismo , Transplante de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredução , Interferência de RNA , Transcriptoma , Carga Tumoral
13.
Cancer Biol Ther ; 14(9): 853-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23792586

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive forms of human cancer with poor prognosis due to late diagnosis and metastasis. Common genomic alterations in ESCC include p53 mutation, p120ctn inactivation, and overexpression of oncogenes such as cyclin D1, EGFR, and c-Met. Using esophageal epithelial cells transformed by the overexpression of EGFR and p53(R175H), we find novel evidence of a functional link between p53(R175H) and the c-Met receptor tyrosine kinase to mediate tumor cell invasion. Increased c-Met receptor activation was observed upon p53(R175H) expression and enhanced further upon subsequent EGFR overexpression. We inhibited c-Met phosphorylation, resulting in diminished invasion of the genetically transformed primary esophageal epithelial cells (EPC-hTERT-EGFR-p53(R175H)), suggesting that the mechanism of increased invasiveness upon EGFR and p53(R175H) expression may be the result of increased c-Met activation. These results suggest that the use of therapeutics directed at c-Met in ESCC and other squamous cell cancers.


Assuntos
Carcinoma de Células Escamosas/patologia , Neoplasias Esofágicas/patologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteína Supressora de Tumor p53/genética , Animais , Carcinoma de Células Escamosas/metabolismo , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago , Esôfago/metabolismo , Esôfago/patologia , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Camundongos , Mutação , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Fosforilação , Cultura Primária de Células , Proteína Supressora de Tumor p53/metabolismo
14.
J Clin Oncol ; 28(18): 3076-83, 2010 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-20479403

RESUMO

PURPOSE: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have had a significant impact on non-small-cell lung cancer (NSCLC) outcomes, particularly for patients with EGFR mutations. Resistance emerges after 9 to 12 months, primarily mediated by the T790M resistance mutation. We studied neratinib, an irreversible pan-ErbB TKI that may overcome T790M. PATIENTS AND METHODS: Patients with advanced NSCLC underwent EGFR sequencing of available tumor tissue at enrollment. Those with > or = 12 weeks of prior TKI therapy were placed in arm A if they were EGFR mutation positive or arm B if they were wild-type. Arm C included TKI-naïve patients with adenocarcinoma and light smoking histories (< or = 20 pack-years). All patients received daily oral neratinib, initially at 320 mg but subsequently reduced to 240 mg because of excessive diarrhea. The primary end point was objective response rate (RR). RESULTS: One-hundred sixty-seven patients were treated: 91 in arm A, 48 in arm B, and 28 in arm C. Diarrhea was the most common toxicity; grade 3 incidence was 50% at 320 mg but improved to 25% after dose reduction. The RR was 3% in arm A and zero in arms B and C. No patients with known T790M responded. Notably, three of four patients with an exon 18 G719X EGFR mutation had a partial response and the fourth had stable disease lasting 40 weeks. CONCLUSION: Neratinib had low activity in patients with prior benefit from TKIs and in TKI-naïve patients, potentially because of insufficient bioavailability from diarrhea-imposed dose limitation. Responses were seen in patients with the rare G719X EGFR mutation, highlighting the importance of obtaining comprehensive genetic information on trials of targeted agents.


Assuntos
Adenocarcinoma/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Quinolinas/uso terapêutico , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB/genética , Feminino , Humanos , Agências Internacionais , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Mutação/genética , Estudos Prospectivos , Receptor ErbB-2/antagonistas & inibidores , Taxa de Sobrevida , Resultado do Tratamento , Adulto Jovem
15.
Nat Med ; 16(2): 219-23, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20081861

RESUMO

Lung cancer is the leading cause of cancer death worldwide. Recent data suggest that tumor-associated inflammatory cells may modify lung tumor growth and invasiveness. To determine the role of neutrophil elastase (encoded by Elane) on tumor progression, we used the loxP-Stop-loxP K-ras(G12D) (LSL-K-ras) model of mouse lung adenocarcinoma to generate LSL-K-ras-Elane(-/-) mice. Tumor burden was markedly reduced in LSL-K-ras-Elane(-/-) mice at all time points after induction of mutant K-ras expression. Kaplan-Meier survival analysis showed that whereas all LSL-K-ras-Elane(+/+) mice died, none of the mice lacking neutrophil elastase died. Neutrophil elastase directly induced tumor cell proliferation in both human and mouse lung adenocarcinomas by gaining access to an endosomal compartment within tumor cells, where it degraded insulin receptor substrate-1 (IRS-1). Immunoprecipitation studies showed that, as neutrophil elastase degraded IRS-1, there was increased interaction between phosphatidylinositol 3-kinase (PI3K) and the potent mitogen platelet-derived growth factor receptor (PDGFR), thereby skewing the PI3K axis toward tumor cell proliferation. The inverse relationship identified between neutrophil elastase and IRS-1 in LSL-K-ras mice was also identified in human lung adenocarcinomas, thus translating these findings to human disease. This study identifies IRS-1 as a key regulator of PI3K within malignant cells. Additionally, to our knowledge, this is the first description of a secreted proteinase gaining access to the inside of a cell and altering intracellular signaling.


Assuntos
Adenocarcinoma/patologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Elastase de Leucócito/metabolismo , Neoplasias Pulmonares/patologia , Adenocarcinoma/metabolismo , Animais , Linhagem Celular , Humanos , Hidrólise , Imuno-Histoquímica , Neoplasias Pulmonares/metabolismo , Camundongos
16.
Nat Genet ; 41(11): 1238-42, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19801978

RESUMO

Lineage-survival oncogenes are activated by somatic DNA alterations in cancers arising from the cell lineages in which these genes play a role in normal development. Here we show that a peak of genomic amplification on chromosome 3q26.33 found in squamous cell carcinomas (SCCs) of the lung and esophagus contains the transcription factor gene SOX2, which is mutated in hereditary human esophageal malformations, is necessary for normal esophageal squamous development, promotes differentiation and proliferation of basal tracheal cells and cooperates in induction of pluripotent stem cells. SOX2 expression is required for proliferation and anchorage-independent growth of lung and esophageal cell lines, as shown by RNA interference experiments. Furthermore, ectopic expression of SOX2 here cooperated with FOXE1 or FGFR2 to transform immortalized tracheobronchial epithelial cells. SOX2-driven tumors show expression of markers of both squamous differentiation and pluripotency. These characteristics identify SOX2 as a lineage-survival oncogene in lung and esophageal SCC.


Assuntos
Carcinoma de Células Escamosas/genética , Neoplasias Esofágicas/genética , Amplificação de Genes , Neoplasias Pulmonares/genética , Oncogenes/genética , Fatores de Transcrição SOXB1/genética , Carcinoma de Células Escamosas/patologia , Diferenciação Celular , Linhagem da Célula , Sobrevivência Celular , Neoplasias Esofágicas/patologia , Genoma Humano , Humanos , Neoplasias Pulmonares/patologia , Interferência de RNA
17.
Clin Cancer Res ; 15(7): 2552-8, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19318484

RESUMO

PURPOSE: The dose-limiting toxicities, maximum tolerated dose, pharmacokinetic profile, and preliminary antitumor activity of neratinib (HKI-272), an irreversible pan ErbB inhibitor, were determined in patients with advanced solid tumors. EXPERIMENTAL DESIGN: Neratinib was administered orally as a single dose, followed by a 1-week observation period, and then once daily continuously. Planned dose escalation was 40, 80, 120, 180, 240, 320, 400, and 500 mg. For pharmacokinetic analysis, timed blood samples were collected after administration of the single dose and after the first 14 days of continuous daily administration. RESULTS: Dose-limiting toxicity was grade 3 diarrhea, which occurred in one patient treated with 180 mg and in four patients treated with 400 mg neratinib; hence, the maximum tolerated dose was determined to be 320 mg. Other common neratinib-related toxicities included nausea, vomiting, fatigue, and anorexia. Exposure to neratinib was dose dependent, and the pharmacokinetic profile of neratinib supports a once-a-day dosing regimen. Partial response was observed for 8 (32%) of the 25 evaluable patients with breast cancer. Stable disease >or=24 weeks was observed in one evaluable breast cancer patient and 6 (43%) of the 14 evaluable non-small cell lung cancer patients. CONCLUSION: The maximum tolerated dose of once-daily oral neratinib is 320 mg. The most common neratinib-related toxicity was diarrhea. Antitumor activity was observed in patients with breast cancer who had previous treatment with trastuzumab, anthracyclines, and taxanes, and tumors with a baseline ErbB-2 immunohistochemical staining intensity of 2+ or 3+. The antitumor activity, tolerable toxicity profile, and pharmacokinetic properties of neratinib warrant its further evaluation.


Assuntos
Antineoplásicos/efeitos adversos , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/efeitos adversos , Quinolinas/efeitos adversos , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Receptores ErbB/antagonistas & inibidores , Feminino , Humanos , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Neoplasias/diagnóstico , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/uso terapêutico , Quinolinas/farmacocinética , Quinolinas/uso terapêutico , Receptor ErbB-2/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA