Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38370667

RESUMO

The enzymatic oxidation of arachidonic acid is proposed to yield trihydroxytetraene species (termed lipoxins) that resolve inflammation via ligand activation of the formyl peptide receptor, FPR2. While cell and murine models activate signaling responses to synthetic lipoxins, primarily 5S,6R,15S-trihydroxy-7E,9E,11Z,13E-eicosatetraenoic acid (lipoxin A4, LXA4), there are expanding concerns about the biological formation, detection and signaling mechanisms ascribed to LXA4 and related di- and tri-hydroxy ω-6 and ω-3 fatty acids. Herein, the generation and actions of LXA4 and its primary 15-oxo metabolite were assessed in control, LPS-activated and arachidonic acid supplemented RAW 264.7 macrophages. Despite protein expression of all enzymes required for LXA4 synthesis, both LXA4 and its 15-oxo-LXA4 metabolite were undetectable. Moreover, synthetic LXA4 and the membrane permeable 15-oxo-LXA4 methyl ester that is rapidly de-esterified to 15-oxo-LXA4, displayed no ligand activity for the putative LXA4 receptor FPR2, as opposed to the FPR2 ligand WKYMVm. Alternatively, 15-oxo-LXA4, an electrophilic α,ß-unsaturated ketone, alkylates nucleophilic amino acids such as cysteine to modulate redox-sensitive transcriptional regulatory protein and enzyme function. 15-oxo-LXA4 activated nuclear factor (erythroid related factor 2)-like 2 (Nrf2)-regulated gene expression of anti-inflammatory and repair genes and inhibited nuclear factor (NF)-κB-regulated pro-inflammatory mediator expression. LXA4 did not impact these macrophage anti-inflammatory and repair responses. In summary, these data show an absence of macrophage LXA4 formation and receptor-mediated signaling actions. Rather, if LXA4 were present in sufficient concentrations, this, and other more abundant mono- and poly-hydroxylated unsaturated fatty acids can be readily oxidized to electrophilic α,ß-unsaturated ketone products that modulate the redox-sensitive cysteine proteome via G-protein coupled receptor-independent mechanisms.

2.
bioRxiv ; 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37645906

RESUMO

Nitro fatty acids (NO 2 -FAs) are endogenously generated lipid signaling mediators from metabolic and inflammatory reactions between conjugated diene fatty acids and nitric oxide or nitrite-derived reactive species. NO 2 -FAs undergo reversible Michael addition with hyperreactive protein cysteine thiolates to induce posttranslational protein modifications that can impact protein function. Herein, we report a novel mechanism of action of natural and non-natural nitroalkenes structurally similar to ( E ) 10-nitro-octadec-9-enoic acid (CP-6), recently de-risked by preclinical Investigational New Drug-enabling studies and Phase 1 and Phase 2 clinical trials and found to induce DNA damage in a TNBC xenograft by inhibiting homologous-recombination (HR)-mediated repair of DNA double-strand breaks (DSB). CP-6 specifically targets Cys319, essential in RAD51-controlled HR-mediated DNA DSB repair in cells. A nitroalkene library screen identified two structurally different nitroalkenes, a non-natural fatty acid [( E ) 8-nitro- nonadec-7-enoic acid (CP-8)] and a dicarboxylate ester [dimethyl ( E )nitro-oct-4-enedioate (CP- 23)] superior to CP-6 in TNBC cells killing, synergism with three different inhibitors of the poly ADP-ribose polymerase (PARP) and γ-IR. CP-8 and CP-23 effectively inhibited γ-IR-induced RAD51 foci formation and HR in a GFP-reported assay but did not affect benign human epithelial cells or cell cycle phases. In vivo, CP-8 and CP-23's efficacies diverged as only CP-8 showed promising anticancer activities alone and combined with the PARP inhibitor talazoparib in an HR-proficient TNBC mouse model. As preliminary preclinical toxicology analysis also suggests CP-8 as safe, our data endorse CP-8 as a novel anticancer molecule for treating cancers sensitive to homologous recombination-mediated DNA repair inhibitors.

3.
Redox Biol ; 66: 102856, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37633047

RESUMO

Nitro fatty acids (NO2-FAs) are endogenously generated lipid signaling mediators from metabolic and inflammatory reactions between conjugated diene fatty acids and nitric oxide or nitrite-derived reactive species. NO2-FAs undergo reversible Michael addition with hyperreactive protein cysteine thiolates to induce posttranslational protein modifications that can impact protein function. Herein, we report a novel mechanism of action of natural and non-natural nitroalkenes structurally similar to (E) 10-nitro-octadec-9-enoic acid (CP-6), recently de-risked by preclinical Investigational New Drug-enabling studies and Phase 1 and Phase 2 clinical trials and found to induce DNA damage in a TNBC xenograft by inhibiting homologous-recombination (HR)-mediated repair of DNA double-strand breaks (DSB). CP-6 specifically targets Cys319, essential in RAD51-controlled HR-mediated DNA DSB repair in cells. A nitroalkene library screen identified two structurally different nitroalkenes, a non-natural fatty acid [(E) 8-nitro-nonadec-7-enoic acid (CP-8)] and a dicarboxylate ester [dimethyl (E)nitro-oct-4-enedioate (CP-23)] superior to CP-6 in TNBC cells killing, synergism with three different inhibitors of the poly ADP-ribose polymerase (PARP) and γ-IR. CP-8 and CP-23 effectively inhibited γ-IR-induced RAD51 foci formation and HR in a GFP-reported assay but did not affect benign human epithelial cells or cell cycle phases. In vivo, CP-8 and CP-23's efficacies diverged as only CP-8 showed promising anticancer activities alone and combined with the PARP inhibitor talazoparib in an HR-proficient TNBC mouse model. As preliminary preclinical toxicology analysis also suggests CP-8 as safe, our data endorse CP-8 as a novel anticancer molecule for treating cancers sensitive to homologous recombination-mediated DNA repair inhibitors.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Camundongos , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Dióxido de Nitrogênio , Recombinação Homóloga , Apoptose , Alcenos , DNA , Rad51 Recombinase
4.
J Biol Chem ; 294(2): 397-404, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30478172

RESUMO

Homologous recombination (HR)-directed DNA double-strand break (DSB) repair enables template-directed DNA repair to maintain genomic stability. RAD51 recombinase (RAD51) is a critical component of HR and facilitates DNA strand exchange in DSB repair. We report here that treating triple-negative breast cancer (TNBC) cells with the fatty acid nitroalkene 10-nitro-octadec-9-enoic acid (OA-NO2) in combination with the antineoplastic DNA-damaging agents doxorubicin, cisplatin, olaparib, and γ-irradiation (IR) enhances the antiproliferative effects of these agents. OA-NO2 inhibited IR-induced RAD51 foci formation and enhanced H2A histone family member X (H2AX) phosphorylation in TNBC cells. Analyses of fluorescent DSB reporter activity with both static-flow cytometry and kinetic live-cell studies enabling temporal resolution of recombination revealed that OA-NO2 inhibits HR and not nonhomologous end joining (NHEJ). OA-NO2 alkylated Cys-319 in RAD51, and this alkylation depended on the Michael acceptor properties of OA-NO2 because nonnitrated and saturated nonelectrophilic analogs of OA-NO2, octadecanoic acid and 10-nitro-octadecanoic acid, did not react with Cys-319. Of note, OA-NO2 alkylation of RAD51 inhibited its binding to ssDNA. RAD51 Cys-319 resides within the SH3-binding site of ABL proto-oncogene 1, nonreceptor tyrosine kinase (ABL1), so we investigated the effect of OA-NO2-mediated Cys-319 alkylation on ABL1 binding and found that OA-NO2 inhibits RAD51-ABL1 complex formation both in vitro and in cell-based immunoprecipitation assays. The inhibition of the RAD51-ABL1 complex also suppressed downstream RAD51 Tyr-315 phosphorylation. In conclusion, RAD51 Cys-319 is a functionally significant site for adduction of soft electrophiles such as OA-NO2 and suggests further investigation of lipid electrophile-based combinational therapies for TNBC.


Assuntos
Antineoplásicos/administração & dosagem , Dano ao DNA/efeitos dos fármacos , Ácidos Graxos/administração & dosagem , Rad51 Recombinase/metabolismo , Neoplasias de Mama Triplo Negativas/enzimologia , Neoplasias de Mama Triplo Negativas/fisiopatologia , Alquilação , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Cisplatino/administração & dosagem , Reparo do DNA , Doxorrubicina/administração & dosagem , Quimioterapia Combinada , Ácidos Graxos/química , Humanos , Ligação Proteica/efeitos dos fármacos , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-abl/genética , Proteínas Proto-Oncogênicas c-abl/metabolismo , Rad51 Recombinase/química , Rad51 Recombinase/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
5.
J Biol Chem ; 293(4): 1120-1137, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29158255

RESUMO

Triple-negative breast cancer (TNBC) comprises ∼20% of all breast cancers and is the most aggressive mammary cancer subtype. Devoid of the estrogen and progesterone receptors, along with the receptor tyrosine kinase ERB2 (HER2), that define most mammary cancers, there are no targeted therapies for patients with TNBC. This, combined with a high metastatic rate and a lower 5-year survival rate than for other breast cancer phenotypes, means there is significant unmet need for new therapeutic strategies. Herein, the anti-neoplastic effects of the electrophilic fatty acid nitroalkene derivative, 10-nitro-octadec-9-enoic acid (nitro-oleic acid, NO2-OA), were investigated in multiple preclinical models of TNBC. NO2-OA reduced TNBC cell growth and viability in vitro, attenuated TNFα-induced TNBC cell migration and invasion, and inhibited the tumor growth of MDA-MB-231 TNBC cell xenografts in the mammary fat pads of female nude mice. The up-regulation of these aggressive tumor cell growth, migration, and invasion phenotypes is mediated in part by the constitutive activation of pro-inflammatory nuclear factor κB (NF-κB) signaling in TNBC. NO2-OA inhibited TNFα-induced NF-κB transcriptional activity in human TNBC cells and suppressed downstream NF-κB target gene expression, including the metastasis-related proteins intercellular adhesion molecule-1 and urokinase-type plasminogen activator. The mechanisms accounting for NF-κB signaling inhibition by NO2-OA in TNBC cells were multifaceted, as NO2-OA (a) inhibited the inhibitor of NF-κB subunit kinase ß phosphorylation and downstream inhibitor of NF-κB degradation, (b) alkylated the NF-κB RelA protein to prevent DNA binding, and (c) promoted RelA polyubiquitination and proteasomal degradation. Comparisons with non-tumorigenic human breast epithelial MCF-10A and MCF7 cells revealed that NO2-OA more selectively inhibited TNBC function. This was attributed to more facile mechanisms for maintaining redox homeostasis in normal breast epithelium, including a more favorable thiol/disulfide balance, greater extents of multidrug resistance protein-1 (MRP1) expression, and greater MRP1-mediated efflux of NO2-OA-glutathione conjugates. These observations reveal that electrophilic fatty acid nitroalkenes react with more alkylation-sensitive targets in TNBC cells to inhibit growth and viability.


Assuntos
Movimento Celular , Ácidos Graxos/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Sobrevivência Celular , Ácidos Graxos/genética , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
6.
Free Radic Biol Med ; 104: 10-19, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28063941

RESUMO

Many diseases accompanied by chronic inflammation are connected with dysregulated activation of macrophage subpopulations. Recently, we reported that nitro-fatty acids (NO2-FAs), products of metabolic and inflammatory reactions of nitric oxide and nitrite, modulate macrophage and other immune cell functions. Bone marrow cell suspensions were isolated from mice and supplemented with macrophage colony-stimulating factor (M-CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF) in combination with NO2-OA for different times. RAW 264.7 macrophages were used for short-term (1-5min) experiments. We discovered that NO2-OA reduces cell numbers, cell colony formation, and proliferation of macrophages differentiated with colony-stimulating factors (CSFs), all in the absence of toxicity. In a case of GM-CSF-induced bone marrow-derived macrophages (BMMs), NO2-OA acts via downregulation of signal transducer and activator of transcription 5 and extracellular signal-regulated kinase (ERK) activation. In the case of M-CSF-induced BMMs, NO2-OA decreases activation of M-CSFR and activation of related PI3K and ERK. Additionally, NO2-OA also attenuates activation of BMMs. In aggregate, we demonstrate that NO2-OA regulates the process of macrophage differentiation and that NO2-FAs represent a promising therapeutic tool in the treatment of inflammatory pathologies linked with increased accumulation of macrophages in inflamed tissues.


Assuntos
Fatores Estimuladores de Colônias/genética , Inflamação/tratamento farmacológico , Óxido Nítrico/administração & dosagem , Ácido Oleico/administração & dosagem , Animais , Células da Medula Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inflamação/genética , Inflamação/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Óxido Nítrico/química , Ácido Oleico/química , Fosfatidilinositol 3-Quinases/genética , Células RAW 264.7 , Fator de Transcrição STAT5/genética
7.
J Lipid Res ; 58(2): 375-385, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27913584

RESUMO

Electrophilic nitro-FAs (NO2-FAs) promote adaptive and anti-inflammatory cell signaling responses as a result of an electrophilic character that supports posttranslational protein modifications. A unique pharmacokinetic profile is expected for NO2-FAs because of an ability to undergo reversible reactions including Michael addition with cysteine-containing proteins and esterification into complex lipids. Herein, we report via quantitative whole-body autoradiography analysis of rats gavaged with radiolabeled 10-nitro-[14C]oleic acid, preferential accumulation in adipose tissue over 2 weeks. To better define the metabolism and incorporation of NO2-FAs and their metabolites in adipose tissue lipids, adipocyte cultures were supplemented with 10-nitro-oleic acid (10-NO2-OA), nitro-stearic acid, nitro-conjugated linoleic acid, and nitro-linolenic acid. Then, quantitative HPLC-MS/MS analysis was performed on adipocyte neutral and polar lipid fractions, both before and after acid hydrolysis of esterified FAs. NO2-FAs preferentially incorporated in monoacyl- and diacylglycerides, while reduced metabolites were highly enriched in triacylglycerides. This differential distribution profile was confirmed in vivo in the adipose tissue of NO2-OA-treated mice. This pattern of NO2-FA deposition lends new insight into the unique pharmacokinetics and pharmacologic actions that could be expected for this chemically-reactive class of endogenous signaling mediators and synthetic drug candidates.


Assuntos
Tecido Adiposo/metabolismo , Ácidos Graxos/metabolismo , Ácidos Oleicos/administração & dosagem , Ácidos Oleicos/metabolismo , Tecido Adiposo/química , Alcenos/química , Animais , Radioisótopos de Carbono/química , Cisteína/química , Esterificação , Ácidos Graxos/química , Camundongos , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Ácidos Oleicos/química , Processamento de Proteína Pós-Traducional , Ratos , Transdução de Sinais/efeitos dos fármacos , Espectrometria de Massas em Tandem
8.
J Biol Chem ; 292(4): 1145-1159, 2017 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-27923813

RESUMO

Nitroalkene fatty acids are formed in vivo and exert protective and anti-inflammatory effects via reversible Michael addition to thiol-containing proteins in key signaling pathways. Nitro-conjugated linoleic acid (NO2-CLA) is preferentially formed, constitutes the most abundant nitrated fatty acid in humans, and contains two carbons that could potentially react with thiols, modulating signaling actions and levels. In this work, we examined the reactions of NO2-CLA with low molecular weight thiols (glutathione, cysteine, homocysteine, cysteinylglycine, and ß-mercaptoethanol) and human serum albumin. Reactions followed reversible biphasic kinetics, consistent with the presence of two electrophilic centers in NO2-CLA located on the ß- and δ-carbons with respect to the nitro group. The differential reactivity was confirmed by computational modeling of the electronic structure. The rates (kon and koff) and equilibrium constants for both reactions were determined for different thiols. LC-UV-Visible and LC-MS analyses showed that the fast reaction corresponds to ß-adduct formation (the kinetic product), while the slow reaction corresponds to the formation of the δ-adduct (the thermodynamic product). The pH dependence of the rate constants, the correlation between intrinsic reactivity and thiol pKa, and the absence of deuterium solvent kinetic isotope effects suggested stepwise mechanisms with thiolate attack on NO2-CLA as rate-controlling step. Computational modeling supported the mechanism and revealed additional features of the transition states, anionic intermediates, and final neutral products. Importantly, the detection of cysteine-δ-adducts in human urine provided evidence for the biological relevance of this reaction. Finally, human serum albumin was found to bind NO2-CLA both non-covalently and to form covalent adducts at Cys-34, suggesting potential modes for systemic distribution. These results provide new insights into the chemical basis of NO2-CLA signaling actions.


Assuntos
Ácido Linoleico/química , Nitrocompostos/química , Albumina Sérica/química , Transdução de Sinais , Compostos de Sulfidrila/química , Humanos
9.
Cardiovasc Drugs Ther ; 30(6): 579-586, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27858190

RESUMO

RATIONALE: Pulmonary hypertension (PH) represents a serious health complication accompanied with hypoxic conditions, elevated levels of asymmetric dimethylarginine (ADMA), and overall dysfunction of pulmonary vascular endothelium. Since the prevention strategies for treatment of PH remain largely unknown, our study aimed to explore the effect of nitro-oleic acid (OA-NO2), an exemplary nitro-fatty acid (NO2-FA), in human pulmonary artery endothelial cells (HPAEC) under the influence of hypoxia or ADMA. METHODS: HPAEC were treated with OA-NO2 in the absence or presence of hypoxia and ADMA. The production of nitric oxide (NO) and interleukin-6 (IL-6) was monitored using the Griess method and ELISA, respectively. The expression or activation of different proteins (signal transducer and activator of transcription 3, STAT3; hypoxia inducible factor 1α, HIF-1α; endothelial nitric oxide synthase, eNOS; intercellular adhesion molecule-1, ICAM-1) was assessed by the Western blot technique. RESULTS: We discovered that OA-NO2 prevents development of endothelial dysfunction induced by either hypoxia or ADMA. OA-NO2 preserves normal cellular functions in HPAEC by increasing NO production and eNOS expression. Additionally, OA-NO2 inhibits IL-6 production as well as ICAM-1 expression, elevated by hypoxia and ADMA. Importantly, the effect of OA-NO2 is accompanied by prevention of STAT3 activation and HIF-1α stabilization. CONCLUSION: In summary, OA-NO2 eliminates the manifestation of hypoxia- and ADMA-mediated endothelial dysfunction in HPAEC via the STAT3/HIF-1α cascade. Importantly, our study is bringing a new perspective on molecular mechanisms of NO2-FAs action in pulmonary endothelial dysfunction, which represents a causal link in progression of PH. Graphical Abstract ᅟ.


Assuntos
Hipóxia Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Ácidos Oleicos/farmacologia , Arginina/análogos & derivados , Arginina/farmacologia , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-6/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Artéria Pulmonar/citologia , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo
10.
Biochim Biophys Acta ; 1860(11 Pt A): 2428-2437, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27431604

RESUMO

BACKGROUND: Inflammatory-mediated pathological processes in the endothelium arise as a consequence of the dysregulation of vascular homeostasis. Of particular importance are mediators produced by stimulated monocytes/macrophages inducing activation of endothelial cells (ECs). This is manifested by excessive soluble pro-inflammatory mediator production and cell surface adhesion molecule expression. Nitro-fatty acids are endogenous products of metabolic and inflammatory reactions that display immuno-regulatory potential and may represent a novel therapeutic strategy to treat inflammatory diseases. The purpose of our study was to characterize the effects of nitro-oleic acid (OA-NO2) on inflammatory responses and the endothelial-mesenchymal transition (EndMT) in ECs that is a consequence of the altered healing phase of the immune response. METHODS: The effect of OA-NO2 on inflammatory responses and EndMT was determined in murine macrophages and murine and human ECs using Western blotting, ELISA, immunostaining, and functional assays. RESULTS: OA-NO2 limited the activation of macrophages and ECs by reducing pro-inflammatory cytokine production and adhesion molecule expression through its modulation of STAT, MAPK and NF-κB-regulated signaling. OA-NO2 also decreased transforming growth factor-ß-stimulated EndMT and pro-fibrotic phenotype of ECs. These effects are related to the downregulation of Smad2/3. CONCLUSIONS: The study shows the pleiotropic effect of OA-NO2 on regulating EC-macrophage interactions during the immune response and suggests a role for OA-NO2 in the regulation of vascular endothelial immune and fibrotic responses arising during chronic inflammation. GENERAL SIGNIFICANCE: These findings propose the OA-NO2 may be useful as a novel therapeutic agent for treatment of cardiovascular disorders associated with dysregulation of the endothelial immune response.


Assuntos
Endotélio Vascular/efeitos dos fármacos , Transição Epitelial-Mesenquimal , Ácidos Oleicos/farmacologia , Animais , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Humanos , Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Fatores de Transcrição STAT/metabolismo , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/farmacologia
11.
J Biol Chem ; 288(35): 25626-25637, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-23878198

RESUMO

Inflammation, characterized by the activation of both resident and infiltrated immune cells, is accompanied by increased production of oxidizing and nitrating species. Nitrogen dioxide, the proximal nitrating species formed under these conditions, reacts with unsaturated fatty acids to yield nitroalkene derivatives. These electrophilic products modulate protein function via post-translational modification of susceptible nucleophilic amino acids. Nitroalkenes react with Keap1 to instigate Nrf2 signaling, activate heat shock response gene expression, and inhibit NF-κB-mediated signaling, inducing net anti-inflammatory and tissue-protective metabolic responses. We report the purification and characterization of a NADPH-dependent liver enzyme that reduces the nitroalkene moiety of nitro-oleic acid, yielding the inactive product nitro-stearic acid. Prostaglandin reductase-1 (PtGR-1) was identified as a nitroalkene reductase by protein purification and proteomic studies. Kinetic measurements, inhibition studies, immunological and molecular biology approaches as well as clinical analyses confirmed this identification. Overexpression of PtGR-1 in HEK293T cells promoted nitroalkene metabolism to inactive nitroalkanes, an effect that abrogated the Nrf2-dependent induction of heme oxygenase-1 expression by nitro-oleic acid. These results situate PtGR-1 as a critical modulator of both the steady state levels and signaling activities of fatty acid nitroalkenes in vivo.


Assuntos
Oxirredutases do Álcool/metabolismo , Fígado/metabolismo , Nitrocompostos/metabolismo , Ácido Oleico/metabolismo , Transdução de Sinais/fisiologia , Ácidos Esteáricos/metabolismo , Oxirredutases do Álcool/genética , Animais , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Células Hep G2 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ácido Oleico/genética , Ratos
12.
J Lipid Res ; 54(7): 1998-2009, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23620137

RESUMO

The oxidation and nitration of unsaturated fatty acids transforms cell membrane and lipoprotein constituents into mediators that regulate signal transduction. The formation of 9-NO2-octadeca-9,11-dienoic acid and 12-NO2-octadeca-9,11-dienoic acid stems from peroxynitrite- and myeloperoxidase-derived nitrogen dioxide reactions as well as secondary to nitrite disproportionation under the acidic conditions of digestion. Broad anti-inflammatory and tissue-protective responses are mediated by nitro-fatty acids. It is now shown that electrophilic fatty acid nitroalkenes are present in the urine of healthy human volunteers (9.9 ± 4.0 pmol/mg creatinine); along with electrophilic 16- and 14-carbon nitroalkenyl ß-oxidation metabolites. High resolution mass determinations and coelution with isotopically-labeled metabolites support renal excretion of cysteine-nitroalkene conjugates. These products of Michael addition are in equilibrium with the free nitroalkene pool in urine and are displaced by thiol reaction with mercury chloride. This reaction increases the level of free nitroalkene fraction >10-fold and displays a K(D) of 7.5 × 10(-6) M. In aggregate, the data indicates that formation of Michael adducts by electrophilic fatty acids is favored under biological conditions and that reversal of these addition reactions is critical for detecting both parent nitroalkenes and their metabolites. The measurement of this class of mediators can constitute a sensitive noninvasive index of metabolic and inflammatory status.


Assuntos
Ácidos Graxos/urina , Nitrocompostos/urina , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Voluntários Saudáveis , Humanos , Estrutura Molecular , Nitrocompostos/química , Nitrocompostos/metabolismo
13.
J Am Soc Mass Spectrom ; 22(9): 1534-51, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21953257

RESUMO

Nitro-fatty acids are electrophilic signaling mediators formed in increased amounts during inflammation by nitric oxide and nitrite-dependent redox reactions. A more rigorous characterization of endogenously-generated species requires additional understanding of their gas-phase induced fragmentation. Thus, collision induced dissociation (CID) of nitroalkane and nitroalkene groups in fatty acids were studied in the negative ion mode to provide mass spectrometric tools for their structural characterization. Fragmentation of nitroalkanes occurred mainly through loss of the NO(2)(-) anion or neutral loss of HNO(2). The CID of nitroalkenes proceeds via a more complex cyclization, followed by fragmentation to nitrile and aldehyde products. Gas-phase fragmentation of nitroalkene functional groups with additional γ or δ unsaturation occurred through a multiple step cyclization reaction process, leading to 5 and 6 member ring heterocyclic products and carbon chain fragmentation. Cyclization products were not obtained during nitroalkane fragmentation, highlighting the role of double bond π electrons during NO(2)(-) rearrangements, stabilization and heterocycle formation. The proposed structures, mechanisms and products of fragmentation are supported by analysis of (13)C and (15)N labeled parent molecules, 6 different nitroalkene positional isomers, 6 nitroalkane positional isomers, accurate mass determinations at high resolution and quantum mechanics calculations. Multiple key diagnostic ion fragments were obtained through this analysis, allowing for the precise placement of double bonds and sites of fatty acid nitration, thus supporting an ability to predict nitro positions in biological samples.


Assuntos
Ácidos Graxos/química , Nitrocompostos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Gases/química , Ácidos Linoleicos/química , Nitrilas/química , Nitritos/química
14.
J Biol Chem ; 286(16): 14019-27, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21357422

RESUMO

Nitro-fatty acids (NO(2)-FAs) are electrophilic signaling mediators formed in vivo via nitric oxide (NO)- and nitrite (NO(2)(-))-dependent reactions. Nitro-fatty acids modulate signaling cascades via reversible covalent post-translational modification of nucleophilic amino acids in regulatory proteins and enzymes, thus altering downstream signaling events, such as Keap1-Nrf2-antioxidant response element (ARE)-regulated gene expression. In this study, we investigate the molecular mechanisms by which 9- and 10-nitro-octadec-9-enoic acid (OA-NO(2)) activate the transcription factor Nrf2, focusing on the post-translational modifications of cysteines in the Nrf2 inhibitor Keap1 by nitroalkylation and its downstream responses. Of the two regioisomers, 9-nitro-octadec-9-enoic acid was a more potent ARE inducer than 10-nitro-octadec-9-enoic acid. The most OA-NO(2)-reactive Cys residues in Keap1 were Cys(38), Cys(226), Cys(257), Cys(273), Cys(288), and Cys(489). Of these, Cys(273) and Cys(288) accounted for ∼50% of OA-NO(2) reactions in a cellular milieu. Notably, Cys(151) was among the least OA-NO(2)-reactive of the Keap1 Cys residues, with mutation of Cys(151) having no effect on net OA-NO(2) reaction with Keap1 or on ARE activation. Unlike many other Nrf2-activating electrophiles, OA-NO(2) enhanced rather than diminished the binding between Keap1 and the Cul3 subunit of the E3 ligase for Nrf2. OA-NO(2) can therefore be categorized as a Cys(151)-independent Nrf2 activator, which in turn can influence the pattern of gene expression and therapeutic actions of nitroalkenes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Cisteína/química , Proteínas do Citoesqueleto/química , Ácidos Graxos/química , Peptídeos e Proteínas de Sinalização Intracelular/química , Fator 2 Relacionado a NF-E2/química , Animais , Cromatografia Líquida/métodos , Regulação da Expressão Gênica , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch , Ácidos Linoleicos/química , Espectrometria de Massas/métodos , Camundongos , Mutação , Nitrocompostos/química , Ácidos Oleicos/química , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/química
15.
Nat Chem Biol ; 6(6): 433-41, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20436486

RESUMO

Electrophilic fatty acids are generated during inflammation by non-enzymatic reactions and can modulate inflammatory responses. We used a new mass spectrometry-based electrophile capture strategy to reveal the formation of electrophilic oxo-derivatives (EFOX) from the omega-3 fatty acids docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). These EFOX were generated by a cyclooxygenase-2 (COX-2)-catalyzed mechanism in activated macrophages. Modulation of COX-2 activity by aspirin increased the rate of EFOX production and their intracellular levels. Owing to their electrophilic nature, EFOX adducted to cysteine and histidine residues of proteins and activated Nrf2-dependent anti-oxidant gene expression. We confirmed the anti-inflammatory nature of DHA- and DPA-derived EFOX by showing that they can act as peroxisome proliferator-activated receptor-gamma (PPAR gamma) agonists and inhibit pro-inflammatory cytokine and nitric oxide production, all within biological concentration ranges. These data support the idea that EFOX are signaling mediators that transduce the beneficial clinical effects of omega-3 fatty acids, COX-2 and aspirin.


Assuntos
Anti-Inflamatórios/síntese química , Ciclo-Oxigenase 2/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Boroidretos/farmacologia , Linhagem Celular , Membrana Celular/metabolismo , Ácidos Docosa-Hexaenoicos/química , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Insaturados/farmacologia , Glutationa/metabolismo , Humanos , Hidroxilação , Interleucina-10/genética , Interleucina-6/genética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , PPAR gama/metabolismo , PPAR gama/farmacologia
16.
Cardiovasc Res ; 85(1): 155-66, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19666678

RESUMO

AIMS: Nitrated fatty acids (NO(2)-FA) have been identified as endogenous anti-inflammatory signalling mediators generated by oxidative inflammatory reactions. Herein the in vivo generation of nitro-oleic acid (OA-NO(2)) and nitro-linoleic acid (LNO(2)) was measured in a murine model of myocardial ischaemia and reperfusion (I/R) and the effect of exogenous administration of OA-NO(2) on I/R injury was evaluated. METHODS AND RESULTS: In C57/BL6 mice subjected to 30 min of coronary artery ligation, endogenous OA-NO(2) and LNO(2) formation was observed after 30 min of reperfusion, whereas no NO(2)-FA were detected in sham-operated mice and mice with myocardial infarction without reperfusion. Exogenous administration of 20 nmol/g body weight OA-NO(2) during the ischaemic episode induced profound protection against I/R injury with a 46% reduction in infarct size (normalized to area at risk) and a marked preservation of left ventricular function as assessed by transthoracic echocardiography, compared with vehicle-treated mice. Administration of OA-NO(2) inhibited activation of the p65 subunit of nuclear factor kappaB (NFkappaB) in I/R tissue. Experiments using the NFkappaB inhibitor pyrrolidinedithiocarbamate also support that protection lent by OA-NO(2) was in part mediated by inhibition of NFkappaB. OA-NO(2) inhibition of NFkappaB activation was accompanied by suppression of downstream intercellular adhesion molecule 1 and monocyte chemotactic protein 1 expression, neutrophil infiltration, and myocyte apoptosis. CONCLUSION: This study reveals the de novo generation of fatty acid nitration products in vivo and reveals the anti-inflammatory and potential therapeutic actions of OA-NO(2) in myocardial I/R injury.


Assuntos
Ácidos Graxos/metabolismo , Isquemia Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Óxido Nítrico/metabolismo , Alquilação , Animais , Apoptose , Modelos Animais de Doenças , Ecocardiografia , Inflamação/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Isquemia Miocárdica/patologia , Infiltração de Neutrófilos , Prolina/análogos & derivados , Prolina/farmacologia , Tiocarbamatos/farmacologia , Fator de Transcrição RelA/metabolismo
17.
J Biol Chem ; 284(48): 33233-41, 2009 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-19808663

RESUMO

Electrophilic fatty acid derivatives, including nitrolinoleic acid and nitro-oleic acid (OA-NO(2)), can mediate anti-inflammatory and pro-survival signaling reactions. The transcription factor Nrf2, activated by electrophilic fatty acids, suppresses redox-sensitive pro-inflammatory gene expression and protects against vascular endothelial oxidative injury. It was therefore postulated that activation of Nrf2 by OA-NO(2) accounts in part for its anti-inflammatory actions, motivating the characterization of Nrf2-dependent and -independent effects of OA-NO(2) on gene expression using genome-wide transcriptional profiling. Control and Nrf2-small interfering RNA-transfected human endothelial cells were treated with vehicle, oleic acid, or OA-NO(2), and differential gene expression profiles were determined. Although OA-NO(2) significantly induced the expression of Nrf2-dependent genes, including heme oxygenase-1 and glutamate-cysteine ligase modifier subunit, the majority of OA-NO(2)-regulated genes were regulated by Nrf2-independent pathways. Moreover, gene set enrichment analysis revealed that the heat shock response is the major pathway activated by OA-NO(2), with robust induction of a number of heat shock genes regulated by the heat shock transcription factor. Inasmuch as the heat shock response mediates anti-inflammatory and cytoprotective actions, this mechanism is proposed to contribute to the protective cell signaling functions of nitro-fatty acids and other electrophilic fatty acid derivatives.


Assuntos
Células Endoteliais/efeitos dos fármacos , Ácidos Linoleicos/farmacologia , Fator 2 Relacionado a NF-E2/genética , Nitrocompostos/farmacologia , Ácidos Oleicos/farmacologia , Western Blotting , Linhagem Celular , Células Cultivadas , Análise por Conglomerados , Relação Dose-Resposta a Droga , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Temperatura Alta , Humanos , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos
18.
J Biol Chem ; 284(3): 1461-73, 2009 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-19015269

RESUMO

Nitrated derivatives of fatty acids (NO2-FA) are pluripotent cell-signaling mediators that display anti-inflammatory properties. Current understanding of NO2-FA signal transduction lacks insight into how or if NO2-FA are modified or metabolized upon formation or administration in vivo. Here the disposition and metabolism of nitro-9-cis-octadecenoic (18:1-NO2) acid was investigated in plasma and liver after intravenous injection in mice. High performance liquid chromatography-tandem mass spectrometry analysis showed that no 18:1-NO2 or metabolites were detected under basal conditions, whereas administered 18:1-NO2 is rapidly adducted to plasma thiol-containing proteins and glutathione. NO2-FA are also metabolized via beta-oxidation, with high performance liquid chromatography-tandem mass spectrometry analysis of liver lipid extracts of treated mice revealing nitro-7-cis-hexadecenoic acid, nitro-5-cis-tetradecenoic acid, and nitro-3-cis-dodecenoic acid and corresponding coenzyme A derivatives of 18:1-NO2 as metabolites. Additionally, a significant proportion of 18:1-NO2 and its metabolites are converted to nitroalkane derivatives by saturation of the double bond, and to a lesser extent are desaturated to diene derivatives. There was no evidence of the formation of nitrohydroxyl or conjugated ketone derivatives in organs of interest, metabolites expected upon 18:1-NO2 hydration or nitric oxide (*NO) release. Plasma samples from treated mice had significant extents of protein-adducted 18:1-NO2 detected by exchange to added beta-mercaptoethanol. This, coupled with the observation of 18:1-NO2 release from glutathione-18:1-NO2 adducts, supports that reversible and exchangeable NO2-FA-thiol adducts occur under biological conditions. After administration of [3H]18:1-NO2, 64% of net radiolabel was recovered 90 min later in plasma (0.2%), liver (18%), kidney (2%), adipose tissue (2%), muscle (31%), urine (6%), and other tissue compartments, and may include metabolites not yet identified. In aggregate, these findings show that electrophilic FA nitroalkene derivatives (a) acquire an extended half-life by undergoing reversible and exchangeable electrophilic reactions with nucleophilic targets and (b) are metabolized predominantly via saturation of the double bond and beta-oxidation reactions that terminate at the site of acyl-chain nitration.


Assuntos
Ácidos Graxos/metabolismo , Ácidos Graxos/farmacologia , Fígado/metabolismo , Nitrocompostos/metabolismo , Nitrocompostos/farmacologia , Proteínas/metabolismo , Animais , Glutationa/metabolismo , Humanos , Camundongos , Especificidade de Órgãos/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Plasma/metabolismo , Transdução de Sinais/efeitos dos fármacos
19.
J Biol Chem ; 283(52): 36176-84, 2008 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-18974051

RESUMO

Xanthine oxidoreductase (XOR) generates proinflammatory oxidants and secondary nitrating species, with inhibition of XOR proving beneficial in a variety of disorders. Electrophilic nitrated fatty acid derivatives, such as nitro-oleic acid (OA-NO2), display anti-inflammatory effects with pleiotropic properties. Nitro-oleic acid inhibits XOR activity in a concentration-dependent manner with an IC50 of 0.6 microM, limiting both purine oxidation and formation of superoxide (O2.). Enzyme inhibition by OA-NO2 is not reversed by thiol reagents, including glutathione, beta-mercaptoethanol, and dithiothreitol. Structure-function studies indicate that the carboxylic acid moiety, nitration at the 9 or 10 olefinic carbon, and unsaturation is required for XOR inhibition. Enzyme turnover and competitive reactivation studies reveal inhibition of electron transfer reactions at the molybdenum cofactor accounts for OA-NO2-induced inhibition. Importantly, OA-NO2 more potently inhibits cell-associated XOR-dependent O2. production than does allopurinol. Combined, these data establish a novel role for OA-NO2 in the inhibition of XOR-derived oxidant formation.


Assuntos
Inibidores Enzimáticos/farmacologia , Ácidos Oleicos/metabolismo , Xantina Desidrogenase/metabolismo , Animais , Aorta/citologia , Bovinos , Ditiotreitol/metabolismo , Células Endoteliais/citologia , Ácidos Graxos/química , Glutationa/metabolismo , Concentração Inibidora 50 , Mercaptoetanol/metabolismo , Oxigênio/química , Transdução de Sinais , Superóxidos/metabolismo
20.
J Biol Chem ; 282(42): 31085-93, 2007 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17720974

RESUMO

Fatty acid nitration by nitric oxide-derived species yields electrophilic products that adduct protein thiols, inducing changes in protein function and distribution. Nitro-fatty acid adducts of protein and reduced glutathione (GSH) are detected in healthy human blood. Kinetic and mass spectrometric analyses reveal that nitroalkene derivatives of oleic acid (OA-NO2) and linoleic acid (LNO2) rapidly react with GSH and Cys via Michael addition reaction. Rates of OA-NO2 and LNO2 reaction with GSH, determined via stopped flow spectrophotometry, displayed second-order rate constants of 183 M(-1)S(-1) and 355 M(-1)S(-1), respectively, at pH 7.4 and 37 degrees C. These reaction rates are significantly greater than those for GSH reaction with hydrogen peroxide and non-nitrated electrophilic fatty acids including 8-iso-prostaglandin A2 and 15-deoxy-Delta(12,14)-prostaglandin J2. Increasing reaction pH from 7.4 to 8.9 enhanced apparent second-order rate constants for the thiol reaction with OA-NO2 and LNO2, showing dependence on the thiolate anion of GSH for reactivity. Rates of nitroalkene reaction with thiols decreased as the pKa of target thiols increased. Increasing concentrations of the detergent octyl-beta-d-glucopyranoside decreased rates of nitroalkene reaction with GSH, indicating that the organization of nitro-fatty acids into micellar or membrane structures can limit Michael reactivity with more polar nucleophilic targets. In aggregate, these results reveal that the reversible adduction of thiols by nitro-fatty acids is a mechanism for reversible post-translational regulation of protein function by nitro-fatty acids.


Assuntos
Cisteína/química , Ácidos Graxos Insaturados/química , Glutationa/química , Óxido Nítrico/química , Nitrocompostos/química , Compostos de Sulfidrila/química , Cinética , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA