Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Nat Cancer ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816660

RESUMO

Dose-limiting toxicity poses a major limitation to the clinical utility of targeted cancer therapies, often arising from target engagement in nonmalignant tissues. This obstacle can be minimized by targeting cancer dependencies driven by proteins with tissue-restricted and/or tumor-restricted expression. In line with another recent report, we show here that, in acute myeloid leukemia (AML), suppression of the myeloid-restricted PIK3CG/p110γ-PIK3R5/p101 axis inhibits protein kinase B/Akt signaling and compromises AML cell fitness. Furthermore, silencing the genes encoding PIK3CG/p110γ or PIK3R5/p101 sensitizes AML cells to established AML therapies. Importantly, we find that existing small-molecule inhibitors against PIK3CG are insufficient to achieve a sustained long-term antileukemic effect. To address this concern, we developed a proteolysis-targeting chimera (PROTAC) heterobifunctional molecule that specifically degrades PIK3CG and potently suppresses AML progression alone and in combination with venetoclax in human AML cell lines, primary samples from patients with AML and syngeneic mouse models.

2.
NPJ Precis Oncol ; 8(1): 124, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822082

RESUMO

Acquired resistance remains a major challenge for therapies targeting oncogene activated pathways. KRAS is the most frequently mutated oncogene in human cancers, yet strategies targeting its downstream signaling kinases have failed to produce durable treatment responses. Here, we developed multiple models of acquired resistance to dual-mechanism ERK/MAPK inhibitors across KRAS-mutant pancreatic, colorectal, and lung cancers, and then probed the long-term events enabling survival against this class of drugs. These studies revealed that resistance emerges secondary to large-scale transcriptional adaptations that are diverse and cell line-specific. Transcriptional reprogramming extends beyond the well-established early response, and instead represents a dynamic, evolved process that is refined to attain a stably resistant phenotype. Mechanistic and translational studies reveal that resistance to dual-mechanism ERK/MAPK inhibition is broadly susceptible to manipulation of the epigenetic machinery, and that Mediator kinase, in particular, can be co-targeted at a bottleneck point to prevent diverse, cell line-specific resistance programs.

3.
NAR Genom Bioinform ; 6(2): lqae059, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38800827

RESUMO

Recent advancements in shRNA and Cas protein technologies have enabled functional screening methods targeting genes or non-coding regions using single or pooled shRNA and sgRNA. CRISPR-based systems have also been developed for modulating DNA accessibility, resulting in CRISPR-mediated interference (CRISPRi) or activation (CRISPRa) of targeted genes or genomic DNA elements. However, there is still a lack of software tools for integrating diverse array of functional genomics screening outputs that could offer a cohesive framework for comprehensive data integration. Here, we developed PitViper, a flexible and interactive open-source software designed to fill this gap, providing reliable results for the type of elements being screened. It is an end-to-end automated and reproducible bioinformatics pipeline integrating gold-standard methods for functional screening analysis. Our sensitivity analyses demonstrate that PitViper is a useful tool for identifying potential super-enhancer liabilities in a leukemia cell line through genome-wide CRISPRi-based screening. It offers a robust, flexible, and interactive solution for integrating data analysis and reanalysis from functional screening methods, making it a valuable resource for researchers in the field.

4.
Mol Cancer Ther ; 23(6): 751-765, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38588408

RESUMO

A majority of patients with cancer receive radiotherapy as part of their treatment regimens whether using external beam therapy or locally-delivered radioisotopes. While often effective, some tumors are inadequately controlled with radiation and radiotherapy has significant short-term and long-term toxicities for cancer survivors. Insights into molecular mechanisms involved in cellular responses to DNA breaks introduced by radiation or other cancer therapies have been gained in recent years and approaches to manipulate these responses to enhance tumor cell killing or reduce normal tissue toxicity are of great interest. Here, we report the identification and initial characterization of XRD-0394, a potent and specific dual inhibitor of two DNA damage response kinases, ATM and DNA-PKcs. This orally bioavailable molecule demonstrates significantly enhanced tumor cell kill in the setting of therapeutic ionizing irradiation in vitro and in vivo. XRD-0394 also potentiates the effectiveness of topoisomerase I inhibitors in vitro. In addition, in cells lacking BRCA1/2 XRD-0394 shows single-agent activity and synergy in combination with PARP inhibitors. A phase Ia clinical trial (NCT05002140) with XRD-0394 in combination with radiotherapy has completed. These results provide a rationale for future clinical trials with XRD-0394 in combination with radiotherapy, PARP inhibitors, and targeted delivery of topoisomerase I inhibitors.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Proteína Quinase Ativada por DNA , Inibidores de Poli(ADP-Ribose) Polimerases , Radiossensibilizantes , Inibidores da Topoisomerase I , Humanos , Animais , Inibidores da Topoisomerase I/farmacologia , Camundongos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Radiossensibilizantes/farmacologia , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Proteína Quinase Ativada por DNA/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Feminino , Sinergismo Farmacológico
5.
Trends Cell Biol ; 34(3): 225-238, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37573235

RESUMO

Cytotoxic chemo-, radio-, and targeted therapies frequently elicit apoptotic cancer cell death. Mitochondrial outer membrane permeabilization (MOMP) is a critical, regulated step in this apoptotic pathway. The residual cancer cells that survive treatment serve as the seeds of eventual relapse and are often functionally characterized by their transient tolerance of multiple therapeutic treatments. New studies suggest that, in these cells, a sublethal degree of MOMP, reflective of incomplete apoptotic commitment, is widely observed. Here, we review recent evidence that this sublethal MOMP drives the aggressive features of residual cancer cells while templating a host of unique vulnerabilities, highlighting how failed apoptosis may counterintuitively enable new therapeutic strategies to target residual disease (RD).


Assuntos
Mitocôndrias , Membranas Mitocondriais , Humanos , Membranas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Neoplasia Residual/metabolismo , Apoptose/fisiologia
7.
Nat Ecol Evol ; 8(1): 147-162, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38012363

RESUMO

Cancers with acquired resistance to targeted therapy can become simultaneously dependent on the presence of the targeted therapy drug for survival, suggesting that intermittent therapy may slow resistance. However, relatively little is known about which tumours are likely to become dependent and how to schedule intermittent therapy optimally. Here we characterized drug dependence across a panel of over 75 MAPK-inhibitor-resistant BRAFV600E mutant melanoma models at the population and single-clone levels. Melanocytic differentiated models exhibited a much greater tendency to give rise to drug-dependent progeny than their dedifferentiated counterparts. Mechanistically, acquired loss of microphthalmia-associated transcription factor in differentiated melanoma models drives ERK-JunB-p21 signalling to enforce drug dependence. We identified the optimal scheduling of 'drug holidays' using simple mathematical models that we validated across short and long timescales. Without detailed knowledge of tumour characteristics, we found that a simple adaptive therapy protocol can produce near-optimal outcomes using only measurements of total population size. Finally, a spatial agent-based model showed that optimal schedules derived from exponentially growing cells in culture remain nearly optimal in the context of tumour cell turnover and limited environmental carrying capacity. These findings may guide the implementation of improved evolution-inspired treatment strategies for drug-dependent cancers.


Assuntos
Melanoma , Transtornos Relacionados ao Uso de Substâncias , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico
8.
Res Sq ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961649

RESUMO

Acquired resistance remains a major challenge for therapies targeting oncogene activated pathways. KRAS is the most frequently mutated oncogene in human cancers, yet strategies targeting its downstream signaling kinases have failed to produce durable treatment responses. Here, we developed multiple models of acquired resistance to dual-mechanism ERK/MAPK inhibitors across KRAS-mutant pancreatic, colorectal, and lung cancers, and then probed the long-term events enabling survival against this class of drugs. These studies revealed that resistance emerges secondary to large-scale transcriptional adaptations that are diverse and cell line-specific. Transcriptional reprogramming extends beyond the well-established early response, and instead represents a dynamic, evolved process that is refined to attain a stably resistant phenotype. Mechanistic and translational studies reveal that resistance to dual-mechanism ERK/MAPK inhibition is broadly susceptible to manipulation of the epigenetic machinery, and that Mediator kinase, in particular, can be co-targeted at a bottleneck point to prevent diverse, cell line-specific resistance programs.

9.
bioRxiv ; 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37786671

RESUMO

Enhancers possess both structural elements mediating promoter looping and functional elements mediating gene expression. Traditional models of enhancer-mediated gene regulation imply genomic overlap or immediate adjacency of these elements. We test this model by combining densely-tiled CRISPRa screening with nucleosome-resolution Region Capture Micro-C topology analysis. Using this integrated approach, we comprehensively define the cis-regulatory landscape for the tumor suppressor PTEN, identifying and validating 10 distinct enhancers and defining their 3D spatial organization. Unexpectedly, we identify several long-range functional enhancers whose promoter proximity is facilitated by chromatin loop anchors several kilobases away, and demonstrate that accounting for this spatial separation improves the computational prediction of validated enhancers. Thus, we propose a new model of enhancer organization incorporating spatial separation of essential functional and structural components.

10.
Proc Natl Acad Sci U S A ; 120(38): e2221448120, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37695916

RESUMO

Evidence has long suggested that epidermal growth factor receptor (EGFR) may play a prominent role in triple-negative breast cancer (TNBC) pathogenesis, but clinical trials of EGFR inhibitors have yielded disappointing results. Using a candidate drug screen, we identified that inhibition of cyclin-dependent kinases 12 and 13 (CDK12/13) dramatically sensitizes diverse models of TNBC to EGFR blockade. This combination therapy drives cell death through the 4E-BP1-dependent suppression of the translation and translation-linked turnover of driver oncoproteins, including MYC. A genome-wide CRISPR/Cas9 screen identified the CCR4-NOT complex as a major determinant of sensitivity to the combination therapy whose loss renders 4E-BP1 unresponsive to drug-induced dephosphorylation, thereby rescuing MYC translational suppression and promoting MYC stability. The central roles of CCR4-NOT and 4E-BP1 in response to the combination therapy were further underscored by the observation of CNOT1 loss and rescue of 4E-BP1 phosphorylation in TNBC cells that naturally evolved therapy resistance. Thus, pharmacological inhibition of CDK12/13 reveals a long-proposed EGFR dependence in TNBC that functions through the cooperative regulation of translation-coupled oncoprotein stability.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Receptores ErbB/genética , Fosforilação , Morte Celular , Proteínas Oncogênicas , Quinases Ciclina-Dependentes/genética , Fatores de Transcrição
11.
12.
Mol Cancer Res ; 21(11): 1148-1162, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37493631

RESUMO

PIK3CA is the second most mutated gene in cancer leading to aberrant PI3K/AKT/mTOR signaling and increased translation, proliferation, and survival. Some 4%-25% of gastric cancers display activating PIK3CA mutations, including 80% of Epstein-Barr virus-associated GCs. Small molecules, including pan-PI3K and dual PI3K/mTOR inhibitors, have shown moderate success clinically, due to broad on-target/off-tissue effects. Thus, isoform-specific and mutant selective inhibitors have been of significant interest. However, drug resistance is a problem and has affected success of new drugs. There has been a concerted effort to define mechanisms of resistance and identify potent combinations in many tumor types, though gastric cancer is comparatively understudied. In this study, we identified modulators of the response to the PI3Kα-specific inhibitor, BYL719, in PIK3CA-mutant GCs. We found that loss of NEDD9 or inhibition of BCL-XL conferred hypersensitivity to BYL719, through increased cell-cycle arrest and cell death, respectively. In addition, we discovered that loss of CBFB conferred resistance to BYL719. CBFB loss led to upregulation of the protein kinase PIM1, which can phosphorylate and activate several overlapping downstream substrates as AKT thereby maintaining pathway activity in the presence of PI3Kα inhibition. The addition of a pan-PIM inhibitor re-sensitized resistant cells to BYL719. Our data provide clear mechanistic insights into PI3Kα inhibitor response in PIK3CA-mutant gastric tumors and can inform future work as mutant-selective inhibitors are in development for diverse tumor types. IMPLICATIONS: Loss of either NEDD9 or BCL-XL confers hypersensitivity to PI3K-alpha inhibition whereas loss of CBFB confers resistance through a CBFB/PIM1 signaling axis.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Inibidores de Proteínas Quinases/farmacologia , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Linhagem Celular Tumoral , Herpesvirus Humano 4 , Inibidores de Fosfoinositídeo-3 Quinase , Classe I de Fosfatidilinositol 3-Quinases/genética , Mutação , Proteínas Adaptadoras de Transdução de Sinal/genética
13.
Trends Cancer ; 9(2): 96-110, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-37284233

RESUMO

The intrinsic apoptosis pathway is controlled by the BCL-2 family of proteins. Although the pro-survival members of this family can help cancer cells evade apoptosis, they may also produce apoptotic vulnerabilities that can potentially be exploited therapeutically. Apoptotic vulnerabilities can be driven by endogenous factors including altered genetics, signaling, metabolism, structure and lineage or differentiation state as well as imposed factors, the most prominent being exposure to anti-cancer agents. The recent development of BH3 mimetics that inhibit pro-survival BCL-2 family proteins has allowed these apoptotic vulnerabilities to be targeted with demonstrable clinical success. Here, we review the key concepts that are vital for understanding, uncovering, and exploiting apoptotic vulnerabilities in cancer for the potential improvement of patient outcomes.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
14.
Proc Natl Acad Sci U S A ; 120(16): e2210418120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37040401

RESUMO

The hypoxia-inducible factor 1-α (HIF-1α) enables cells to adapt and respond to hypoxia (Hx), and the activity of this transcription factor is regulated by several oncogenic signals and cellular stressors. While the pathways controlling normoxic degradation of HIF-1α are well understood, the mechanisms supporting the sustained stabilization and activity of HIF-1α under Hx are less clear. We report that ABL kinase activity protects HIF-1α from proteasomal degradation during Hx. Using a fluorescence-activated cell sorting (FACS)-based CRISPR/Cas9 screen, we identified HIF-1α as a substrate of the cleavage and polyadenylation specificity factor-1 (CPSF1), an E3-ligase which targets HIF-1α for degradation in the presence of an ABL kinase inhibitor in Hx. We show that ABL kinases phosphorylate and interact with CUL4A, a cullin ring ligase adaptor, and compete with CPSF1 for CUL4A binding, leading to increased HIF-1α protein levels. Further, we identified the MYC proto-oncogene protein as a second CPSF1 substrate and show that active ABL kinase protects MYC from CPSF1-mediated degradation. These studies uncover a role for CPSF1 in cancer pathobiology as an E3-ligase antagonizing the expression of the oncogenic transcription factors, HIF-1α and MYC.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição , Humanos , Proteínas Culina/metabolismo , Hipóxia , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Genes abl , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo
15.
Nat Commun ; 14(1): 1399, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918588

RESUMO

During apoptosis, mitochondrial outer membrane permeabilization (MOMP) enables certain mitochondrial matrix macromolecules to escape into the cytosol. However, the fate of mitochondrial RNA (mtRNA) during apoptosis is unknown. Here, we demonstrate that MOMP results in the cytoplasmic release of mtRNA and that executioner caspases-3 and -7 (casp3/7) prevent cytoplasmic mtRNA from triggering inflammatory signaling. In the setting of genetic or pharmacological casp3/7 inhibition, apoptotic insults result in mtRNA activation of the MDA5/MAVS/IRF3 pathway to drive Type I interferon (IFN) signaling. This pathway is sufficient to activate tumor-intrinsic Type I IFN signaling in immunologically cold cancer models that lack an intact cGAS/STING signaling pathway, promote CD8+ T-cell-dependent anti-tumor immunity, and overcome anti-PD1 refractoriness in vivo. Thus, a key function of casp3/7 is to inhibit inflammation caused by the cytoplasmic release of mtRNA, and pharmacological modulation of this pathway increases the immunogenicity of chemotherapy-induced apoptosis.


Assuntos
Antineoplásicos , Interferon Tipo I , Caspases/metabolismo , RNA Mitocondrial , Caspase 3/metabolismo , Apoptose , Interferon Tipo I/metabolismo , Antineoplásicos/farmacologia , Nucleotidiltransferases/metabolismo
16.
bioRxiv ; 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36711936

RESUMO

Targeted therapies have revolutionized cancer chemotherapy. Unfortunately, most patients develop multifocal resistance to these drugs within a matter of months. Here, we used a high-throughput phenotypic small molecule screen to identify MCB-613 as a compound that selectively targets EGFR-mutant, EGFR inhibitor-resistant non-small cell lung cancer (NSCLC) cells harboring diverse resistance mechanisms. Subsequent proteomic and functional genomic screens involving MCB-613 identified its target in this context to be KEAP1, revealing that this gene is selectively essential in the setting of EGFR inhibitor resistance. In-depth molecular characterization demonstrated that (1) MCB-613 binds KEAP1 covalently; (2) a single molecule of MCB-613 is capable of bridging two KEAP1 monomers together; and, (3) this modification interferes with the degradation of canonical KEAP1 substrates such as NRF2. Surprisingly, NRF2 knockout sensitizes cells to MCB-613, suggesting that the drug functions through modulation of an alternative KEAP1 substrate. Together, these findings advance MCB-613 as a new tool for exploiting the selective essentiality of KEAP1 in drug-resistant, EGFR-mutant NSCLC cells.

17.
Cancer Res ; 83(1): 141-157, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36346366

RESUMO

Mutational loss of CDKN2A (encoding p16INK4A) tumor-suppressor function is a key genetic step that complements activation of KRAS in promoting the development and malignant growth of pancreatic ductal adenocarcinoma (PDAC). However, pharmacologic restoration of p16INK4A function with inhibitors of CDK4 and CDK6 (CDK4/6) has shown limited clinical efficacy in PDAC. Here, we found that concurrent treatment with both a CDK4/6 inhibitor (CDK4/6i) and an ERK-MAPK inhibitor (ERKi) synergistically suppresses the growth of PDAC cell lines and organoids by cooperatively blocking CDK4/6i-induced compensatory upregulation of ERK, PI3K, antiapoptotic signaling, and MYC expression. On the basis of these findings, a Phase I clinical trial was initiated to evaluate the ERKi ulixertinib in combination with the CDK4/6i palbociclib in patients with advanced PDAC (NCT03454035). As inhibition of other proteins might also counter CDK4/6i-mediated signaling changes to increase cellular CDK4/6i sensitivity, a CRISPR-Cas9 loss-of-function screen was conducted that revealed a spectrum of functionally diverse genes whose loss enhanced CDK4/6i growth inhibitory activity. These genes were enriched around diverse signaling nodes, including cell-cycle regulatory proteins centered on CDK2 activation, PI3K-AKT-mTOR signaling, SRC family kinases, HDAC proteins, autophagy-activating pathways, chromosome regulation and maintenance, and DNA damage and repair pathways. Novel therapeutic combinations were validated using siRNA and small-molecule inhibitor-based approaches. In addition, genes whose loss imparts a survival advantage were identified (e.g., RB1, PTEN, FBXW7), suggesting possible resistance mechanisms to CDK4/6 inhibition. In summary, this study has identified novel combinations with CDK4/6i that may have clinical benefit to patients with PDAC. SIGNIFICANCE: CRISPR-Cas9 screening and protein activity mapping reveal combinations that increase potency of CDK4/6 inhibitors and overcome drug-induced compensations in pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias Pancreáticas
18.
Cancer Res ; 82(21): 3884-3887, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36321262

RESUMO

The mechanistic target of rapamycin (mTOR) plays a key role in normal and malignant cell growth. However, pharmacologic targeting of mTOR in cancer has shown little clinical benefit, in spite of aberrant hyperactivation of mTOR in most solid tumors. Here, we discuss possible reasons for the reduced clinical efficacy of mTOR inhibition and highlight lessons learned from recent combination clinical trials and approved indications of mTOR inhibitors in cancer. We also discuss how the emerging systems level understanding of mTOR signaling in cancer can be exploited for the clinical development of novel multimodal precision targeted therapies and immunotherapies aimed at achieving tumor remission.


Assuntos
Neoplasias , Sirolimo , Humanos , Inibidores de Proteínas Quinases/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Neoplasias/patologia , Transdução de Sinais
19.
MethodsX ; 9: 101927, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438856

RESUMO

PTEN is a well-known tumor suppressor that is inactivated or suppressed at a high frequency in cancer. We sought an assay to screen compounds for ones that differentially inhibited proliferation or induced cytotoxicity in PTEN mutated cancer cells. We employed the isogenic pair of cell lines MCF10-A breast cell line (wild type, WT) and the same cell line with PTEN knocked out (KO) by CRISPR. We sought an assay where these PTEN WT and KO isogenic cell lines were co-cultured in the same well for compound testing. The KO cell line, but not the WT, was tagged with the red fluorescent protein mKate2. We employed a real time microscopic imaging instrument to identify cell populations in co-culture based on red fluorescence to obtain a cell count for each cell line. To acquire cytotoxicity data for each population, the dye CellTox Green was added to the media. To assess the assay, we determined the concentration response of paclitaxel. In order to assess the potential for screening, we performed mock screening in 384-well plate format. Thus, we developed a high throughput co-culture cell cytotoxicity and proliferation assay method that could be employed for any pair of cell lines to identify selective compounds.

20.
NPJ Precis Oncol ; 6(1): 75, 2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36274097

RESUMO

Intrahepatic cholangiocarcinoma (ICC) remains a deadly malignancy lacking systemic therapies for advanced disease. Recent advancements include selective FGFR1-3 inhibitors for the 15% of ICC patients harboring fusions, although survival is limited by poor response and resistance. Herein we report generation of a patient-derived FGFR2 fusion-positive ICC model system consisting of a cell line, organoid, and xenograft, which have undergone complete histologic, genomic, and phenotypic characterization, including testing standard-of-care systemic therapies. Using these FGFR2 fusion-positive ICC models, we conducted an unbiased high-throughput small molecule screen to prioritize combination strategies with FGFR inhibition, from which HDAC inhibition together with pemigatinib was validated in vitro and in vivo as a synergistic therapy for ICC. Additionally, we demonstrate broad utility of the FGFR/HDAC combination for other FGFR fusion-positive solid tumors. These data are directly translatable and justify early phase trials to establish dosing, safety, and therapeutic efficacy of this synergistic combination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA