Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 12: 729189, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603303

RESUMO

Several SARS-CoV-2 vaccines have received EUAs, but many issues remain unresolved, including duration of conferred immunity and breadth of cross-protection. Adjuvants that enhance and shape adaptive immune responses that confer broad protection against SARS-CoV-2 variants will be pivotal for long-term protection as drift variants continue to emerge. We developed an intranasal, rationally designed adjuvant integrating a nanoemulsion (NE) that activates TLRs and NLRP3 with an RNA agonist of RIG-I (IVT DI). The combination adjuvant with spike protein antigen elicited robust responses to SARS-CoV-2 in mice, with markedly enhanced TH1-biased cellular responses and high virus-neutralizing antibody titers towards both homologous SARS-CoV-2 and a variant harboring the N501Y mutation shared by B1.1.7, B.1.351 and P.1 variants. Furthermore, passive transfer of vaccination-induced antibodies protected naive mice against heterologous viral challenge. NE/IVT DI enables mucosal vaccination, and has the potential to improve the immune profile of a variety of SARS-CoV-2 vaccine candidates to provide effective cross-protection against future drift variants.


Assuntos
Adjuvantes Imunológicos/farmacologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Vacinas Sintéticas/imunologia , Imunidade Adaptativa/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Chlorocebus aethiops , Proteção Cruzada/imunologia , Proteína DEAD-box 58 , Células HEK293 , Humanos , Imunidade Humoral/imunologia , Imunização Passiva , Camundongos , Camundongos Endogâmicos C57BL , Receptores Imunológicos/agonistas , Proteínas Recombinantes/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação , Células Vero
2.
Mol Pharm ; 18(2): 679-698, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32491861

RESUMO

Current influenza virus vaccines are focused on humoral immunity and are limited by the short duration of protection, narrow cross-strain efficacy, and suboptimal immunogenicity. Here, we combined two chemically and biologically distinct adjuvants, an oil-in-water nanoemulsion (NE) and RNA-based agonists of RIG-I, to determine whether the diverse mechanisms of these adjuvants could lead to improved immunogenicity and breadth of protection against the influenza virus. NE activates TLRs, stimulates immunogenic apoptosis, and enhances cellular antigen uptake, leading to a balanced TH1/TH2/TH17 response when administered intranasally. RIG-I agonists included RNAs derived from Sendai and influenza viral defective interfering RNAs (IVT DI, 3php, respectively) and RIG-I/TLR3 agonist, poly(I:C) (pIC), which induce IFN-Is and TH1-polarized responses. NE/RNA combined adjuvants potentially allow for costimulation of multiple innate immune receptor pathways, more closely mimicking patterns of activation occurring during natural viral infection. Mice intranasally immunized with inactivated A/Puerto Rico/8/1934 (H1N1) (PR/8) adjuvanted with NE/IVT DI or NE/3php (but not NE/pIC) showed synergistic enhancement of systemic PR/8-specific IgG with significantly greater avidity and virus neutralization activity than the individual adjuvants. Notably, NE/IVT DI induced protective neutralizing titers after a single immunization. Hemagglutinin stem-specific antibodies were also improved, allowing recognition of heterologous and heterosubtypic hemagglutinins. All NE/RNAs elicited substantial PR/8-specific sIgA. Finally, a unique cellular response with enhanced TH1/TH17 immunity was induced with the NE/RNAs. These results demonstrate that the enhanced immunogenicity of the adjuvant combinations was synergistic and not simply additive, highlighting the potential value of a combined adjuvant approach for improving the efficacy of vaccination against the influenza virus.


Assuntos
Proteína DEAD-box 58/metabolismo , Portadores de Fármacos/química , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , RNA Interferente Pequeno/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Administração Intranasal , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Cães , Emulsões , Feminino , Humanos , Imunidade Celular , Imunidade Humoral , Imunidade nas Mucosas , Imunogenicidade da Vacina , Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Camundongos , Nanopartículas/química , Poli I-C/administração & dosagem , Cultura Primária de Células , RNA Interferente Pequeno/imunologia , Vacinação/métodos
3.
ACS Appl Mater Interfaces ; 12(30): 33500-33515, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32603588

RESUMO

Here, we describe a nanoscale reactor strategy with a topical application in the therapeutic decontamination of reactive organophosphates (OPs) as chemical threat agents. It involves functionalization of poly(amidoamine) dendrimer through a combination of its partial PEG shielding and exhaustive conjugation with an OP-reactive α-nucleophile moiety at its peripheral branches. We prepared a 16-member library composed of two α-nucleophile classes (oxime, hydroxamic acid), each varying in its reactor valency (43-176 reactive units per nanoparticle), and linker framework for α-nucleophile tethering. Their mechanism for OP inactivation occurred via nucleophilic catalysis as verified against P-O and P-S bonded OPs including paraoxon-ethyl (POX), malaoxon, and omethoate by 1H NMR spectroscopy. Screening their reactivity for POX inactivation was performed under pH- and temperature-controlled conditions, which resulted in identifying 13 conjugates, each showing shorter POX half-life up to 2 times as compared to a reference Dekon 139 at pH 10.5, 37 °C. Of these, 10 conjugates were further confirmed for greater efficacy in POX decontamination experiments performed in two skin models, porcine skin and an artificial human microtissue. Finally, a few lead conjugates were selected and demonstrated for their biocompatibility in vitro as evident with lack of skin absorption, no inhibition of acetylcholinesterase (AChE), and no cytotoxicity in human neuroblastoma cells. In summary, this study presents a novel nanoreactor library, its screening methods, and identification of potent lead conjugates with potential for therapeutic OP decontamination.


Assuntos
Materiais Biocompatíveis/química , Ácidos Hidroxâmicos/química , Nanoestruturas/química , Organofosfatos/química , Oximas/química , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Adsorção , Animais , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Descontaminação/métodos , Dendrímeros/química , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Nanoestruturas/toxicidade , Organofosfatos/metabolismo , Permeabilidade/efeitos dos fármacos , Poliaminas/química , Polietilenoglicóis/química , Pele/efeitos dos fármacos , Pele/metabolismo , Suínos
4.
Bioconjug Chem ; 28(12): 3016-3028, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29148732

RESUMO

Despite their proven ability for precise and targeted release, nanoplatform systems for photocontrolled delivery often face formidable synthetic challenges, in part due to the paucity of advanced linker strategies. Here, we report on a novel linker strategy using a thioacetal ortho-nitrobenzaldehyde (TNB) cage, demonstrating its application for delivery of doxorubicin (Dox) in two nanoscale systems. This photocleavable linker, TNB(OH), which presents two identical arms, each terminated with a hydroxyl functionality, was prepared in a single step from 6-nitroveratraldehyde. TNB(OH) was used to cross-link Dox to a folate receptor (FAR)-targeting poly(amidoamine) dendrimer conjugate G5(FA)n=5.4(Dox)m=5.1, and also used to prepare an upconversion nanocrystal (UCN) conjugate, UCN-PPIX@(Dox)(G5FA), a larger core/shell nanostructure. In this core/shell nanostructure, the UCN core emits UV and visible light luminescence upon near-infrared (NIR) excitation, allowing for the photocleavage of the TNB linker as well as the photostimulation of protoporphyrin IX (PPIX) coupled as a cytotoxic photosensitizer. Drug-release experiments performed in aqueous solutions with long-wavelength ultraviolet A (UVA) light showed that Dox release occurred rapidly from its TNB linked form or from its dendrimer conjugated form with comparable decay kinetics. Cellular toxicity studies in FAR-overexpressing KB carcinoma cells demonstrated that each nanoconjugate lacked intrinsic cytotoxicity until exposed to UVA or NIR (980 nm) (for the UCN nanoconjugate), which resulted in induction of potent cytotoxicity. In summary, this new TNB strategy offers synthetic convenience in drug conjugation chemistry with the ability for the temporal control of drug activation at the delivery site.


Assuntos
Acetais/química , Doxorrubicina/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Ácido Fólico/metabolismo , Nanomedicina , Fotólise , Benzaldeídos/química , Dendrímeros/química , Portadores de Fármacos/metabolismo , Humanos , Células KB
5.
ACS Chem Biol ; 12(4): 1001-1010, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28191924

RESUMO

The use of coumarin caged molecules has been well documented in numerous photocaging applications including for the spatiotemporal control of Cre-estrogen receptor (Cre-ERT2) recombinase activity. In this article, we report that 4-hydroxytamoxifen (4OHT) caged with coumarin via a conventional ether linkage led to an unexpected photo-Claisen rearrangement which significantly competed with the release of free 4OHT. The basis for this unwanted reaction appears to be related to the coumarin structure and its radical-based mechanism of uncaging, as it did not occur in ortho-nitrobenzyl (ONB) caged 4OHT that was otherwise linked in the same manner. In an effort to perform design optimization, we introduced a self-immolative linker longer than the ether linkage and identified an optimal linker which allowed rapid 4OHT release by both single-photon and two-photon absorption mechanisms. The ability of this construct to actively control Cre-ERT2 mediated gene modifications was investigated in mouse embryonic fibroblasts (MEFs) in which the expression of a green fluorescent protein (GFP) reporter dependent gene recombination was controlled by 4OHT release and measured by confocal fluorescence microscopy and flow cytometry. In summary, we report the implications of this photo-Claisen rearrangement in coumarin caged compounds and demonstrate a rational linker strategy for addressing this unwanted side reaction.


Assuntos
Cumarínicos/química , Fotoquímica , Tamoxifeno/análogos & derivados , Animais , Células Cultivadas , Cromatografia Líquida/métodos , Cinética , Camundongos , Moduladores Seletivos de Receptor Estrogênico/química , Análise Espectral/métodos , Tamoxifeno/química
6.
Chembiochem ; 18(1): 126-135, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-27902870

RESUMO

Despite the immense potential of existing photocaging technology, its application is limited by the paucity of advanced caging tools. Here, we report on the design of a novel thioacetal ortho-nitrobenzaldehyde (TNB) dual arm photocage that enabled control of the simultaneous release of two payloads linked to a single TNB unit. By using this cage, which was prepared in a single step from commercial 6-nitroverataldehyde, three drug-fluorophore conjugates were synthesized: Taxol-TNB-fluorescein, Taxol-TNB-coumarin, and doxorubicin-TNB-coumarin, and long-wavelength UVA light-triggered release experiments demonstrated that dual payload release occurred with rapid decay kinetics for each conjugate. In cell-based assays performed in vitro, dual release could also be controlled by UV exposure, resulting in increased cellular fluorescence and cytotoxicity with potency equal to that of unmodified drug towards the KB carcinoma cell line. The extent of such dual release was quantifiable by reporter fluorescence measured in situ and was found to correlate with the extent of cytotoxicity. Thus, this novel dual arm cage strategy provides a valuable tool that enables both active control and real-time monitoring of drug activation at the delivery site.


Assuntos
Benzaldeídos/química , Portadores de Fármacos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cumarínicos/química , Doxorrubicina/química , Doxorrubicina/metabolismo , Doxorrubicina/toxicidade , Liberação Controlada de Fármacos/efeitos da radiação , Corantes Fluorescentes/química , Humanos , Cinética , Paclitaxel/química , Paclitaxel/metabolismo , Paclitaxel/toxicidade , Fotólise/efeitos da radiação , Raios Ultravioleta
7.
Small ; 11(45): 6078-90, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26476917

RESUMO

Upconversion nanocrystals (UCNs) display near-infrared (NIR)-responsive photoluminescent properties for NIR imaging and drug delivery. The development of effective strategies for UCN integration with other complementary nanostructures for targeting and drug conjugation is highly desirable. This study reports on a core/shell-based theranostic system designed by UCN integration with a folate (FA)-conjugated dendrimer for tumor targeting and with photocaged doxorubicin as a cytotoxic agent. Two types of UCNs (NaYF4:Yb/Er (or Yb/Tm); diameter = ≈50 to 54 nm) are described, each displaying distinct emission properties upon NIR (980 nm) excitation. The UCNs are surface modified through covalent attachment of photocaged doxorubicin (ONB-Dox) and a multivalent FA-conjugated polyamidoamine (PAMAM) dendrimer G5(FA)6 to prepare UCN@(ONB-Dox)(G5FA). Surface plasmon resonance experiments performed with G5(FA)6 dendrimer alone show nanomolar binding avidity (KD = 5.9 × 10(-9) M) to the folate binding protein. This dendrimer binding corresponds with selective binding and uptake of UCN@(ONB-Dox)(G5FA) by FAR-positive KB carcinoma cells in vitro. Furthermore, UCN@(ONB-Dox)(G5FA) treatment of FAR(+) KB cells inhibits cell growth in a light dependent manner. These results validate the utility of modularly integrated UCN-dendrimer nanocomposites for cell type specific NIR imaging and light-controlled drug release, thus serving as a new theranostic system.


Assuntos
Dendrímeros/química , Liberação Controlada de Fármacos , Receptor 1 de Folato/metabolismo , Imageamento Tridimensional , Luz , Nanopartículas/química , Espectroscopia de Luz Próxima ao Infravermelho , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacologia , Endocitose , Citometria de Fluxo , Ácido Fólico/química , Humanos , Cinética , Microscopia Confocal , Nanopartículas/ultraestrutura
8.
Mol Pharm ; 12(12): 4498-508, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26485315

RESUMO

Despite extensive studies on drug delivery using multivalent complexation systems, the biophysical basis for release kinetics remains poorly defined. The present study addresses this aspect involved in the complexation of a fifth generation poly(amidoamine) (PAMAM) dendrimer with atropine, an essential antidote used for treating organophosphate poisoning. First, we designed (1)H NMR titration studies for determining the molecular basis of the drug complexation with a glutarate-modified anionic dendrimer. These provide evidence pointing to a combination of electrostatic and hydrophobic interactions as the driving forces for dendrimer complexation with the alkaloid drug molecule. Second, using LC-MS/MS spectrometry, we determined the dissociation constants (KD) at steady state and also measured the drug release kinetics of atropine complexes with four negatively charged dendrimer types. Each of these dendrimers has a high payload capacity for up to ∼ 100 atropine molecules. However, the affinity of the atropine to the carrier was highly dependent on the drug to dendrimer ratio. Thus, a complex made at a lower loading ratio (≤ 0.1) displayed greater atropine affinity (KD ≈ µM) than other complexes prepared at higher ratios (>10), which showed only mM affinity. This negative cooperative variation in affinity is tightly associated with the nonlinear release kinetics observed for each complex in which drug release occurs more slowly at the later time phase at a lower loading ratio. In summary, the present study provides novel insights on the cooperativity as the mechanistic basis for nonlinear release kinetics observed in multivalent carrier systems.


Assuntos
Atropina/química , Dendrímeros/química , Preparações Farmacêuticas/química , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células KB , Cinética , Espectroscopia de Ressonância Magnética/métodos , Eletricidade Estática , Espectrometria de Massas em Tandem/métodos
9.
PLoS One ; 10(5): e0126120, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25962136

RESUMO

Vaccine adjuvants have been reported to induce both mucosal and systemic immunity when applied to mucosal surfaces and this dual response appears important for protection against certain pathogens. Despite the potential advantages, however, no mucosal adjuvants are currently approved for human use. Evaluating compounds as mucosal adjuvants is a slow and costly process due to the need for lengthy animal immunogenicity studies. We have constructed a library of 112 intranasal adjuvant candidate formulations consisting of oil-in-water nanoemulsions that contain various cationic and nonionic surfactants. To facilitate adjuvant development we first evaluated this library in a series of high-throughput, in vitro assays for activities associated with innate and adaptive immune activation in vivo. These in vitro assays screened for the ability of the adjuvant to bind to mucin, induce cytotoxicity, facilitate antigen uptake in epithelial and dendritic cells, and activate cellular pathways. We then sought to determine how these parameters related to adjuvant activity in vivo. While the in vitro assays alone were not enough to predict the in vivo adjuvant activity completely, several interesting relationships were found with immune responses in mice. Furthermore, by varying the physicochemical properties of the surfactant components (charge, surfactant polar head size and hydrophobicity) and the surfactant blend ratio of the formulations, the strength and type of the immune response generated (TH1, TH2, TH17) could be modulated. These findings suggest the possibility of using high-throughput screens to aid in the design of custom adjuvants with unique immunological profiles to match specific mucosal vaccine applications.


Assuntos
Adjuvantes Imunológicos/química , Vacinas/administração & dosagem , Vacinas/química , Adjuvantes Imunológicos/toxicidade , Administração Intranasal , Animais , Linhagem Celular , Química Farmacêutica , Citocinas/biossíntese , Emulsões , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Ensaios de Triagem em Larga Escala , Imunidade Celular , Imunidade Humoral , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Nanotecnologia
10.
Int J Mol Sci ; 16(1): 1772-90, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25590303

RESUMO

The rational design of a nanoplatform in drug delivery plays a crucial role in determining its targeting specificity and efficacy in vivo. A conventional approach relies on the surface conjugation of a nanometer-sized particle with two functionally distinct types of molecules, one as a targeting ligand, and the other as a therapeutic agent to be delivered to the diseased cell. However, an alternative simplified approach can be used, in which a single type of molecule displaying dual function as both a targeting ligand and therapeutic agent is conjugated to the nanoparticle. In this review, we evaluate the validity of this new strategy by using methotrexate, which displays multifunctional mechanisms of action. Methotrexate binds to the folate receptor, a surface biomarker frequently overexpressed in tumor cells, and also inhibits dihydrofolate reductase, an enzyme critical for cell survival and division. Thus we describe a series of fifth generation poly(amido amine) dendrimers conjugated with methotrexate, and discuss several lines of evidence supporting the efficacy of this new platform strategy based on surface plasmon resonance spectroscopy, enzyme activity assays, and cell-based studies with folate receptor (+) KB cancer cells.


Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos , Receptores de Folato com Âncoras de GPI/metabolismo , Ácido Fólico/metabolismo , Metotrexato/administração & dosagem , Neoplasias/tratamento farmacológico , Animais , Antimetabólitos Antineoplásicos/química , Dendrímeros/química , Dendrímeros/metabolismo , Portadores de Fármacos/química , Receptores de Folato com Âncoras de GPI/química , Ácido Fólico/química , Humanos , Metotrexato/química , Modelos Moleculares , Nanopartículas/química , Nanopartículas/metabolismo , Neoplasias/metabolismo
11.
Mol Biosyst ; 11(3): 783-90, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25502239

RESUMO

The tamoxifen inducible Cre-ER/loxP system provides tissue specific temporal control of gene recombination events, and can be used to induce expression of reporter genes (e.g. GFP, LacZ) for lineage tracing studies. Cre enzyme fused with estrogen receptor (Cre-ER) is released upon tamoxifen binding, resulting in permanent activation of reporter genes within cells and their progeny. Tamoxifen and its active metabolite, hydroxytamoxifen (4OHT) diffuses rapidly in vivo, making it difficult to restrict labeling to specific locations. In this study, we developed a photocaged 4OHT molecule by covalently attaching 4OHT to an ortho-nitrobenzyl (ONB1) group, rendering 4OHT inactive. Exposure to UV radiation cleaves the bond between ONB1 and 4OHT, freeing the 4OHT to bind Cre-ER to result in downstream genetic recombination and reporter activation. We show that caged ONB1-4OHT crosses the cell membrane and uncages after short UV exposure, resulting in Cre-driven genetic recombination that can be localized to specific regions or tissues. ONB1-4OHT can provide spatial control of reporter activation and be adapted with any existing Cre-ER/loxP based system.


Assuntos
Regulação da Expressão Gênica/efeitos da radiação , Expressão Gênica , Genes Reporter , Recombinação Homóloga , Luz , Receptores de Estrogênio/genética , Tamoxifeno/análogos & derivados , Técnicas In Vitro , Tamoxifeno/química
12.
Biomacromolecules ; 15(11): 4134-45, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25285357

RESUMO

Poly(amido amine) (PAMAM) dendrimers constitute an important class of nonviral, cationic vectors in gene delivery. Here we report on a new concept for dendrimer vector design based on the incorporation of dual binding motifs: DNA intercalation, and receptor recognition for targeted delivery. We prepared a series of dendrimer conjugates derived from a fifth generation (G5) PAMAM dendrimer, each conjugated with multiple folate (FA) or riboflavin (RF) ligands for cell receptor targeting, and with 3,8-diamino-6-phenylphenanthridinium ("DAPP")-derived ligands for anchoring a DNA payload. Polyplexes of each dendrimer with calf thymus dsDNA were made and characterized by surface plasmon resonance (SPR) spectroscopy, dynamic light scattering (DLS) and zeta potential measurement. These studies provided evidence supporting polyplex formation based on the observation of tight DNA-dendrimer adhesion, and changes in particle size and surface charge upon coincubation. Further SPR studies to investigate the adhesion of the polyplex to a model surface immobilized with folate binding protein (FBP), demonstrated that the DNA payload has only a minimal effect on the receptor binding activity of the polyplex: KD = 0.22 nM for G5(FA)(DAPP) versus 0.98 nM for its polyplex. Finally, we performed in vitro transfection assays to determine the efficiency of conjugate mediated delivery of a luciferase-encoding plasmid into the KB cancer cell line and showed that RF-conjugated dendrimers were 1 to 2 orders of magnitude more effective in enhancing luciferase gene transfection than a plasmid only control. In summary, this study serves as a proof of concept for DNA-ligand intercalation as a motif in the design of multivalent dendrimer vectors for targeted gene delivery.


Assuntos
Dendrímeros/administração & dosagem , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Motivos de Nucleotídeos/genética , Técnicas Biossensoriais/métodos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Dendrímeros/química , Vetores Genéticos/química , Humanos , Células KB
13.
J Phys Chem B ; 118(11): 2872-82, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24571134

RESUMO

Riboflavin receptors are overexpressed in malignant cells from certain human breast and prostate cancers, and they constitute a group of potential surface markers important for cancer targeted delivery of therapeutic agents and imaging molecules. Here we report on the fabrication and atomic force microscopy (AFM) characterization of a core-shell nanocomposite consisting of a gold nanoparticle (AuNP) coated with riboflavin receptor-targeting poly(amido amine) dendrimer. We designed this nanocomposite for potential applications such as a cancer targeted imaging material based on its surface plasmon resonance properties conferred by AuNP. We employed AFM as a technique for probing the binding interaction between the nanocomposite and riboflavin binding protein (RfBP) in solution. AFM enabled precise measurement of the AuNP height distribution before (13.5 nm) and after chemisorption of riboflavin-conjugated dendrimer (AuNP-dendrimer; 20.5 nm). Binding of RfBP to the AuNP-dendrimer caused a height increase to 26.7 nm, which decreased to 22.8 nm when coincubated with riboflavin as a competitive ligand, supporting interaction of AuNP-dendrimer and its target protein. In summary, physical determination of size distribution by AFM imaging can serve as a quantitative approach to monitor and characterize the nanoscale interaction between a dendrimer-covered AuNP and target protein molecules in vitro.


Assuntos
Dendrímeros/química , Ouro/química , Microscopia de Força Atômica , Nanocompostos/química , Nanopartículas/metabolismo , Receptores de Superfície Celular/química , Riboflavina/química , Células Cultivadas , Humanos , Estrutura Molecular , Nanopartículas/química , Tamanho da Partícula
14.
Biophys J ; 100(3): 685-692, 2011 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-21281583

RESUMO

Type II diabetes, in its late stages, is often associated with the formation of extracellular islet amyloid deposits composed of islet amyloid polypeptide (IAPP or amylin). IAPP is stored before secretion at millimolar concentrations within secretory granules inside the ß-cells. Of interest, at these same concentrations in vitro, IAPP rapidly aggregates and forms fibrils, yet within secretory granules of healthy individuals, IAPP does not fibrillize. Insulin is also stored within the secretory granules before secretion, and has been shown in vitro to inhibit IAPP fibril formation. Because of insulin's inhibitory effect on IAPP fibrillization, it has been suggested that insulin may also inhibit IAPP-mediated permeabilization of the ß-cell plasma membrane in vivo. We show that although insulin is effective at preventing fiber-dependent membrane disruption, it is not effective at stopping the initial phase of membrane disruption before fibrillogenesis, and does not prevent the formation of small IAPP oligomers on the membrane. These results suggest that insulin has a more complicated role in inhibiting IAPP fibrillogenesis, and that other factors, such as the low pH of the secretory granule, may also play a role.


Assuntos
Membrana Celular/efeitos dos fármacos , Insulina/farmacologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/farmacologia , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Cinética , Estrutura Quaternária de Proteína , Soluções , Fatores de Tempo , Lipossomas Unilamelares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA