Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(9): e0291367, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37751407

RESUMO

OBJECTIVE: Identify system-level features in HIV migration within a host across body tissues. Evaluate heterogeneity in the presence and magnitude of these features across hosts. METHOD: Using HIV DNA deep sequencing data generated across multiple tissues from 8 people with HIV, we represent the complex dependencies of HIV migration among tissues as a network and model these networks using the family of exponential random graph models (ERGMs). ERGMs allow for the statistical assessment of whether network features occur more (or less) frequently in viral migration than might be expected by chance. The analysis investigates five potential features of the viral migration network: (1) bi-directional flow between tissues; (2) preferential migration among tissues in the same biological system; (3) heterogeneity in the level of viral migration related to HIV reservoir size; (4) hierarchical structure of migration; and (5) cyclical migration among several tissues. We calculate the Cohran's Q statistic to assess heterogeneity in the magnitude of the presence of these features across hosts. The analysis adjusts for missing data on body tissues. RESULTS: We observe strong evidence for bi-directional flow between tissues; migration among tissues in the same biological system; and hierarchical structure of the viral migration network. This analysis shows no evidence for differential level of viral migration with respect to the HIV reservoir size of a tissue. There is evidence that cyclical migration among three tissues occurs less frequent than expected given the amount of viral migration. The analysis also provides evidence for heterogeneity in the magnitude that these features are present across hosts. Adjusting for missing tissue data identifies system-level features within a host as well as heterogeneity in the presence of these features across hosts that are not detected when the analysis only considers the observed data. DISCUSSION: Identification of common features in viral migration may increase the efficiency of HIV cure efforts as it enables targeting specific processes.


Assuntos
Infecções por HIV , Antígenos do Grupo Sanguíneo de Lewis , Humanos
2.
J Clin Invest ; 133(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37317962

RESUMO

Brain microglia (MG) may serve as a human immunodeficiency virus 1 (HIV) reservoir and ignite rebound viremia following cessation of antiretroviral therapy (ART), but they have yet to be proven to harbor replication-competent HIV. Here, we isolated brain myeloid cells (BrMCs) from nonhuman primates and rapid autopsy of people with HIV (PWH) on ART and sought evidence of persistent viral infection. BrMCs predominantly displayed microglial markers, in which up to 99.9% of the BrMCs were TMEM119+ MG. Total and integrated SIV or HIV DNA was detectable in the MG, with low levels of cell-associated viral RNA. Provirus in MG was highly sensitive to epigenetic inhibition. Outgrowth virus from parietal cortex MG in an individual with HIV productively infected both MG and PBMCs. This inducible, replication-competent virus and virus from basal ganglia proviral DNA were closely related but highly divergent from variants in peripheral compartments. Phenotyping studies characterized brain-derived virus as macrophage tropic based on the ability of the virus to infect cells expressing low levels of CD4. The lack of genetic diversity in virus from the brain suggests that this macrophage-tropic lineage quickly colonized brain regions. These data demonstrate that MG harbor replication-competent HIV and serve as a persistent reservoir in the brain.


Assuntos
Infecções por HIV , HIV-1 , Animais , Humanos , Microglia , Encéfalo , Macrófagos , Provírus/genética , Infecções por HIV/tratamento farmacológico
3.
J Chem Inf Model ; 62(24): 6553-6573, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-35960688

RESUMO

The worldwide COVID-19 pandemic caused by the coronavirus SARS-CoV-2 urgently demands novel direct antiviral treatments. The main protease (Mpro) and papain-like protease (PLpro) are attractive drug targets among coronaviruses due to their essential role in processing the polyproteins translated from the viral RNA. In this study, we virtually screened 688 naphthoquinoidal compounds and derivatives against Mpro of SARS-CoV-2. Twenty-four derivatives were selected and evaluated in biochemical assays against Mpro using a novel fluorogenic substrate. In parallel, these compounds were also assayed with SARS-CoV-2 PLpro. Four compounds inhibited Mpro with half-maximal inhibitory concentration (IC50) values between 0.41 µM and 9.0 µM. In addition, three compounds inhibited PLpro with IC50 ranging from 1.9 µM to 3.3 µM. To verify the specificity of Mpro and PLpro inhibitors, our experiments included an assessment of common causes of false positives such as aggregation, high compound fluorescence, and inhibition by enzyme oxidation. Altogether, we confirmed novel classes of specific Mpro and PLpro inhibitors. Molecular dynamics simulations suggest stable binding modes for Mpro inhibitors with frequent interactions with residues in the S1 and S2 pockets of the active site. For two PLpro inhibitors, interactions occur in the S3 and S4 pockets. In summary, our structure-based computational and biochemical approach identified novel naphthoquinonal scaffolds that can be further explored as SARS-CoV-2 antivirals.


Assuntos
Antivirais , Proteases 3C de Coronavírus , Proteases Semelhantes à Papaína de Coronavírus , Naftoquinonas , Inibidores de Proteases , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Antivirais/química , COVID-19 , Simulação de Acoplamento Molecular , Naftoquinonas/química , Naftoquinonas/farmacologia , Papaína , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores
4.
bioRxiv ; 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35018373

RESUMO

The worldwide COVID-19 pandemic caused by the coronavirus SARS-CoV-2 urgently demands novel direct antiviral treatments. The main protease (Mpro) and papain-like protease (PLpro) are attractive drug targets among coronaviruses due to their essential role in processing the polyproteins translated from the viral RNA. In the present work, we virtually screened 688 naphthoquinoidal compounds and derivatives against Mpro of SARS-CoV-2. Twenty-four derivatives were selected and evaluated in biochemical assays against Mpro using a novel fluorogenic substrate. In parallel, these compounds were also assayed with SARS-CoV-2 PLpro. Four compounds inhibited Mpro with half-maximal inhibitory concentration (IC 50 ) values between 0.41 µM and 66 µM. In addition, eight compounds inhibited PLpro with IC 50 ranging from 1.7 µM to 46 µM. Molecular dynamics simulations suggest stable binding modes for Mpro inhibitors with frequent interactions with residues in the S1 and S2 pockets of the active site. For two PLpro inhibitors, interactions occur in the S3 and S4 pockets. In summary, our structure-based computational and biochemical approach identified novel naphthoquinonal scaffolds that can be further explored as SARS-CoV-2 antivirals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA