RESUMO
Alkylating agents are frequently used as first-line chemotherapeutics for various newly diagnosed cancers. Disruption of genome integrity by such agents can lead to cell lethality if DNA lesions are not removed. Several DNA repair mechanisms participate in the recovery of mono- or bi-functional DNA alkylation. Thus, DNA repair capacity is correlated with the therapeutic response. Here, we assessed the function of novel water-soluble N-mustard BO-1055 (ureidomustin) in DNA damage response and repair mechanisms. As expected, BO-1055 induces ATM and ATR-mediated DNA damage response cascades, including downstream Chk1/Chk2 phosphorylation, S/G2 cell-cycle arrest, and cell death. Further investigation revealed that cell survival sensitivity to BO-1055 is comparable to that of mitomycin C. Both compounds require nucleotide excision repair and homologous recombination, but not non-homologous end-joining, to repair conventional cross-linking DNA damage. Interestingly and unlike mitomycin C and melphalan, MGMT activity was also observed in BO-1055 damage repair systems, which reflects the occurrence of O-alkyl DNA lesions. Combined treatment with ATM/ATR kinase inhibitors significantly increases BO-1055 sensitivity. Our study pinpoints that BO-1055 can be used for treating tumors that with deficient NER, HR, and MGMT DNA repair genes, or for synergistic therapy in tumors that DNA damage response have been suppressed.
Assuntos
Antineoplásicos Alquilantes/farmacologia , Dano ao DNA , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA , Compostos de Mostarda Nitrogenada/farmacologia , Compostos de Fenilureia/farmacologia , Reparo de DNA por Recombinação , Proteínas Supressoras de Tumor/metabolismo , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Células CHO , Morte Celular/efeitos dos fármacos , Cricetulus , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Células HEK293 , Humanos , Células MCF-7 , Melfalan/farmacologia , Mitomicina/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , TransfecçãoRESUMO
Liriope spicata is a well-known herb in traditional Chinese medicine, and its root has been clinically demonstrated to be effective in the treatment of metabolic and neural disorders. The constituents isolated from Liriope have also recently been shown to possess anticancer activity, although the mechanism of which remains largely unknown. Here, we illustrate the anticancer activity of LPRP-9, one of the active fractions we fractionated from the Liriope platyphylla root part (LPRP) extract. Treatment with LPRP-9 significantly inhibited proliferation of cancer cell lines MCF-7 and Huh-7 and down-regulated the phosphorylation of AKT. LPRP-9 also activates the stress-activated MPAK, JNK, p38 pathways, the p53 cell-cycle checkpoint pathway, and a series of caspase cascades while downregulating expression of antiapoptotic factors Bcl-2, Bcl-XL, and survivin. Such activities strongly suggest a role for LPRP-9 in apoptosis and autophagy. We further purified and identified the compound (-)-Liriopein B from LPRP-9, which is capable of inhibiting AKT phosphorylation at low concentration. The overall result highlights the anticancer property of LPRP-9, suggests its mechanism for inhibition of proliferation and promotion of cell death for cancer cells via regulation of multitarget pathways, and denotes the importance of purifying components of fraction LPRP-9 to aid cancer therapy.