Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 9(12)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38912586

RESUMO

Immune therapy is the new frontier of cancer treatment. Therapeutic radiation is a known inducer of immune response and can be limited by immunosuppressive mediators including cyclooxygenase-2 (COX2) that is highly expressed in aggressive triple negative breast cancer (TNBC). A clinical cohort of TNBC tumors revealed poor radiation therapeutic efficacy in tumors expressing high COX2. Herein, we show that radiation combined with adjuvant NSAID (indomethacin) treatment provides a powerful combination to reduce both primary tumor growth and lung metastasis in aggressive 4T1 TNBC tumors, which occurs in part through increased antitumor immune response. Spatial immunological changes including augmented lymphoid infiltration into the tumor epithelium and locally increased cGAS/STING1 and type I IFN gene expression were observed in radiation-indomethacin-treated 4T1 tumors. Thus, radiation and adjuvant NSAID treatment shifts "immune desert phenotypes" toward antitumor M1/TH1 immune mediators in these immunologically challenging tumors. Importantly, radiation-indomethacin combination treatment improved local control of the primary lesion, reduced metastatic burden, and increased median survival when compared with radiation treatment alone. These results show that clinically available NSAIDs can improve radiation therapeutic efficacy through increased antitumor immune response and augmented local generation of cGAS/STING1 and type I IFNs.


Assuntos
Proteínas de Membrana , Transdução de Sinais , Linfócitos T Citotóxicos , Animais , Proteínas de Membrana/metabolismo , Camundongos , Feminino , Transdução de Sinais/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/radioterapia , Indometacina/farmacologia , Indometacina/uso terapêutico , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores de Ciclo-Oxigenase/uso terapêutico , Nucleotidiltransferases/metabolismo , Interferon Tipo I/metabolismo , Ciclo-Oxigenase 2/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Camundongos Endogâmicos BALB C
2.
Biomed Pharmacother ; 167: 115450, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37703663

RESUMO

The blood-brain barrier (BBB) plays a critical role in determining the effectiveness of systemic treatments for brain diseases. Over the years, several innovative approaches in BBB opening and drug delivery have been developed and progressed into clinical testing phases, including focused ultrasound (FUS) with circulating microbubbles, mannitol-facilitated delivery of anti-neoplastic drugs, receptor-mediated transcytosis (RMT) by antibody-drug conjugates (ADCs), and viral vectors for gene therapy. We provided a comprehensive review of the most recent clinical applications of these approaches in managing brain tumors and Alzheimer's disease (AD), two major devastating brain diseases. Moreover, the spatial-temporal molecular heterogeneity of the BBB under disease states emphasized the importance of utilizing emerging spatial systems biology approaches to unravel novel targets for intervention within BBB and tailor strategies for enhancing drug delivery to the brain. SEARCH STRATEGY AND SELECTION CRITERIA: Data for this Review were identified by searches of clinicaltrials.gov, MEDLINE, Current Contents, PubMed, and references from relevant articles using the search terms "blood-brain barrier", "CNS drug delivery", "BBB modulation", "clinical trials", "systems biology", "primary or metastatic brain tumors", "Alzheimer's disease". Abstracts and reports from meetings were included only when they related directly to previously published work. Only articles published in English between 1980 and 2023 were included.


Assuntos
Doença de Alzheimer , Neoplasias Encefálicas , Humanos , Barreira Hematoencefálica/patologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Biologia de Sistemas , Encéfalo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Sistemas de Liberação de Medicamentos , Microbolhas
3.
bioRxiv ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38187532

RESUMO

Estrogen receptor-negative (ER-) breast cancer is an aggressive breast cancer subtype with limited therapeutic options. Upregulated expression of both inducible nitric oxide synthase (NOS2) and cyclo-oxygenase (COX2) in breast tumors predicts poor clinical outcomes. Signaling molecules released by these enzymes activate oncogenic pathways, driving cancer stemness, metastasis, and immune suppression. The influence of tumor NOS2/COX2 expression on the landscape of immune markers using multiplex fluorescence imaging of 21 ER- breast tumors were stratified for survival. A powerful relationship between tumor NOS2/COX2 expression and distinct CD8+ T cell phenotypes was observed at 5 years post-diagnosis. These results were confirmed in a validation cohort using gene expression data showing that ratios of NOS2 to CD8 and COX2 to CD8 are strongly associated with poor outcomes in high NOS2/COX2-expressing tumors. Importantly, multiplex imaging identified distinct CD8+ T cell phenotypes relative to tumor NOS2/COX2 expression in Deceased vs Alive patient tumors at 5-year survival. CD8+NOS2-COX2- phenotypes defined fully inflamed tumors with significantly elevated CD8+ T cell infiltration in Alive tumors expressing low NOS2/COX2. In contrast, two distinct phenotypes including inflamed CD8+NOS2+COX2+ regions with stroma-restricted CD8+ T cells and CD8-NOS2-COX2+ immune desert regions with abated CD8+ T cell penetration, were significantly elevated in Deceased tumors with high NOS2/COX2 expression. These results were supported by applying an unsupervised nonlinear dimensionality-reduction technique, UMAP, correlating specific spatial CD8/NOS2/COX2 expression patterns with patient survival. Moreover, spatial analysis of the CD44v6 and EpCAM cancer stem cell (CSC) markers within the CD8/NOS2/COX2 expression landscape revealed positive correlations between EpCAM and inflamed stroma-restricted CD8+NOS2+COX2+ phenotypes at the tumor/stroma interface in deceased patients. Also, positive correlations between CD44v6 and COX2 were identified in immune desert regions in deceased patients. Furthermore, migrating tumor cells were shown to occur only in the CD8-NOS2+COX2+ regions, identifying a metastatic hot spot. Taken together, this study shows the strength of spatial localization analyses of the CD8/NOS2/COX2 landscape, how it shapes the tumor immune microenvironment and the selection of aggressive tumor phenotypes in distinct regions that lead to poor clinical outcomes. This technique could be beneficial for describing tumor niches with increased aggressiveness that may respond to clinically available NOS2/COX2 inhibitors or immune-modulatory agents.

4.
Redox Biol ; 58: 102529, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36375380

RESUMO

Antitumor immune polarization is a key predictor of clinical outcomes to cancer therapy. An emerging concept influencing clinical outcome involves the spatial location of CD8+ T cells, within the tumor. Our earlier work demonstrated immunosuppressive effects of NOS2 and COX2 tumor expression. Here, we show that NOS2/COX2 levels influence both the polarization and spatial location of lymphoid cells including CD8+ T cells. Importantly, elevated tumor NOS2/COX2 correlated with exclusion of CD8+ T cells from the tumor epithelium. In contrast, tumors expressing low NOS2/COX2 had increased CD8+ T cell penetration into the tumor epithelium. Consistent with a causative relationship between these observations, pharmacological inhibition of COX2 with indomethacin dramatically reduced tumor growth of the 4T1 model of TNBC in both WT and Nos2- mice. This regimen led to complete tumor regression in ∼20-25% of tumor-bearing Nos2- mice, and these animals were resistant to tumor rechallenge. Th1 cytokines were elevated in the blood of treated mice and intratumoral CD4+ and CD8+ T cells were higher in mice that received indomethacin when compared to control untreated mice. Multiplex immunofluorescence imaging confirmed our phenotyping results and demonstrated that targeted Nos2/Cox2 blockade improved CD8+ T cell penetration into the 4T1 tumor core. These findings are consistent with our observations in low NOS2/COX2 expressing breast tumors proving that COX2 activity is responsible for limiting the spatial distribution of effector T cells in TNBC. Together these results suggest that clinically available NSAID's may provide a cost-effective, novel immunotherapeutic approach for treatment of aggressive tumors including triple negative breast cancer.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Camundongos , Animais , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Orientação Espacial , Imunoterapia , Progressão da Doença , Linfócitos/metabolismo , Indometacina/farmacologia , Indometacina/metabolismo , Indometacina/uso terapêutico
5.
JCI Insight ; 3(13)2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-29997286

RESUMO

Success of immune checkpoint inhibitors in advanced non-small-cell lung cancer (NSCLC) has invigorated their use in the neoadjuvant setting for early-stage disease. However, the cellular and molecular mechanisms of the early immune responses to therapy remain poorly understood. Through an integrated analysis of early-stage NSCLC patients and a Kras mutant mouse model, we show a prevalent programmed cell death 1/programmed cell death 1 ligand 1 (PD-1/PD-L1) axis exemplified by increased intratumoral PD-1+ T cells and PD-L1 expression. Notably, tumor progression was associated with spatiotemporal modulation of the immune microenvironment with dominant immunosuppressive phenotypes at later phases of tumor growth. Importantly, PD-1 inhibition controlled tumor growth, improved overall survival, and reprogrammed tumor-associated lymphoid and myeloid cells. Depletion of T lymphocyte subsets demonstrated synergistic effects of those populations on PD-1 inhibition of tumor growth. Transcriptome analyses revealed T cell subset-specific alterations corresponding to degree of response to the treatment. These results provide insights into temporal evolution of the phenotypic effects of PD-1/PD-L1 activation and inhibition and motivate targeting of this axis early in lung cancer progression.


Assuntos
Antígeno B7-H1/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Neoplasias Pulmonares/imunologia , Receptor de Morte Celular Programada 1/efeitos dos fármacos , Receptor de Morte Celular Programada 1/imunologia , Animais , Anticorpos Monoclonais/uso terapêutico , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Imunoterapia , Pulmão/patologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas p21(ras) , Linfócitos T , Microambiente Tumoral/imunologia
6.
J Clin Invest ; 128(2): 589-606, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29251630

RESUMO

The molecular mechanism by which cancer-associated fibroblasts (CAFs) confer chemoresistance in ovarian cancer is poorly understood. The purpose of the present study was to evaluate the roles of CAFs in modulating tumor vasculature, chemoresistance, and disease progression. Here, we found that CAFs upregulated the lipoma-preferred partner (LPP) gene in microvascular endothelial cells (MECs) and that LPP expression levels in intratumoral MECs correlated with survival and chemoresistance in patients with ovarian cancer. Mechanistically, LPP increased focal adhesion and stress fiber formation to promote endothelial cell motility and permeability. siRNA-mediated LPP silencing in ovarian tumor-bearing mice improved paclitaxel delivery to cancer cells by decreasing intratumoral microvessel leakiness. Further studies showed that CAFs regulate endothelial LPP via a calcium-dependent signaling pathway involving microfibrillar-associated protein 5 (MFAP5), focal adhesion kinase (FAK), ERK, and LPP. Thus, our findings suggest that targeting endothelial LPP enhances the efficacy of chemotherapy in ovarian cancer. Our data highlight the importance of CAF-endothelial cell crosstalk signaling in cancer chemoresistance and demonstrate the improved efficacy of using LPP-targeting siRNA in combination with cytotoxic drugs.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Proteínas do Citoesqueleto/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteínas com Domínio LIM/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Progressão da Doença , Células Endoteliais/metabolismo , Feminino , Fibrose , Adesões Focais , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Camundongos , Microcirculação , Neovascularização Patológica , Permeabilidade , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Resultado do Tratamento , Regulação para Cima
7.
Cancer Res ; 76(8): 2094-2104, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-26893478

RESUMO

The activation of the epithelial-to-mesenchymal transition (EMT) program is a critical step in cancer progression and metastasis, but visualization of this process at the single-cell level, especially in vivo, remains challenging. We established an in vivo approach to track the fate of tumor cells based on a novel EMT-driven fluorescent color switching breast cancer mouse model and intravital two-photon laser scanning microscopy. Specifically, the MMTV-PyMT, Rosa26-RFP-GFP, and Fsp1-Cre triple transgenic mouse model was used to monitor the conversion of RFP-positive epithelial cells to GFP-positive mesenchymal cells in mammary tumors under the control of the Fsp1 (ATL1) promoter, a gate-keeper of EMT initiation. RFP-positive cells were isolated from the tumors, sorted, and transplanted into mammary fat pads of SCID mice to monitor EMT during breast tumor formation. We found that the conversion from RFP- to GFP-positive and spindle-shaped cells was a gradual process, and that GFP-positive cells preferentially localized close to blood vessels, independent of tumor size. Furthermore, cells undergoing EMT expressed high levels of the HGF receptor, c-Met, and treatment of RFP-positive cells with the c-Met inhibitor, cabozantinib, suppressed the RFP-to-GFP conversion in vitro Moreover, administration of cabozantinib to mice with palpable RFP-positive tumors resulted in a silent EMT phenotype whereby GFP-positive cells exhibited reduced motility, leading to suppressed tumor growth. In conclusion, our imaging technique provides a novel opportunity for visualizing tumor EMT at the single-cell level and may help to reveal the intricacies underlying tumor dynamics and treatment responses. Cancer Res; 76(8); 2094-104. ©2016 AACR.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias Mamárias Experimentais/patologia , Animais , Modelos Animais de Doenças , Feminino , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Camundongos , Camundongos SCID , Camundongos Transgênicos , Microscopia de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA