Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 14(3)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35336025

RESUMO

The anesthetic effect of Alpinia galanga oil (AGO) has been reported. However, knowledge of its pathway in mammals is limited. In the present study, the binding of AGO and its key compounds, methyl eugenol, 1,8-cineole, and 4-allylphenyl acetate, to gamma-aminobutyric acid type A (GABAA) receptors in rat cortical membranes, was investigated using a [3H]muscimol binding assay and an in silico modeling platform. The results showed that only AGO and methyl eugenol displayed a positive modulation at the highest concentrations, whereas 1,8-cineole and 4-allylphenyl acetate were inactive. The result of AGO correlated well to the amount of methyl eugenol in AGO. Computational docking and dynamics simulations into the GABAA receptor complex model (PDB: 6X3T) showed the stable structure of the GABAA receptor-methyl eugenol complex with the lowest binding energy of -22.16 kcal/mol. This result shows that the anesthetic activity of AGO and methyl eugenol in mammals is associated with GABAA receptor modulation. An oil-in-water nanoemulsion containing 20% w/w AGO (NE-AGO) was formulated. NE-AGO showed a significant increase in specific [3H]muscimol binding, to 179% of the control, with an EC50 of 391 µg/mL. Intracellular studies show that normal human cells are highly tolerant to AGO and the nanoemulsion, indicating that NE-AGO may be useful for human anesthesia.

2.
Molecules ; 26(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33573083

RESUMO

Collagen contains hydroxyproline (Hyp), which is a unique amino acid. Three collagen-derived small peptides (Gly-Pro-Hyp, Pro-Hyp, and Gly-Hyp) interacting across a lipid bilayer (POPC model membrane) for cellular uptakes of these collagen-derived small peptides were studied using accelerated molecular dynamics simulation. The ligands were investigated for their binding modes, hydrogen bonds in each coordinate frame, and mean square displacement (MSD) in the Z direction. The lipid bilayers were evaluated for mass and electron density profiles of the lipid molecules, surface area of the head groups, and root mean square deviation (RMSD). The simulation results show that hydrogen bonding between the small collagen peptides and plasma membrane plays a significant role in their internalization. The translocation of the small collagen peptides across the cell membranes was shown. Pro-Hyp laterally condensed the membrane, resulting in an increase in the bilayer thickness and rigidity. Perception regarding molecular behaviors of collagen-derived peptides within the cell membrane, including their interactions, provides the novel design of specific bioactive collagen peptides for their applications.


Assuntos
Colágeno/química , Bicamadas Lipídicas/química , Peptídeos/química , Sequência de Aminoácidos/genética , Transporte Biológico/genética , Dicroísmo Circular , Colágeno/genética , Simulação por Computador , Dipeptídeos/química , Dipeptídeos/genética , Ligação de Hidrogênio/efeitos dos fármacos , Hidroxiprolina/química , Peptídeos/genética , Ligação Proteica/genética , Conformação Proteica
3.
Toxicol Mech Methods ; 28(1): 1-11, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28678657

RESUMO

Inhibition of P-glycoprotein (P-gp)'s function may conduct significant changes in the prescription drugs' pharmacokinetic profiles and escalate potential risks in taking place of drug/herb-drug interactions. Computational modeling was advanced to scrutinize some bioflavonoids which play roles in herb-drug interactions as P-gp inhibitors utilizing molecular docking and pharmacophore analyses. Twenty-five flavonoids were utilized as ligands for the modeling. The mouse P-gp (code: 4Q9H) was acquired from the PDB. The docking was operated utilizing AutoDock version 4.2.6 (Scripps Research Institute, La Jolla, CA) against the NBD2 of 4Q9H. The result illustrated the high correlation between the docking scores and observed activities of the flavonoids and the putative binding site of these flavonoids was proposed and compared with the site for ATP. To evaluate hotspot amino acid residues within the NBD2, Binding modes for the ligands were achieved using LigandScout to originate the NBD2-flavonoid pharmacophore models. The results asserted that these inhibitors competed with ATP for binding site in the NBD2 (as competitive inhibitors) including the hotspot residues which associated with electrostatic and van der Waals interactions with the flavonoids. In MD simulation of eight delegated complexes selected from the analyzed flavonoid subclasses, RMSD analysis of the trajectories indicated the residues were stable throughout the duration of simulations.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Flavonoides/uso terapêutico , Interações Ervas-Drogas , Extratos Vegetais/uso terapêutico , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Ligação Competitiva , Flavonoides/química , Flavonoides/metabolismo , Ligantes , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
4.
Mol Cell Biochem ; 442(1-2): 97-109, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29019108

RESUMO

Synaptotagmin 1 (Syt1) is the Ca2+ sensor protein with an essential role in neurotransmitter release. Since the wrinkle formation is due to the excessive muscle fiber stimulation in the face, a helpful stratagem to diminish the wrinkle line intenseness is to weaken the innervating neuron activity through Syt1 inhibition which is one of the possible therapeutic strategies against wrinkles. Recently, experimental evidence showed that botox-like peptides, which are typically used as SNARE modulators, may inhibit Syt1. In this work, we applied molecular modeling to (1) characterize the structural framework and (2) define the atomistic information of the factors for the inhibition mechanism. The modeling identified the plausible binding cleft able to efficiently bind all botox-like peptides. The MD simulations revealed that all peptides induced significant Syt1 rigidity by binding in the cleft of the C2A-C2B interface. The consequence of this binding event is the suppression of the protein motion associated with conformational change of Syt1 from the closed form to the open form. On this basis, this finding may therefore be of subservience for the advancement of novel botox-like molecules for the therapeutic treatment of wrinkle, targeting and modulating the function of Syt1.


Assuntos
Simulação de Acoplamento Molecular , Peptídeos/química , Proteínas SNARE , Sinaptotagmina I/química , Humanos , Proteínas SNARE/antagonistas & inibidores , Proteínas SNARE/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA