Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446533

RESUMO

Recently, several methods have been used for cancer treatment. Among them, chemotherapy is generally used, but general anticancer drugs may affect normal cells and tissues, causing various side effects. To reduce the side effects and increase the efficacy of anticancer drugs, a folate-based liquid-metal drug nanodelivery system was used to target the folate receptor, which is highly expressed in cancer cells. A phospholipid-based surface coating was formed on the surface of liquid-metal nanoparticles to increase their stability, and doxorubicin was loaded as a drug delivery system. Folate on the lipid shell surface increased the efficiency of targeting cancer cells. The photothermal properties of liquid metal were confirmed by near-infrared (NIR) laser irradiation. After treating cancerous and normal cells with liquid-metal particles and NIR irradiation, the particles were specifically bound to cancer cells for drug uptake, confirming photothermal therapy as a drug delivery system that is expected to induce cancer cell death through comprehensive effects such as vascular embolization in addition to targeting cancer cells.

2.
RSC Adv ; 12(13): 7680-7688, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35424716

RESUMO

Owing to increased environmental pollution, active research regarding microplastics circulating in the ocean has attracted significant interest in recent times. Microplastics accumulate in the bodies of living organisms and adversely affect them. In this study, a new method for the rapid detection of microplastics using peptides was proposed. Among the various types of plastics distributed in the ocean, polystyrene and polypropylene were selected. The binding affinity of the hydrophobic peptides suitable for each type of plastic was evaluated. The binding affinities of peptides were confirmed in unoxidized plastics and plasma-oxidized plastics in deionised or 3.5% saline water. Also, the detection of microplastics in small animals' intestine extracts were possible with the reported peptide biosensors. We expect plastic-binding peptides to be used in sensors to increase the detection efficiency of microplastics and potentially help separate microplastics from seawater.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA