Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 9: 2717, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534124

RESUMO

Lipocalin-2 is a constituent of the neutrophil secondary granules and is expressed de novo by macrophages and epithelium in response to inflammation. Lipocalin-2 acts in a bacteriostatic fashion by binding iron-loaded siderophores required for bacterial growth. Mycobacterium tuberculosis (M.tb) produces siderophores that can be bound by lipocalin-2. The impact of lipocalin-2 in the innate immune response toward extracellular bacteria has been established whereas the effect on intracellular bacteria, such as M.tb, is less well-described. Here we show that lipocalin-2 surprisingly confers a growth advantage on M.tb in the early stages of infection (3 weeks post-challenge). Using mixed bone marrow chimeras, we demonstrate that lipocalin-2 derived from granulocytes, but not from epithelia and macrophages, leads to increased susceptibility to M.tb infection. In contrast, lipocalin-2 is not observed to promote mycobacterial growth at later stages of M.tb infection. We demonstrate co-localization of granulocytes and mycobacteria within the nascent granulomas at week 3 post-challenge, but not in the consolidated granulomas at week 5. We hypothesize that neutrophil-derived lipocalin-2 acts to supply a source of iron to M.tb in infected macrophages within the immature granuloma, thereby facilitating mycobacterial growth.


Assuntos
Granulócitos/imunologia , Granuloma/imunologia , Imunidade Inata , Lipocalina-2/imunologia , Macrófagos/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Animais , Granulócitos/patologia , Granuloma/genética , Granuloma/microbiologia , Granuloma/patologia , Lipocalina-2/genética , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Tuberculose/genética , Tuberculose/patologia
2.
J Immunol ; 192(7): 3247-58, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24574499

RESUMO

CD4 T cells are crucial to the control of Mycobacterium tuberculosis infection and are a key component of current vaccine strategies. Conversely, immune-mediated pathology drives disease, and recent evidence suggests that adaptive and innate responses are evolutionarily beneficial to M. tuberculosis. We compare the functionality of CD4 T cell responses mounted against dominant and cryptic epitopes of the M. tuberculosis 6-kDa early secreted Ag (ESAT-6) before and postinfection. Protective T cells against cryptic epitopes not targeted during natural infection were induced by vaccinating mice with a truncated ESAT-6 protein, lacking the dominant epitope. The ability to generate T cells that recognize multiple cryptic epitopes was MHC-haplotype dependent, including increased potential via heterologous MHC class II dimers. Before infection, cryptic epitope-specific T cells displayed enhanced proliferative capacity and delayed cytokine kinetics. After aerosol M. tuberculosis challenge, vaccine-elicited CD4 T cells expanded and recruited to the lung. In chronic infection, dominant epitope-specific T cells developed a terminal differentiated KLRG1(+)/PD-1(lo) surface phenotype that was significantly reduced in the cryptic epitope-specific T cell populations. Dominant epitope-specific T cells in vaccinated animals developed into IFN-γ- and IFN-γ,TNF-α-coproducing effector cells, characteristic of the endogenous response. In contrast, cryptic epitope-specific CD4 T cells maintained significantly greater IFN-γ(+)TNF-α(+)IL-2(+) and TNF-α(+)IL-2(+) memory-associated polyfunctionality and enhanced proliferative capacity. Vaccine-associated IL-17A production by cryptic CD4 T cells was also enhanced, but without increased neutrophilia/pathology. Direct comparison of dominant/cryptic epitope-specific CD4 T cells within covaccinated mice confirmed the superior ability of protective cryptic epitope-specific T cells to resist M. tuberculosis infection-driven T cell differentiation.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/imunologia , Epitopos/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Animais , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Proliferação de Células , Epitopos/metabolismo , Feminino , Citometria de Fluxo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-2/imunologia , Interleucina-2/metabolismo , Lectinas Tipo C , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/microbiologia , Complexo Principal de Histocompatibilidade/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/fisiologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Receptores Imunológicos/imunologia , Receptores Imunológicos/metabolismo , Tuberculose/metabolismo , Tuberculose/microbiologia , Vacinas contra a Tuberculose/administração & dosagem , Vacinas contra a Tuberculose/imunologia , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
3.
J Immunol ; 186(3): 1627-37, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21178003

RESUMO

Vaccines that elicit T cell responses try to mimic protective memory T cell immunity after infection by increasing the frequency of Ag-specific T cells in the immune repertoire. However, the factors that determine immunodominance during infection and after vaccination and the relation between immunodominance and protection are incompletely understood. We previously identified TB10.4(20-28) as an immunodominant epitope recognized by H2-K(d)-restricted CD8(+) T cells after M. tuberculosis infection. Here we report a second epitope, EspA(150-158), that is recognized by a substantial number of pulmonary CD8(+) T cells. The relative abundance of these T cells in the naive repertoire only partially predicts their relative frequency after M. tuberculosis infection. Furthermore, although vaccination with recombinant vaccinia virus expressing these epitopes changes their relative immunodominance in the preinfection T cell repertoire, this change is transient after challenge with M. tuberculosis. We speculate that factors intrinsic to the chronic nature of M. tuberculosis infection establishes the hierarchy of immunodominance and may explain the failure of some vaccines to provide protection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Citotoxicidade Imunológica , Epitopos Imunodominantes/metabolismo , Mycobacterium tuberculosis/imunologia , Vacinas contra a Tuberculose/administração & dosagem , Vacinas contra a Tuberculose/imunologia , Sequência de Aminoácidos , Animais , Apresentação de Antígeno/imunologia , Antígenos de Bactérias , Proteínas de Bactérias/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/microbiologia , Doença Crônica , Feminino , Antígenos H-2/imunologia , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/prevenção & controle , Vaccinia virus/imunologia
4.
PLoS Pathog ; 6(6): e1000957, 2010 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-20585630

RESUMO

Mycobacterium tuberculosis (Mtb) requires the ESX1 specialized protein secretion system for virulence, for triggering cytosolic immune surveillance pathways, and for priming an optimal CD8+ T cell response. This suggests that ESX1 might act primarily by destabilizing the phagosomal membrane that surrounds the bacterium. However, identifying the primary function of the ESX1 system has been difficult because deletion of any substrate inhibits the secretion of all known substrates, thereby abolishing all ESX1 activity. Here we demonstrate that the ESX1 substrate EspA forms a disulfide bonded homodimer after secretion. By disrupting EspA disulfide bond formation, we have dissociated virulence from other known ESX1-mediated activities. Inhibition of EspA disulfide bond formation does not inhibit ESX1 secretion, ESX1-dependent stimulation of the cytosolic pattern receptors in the infected macrophage or the ability of Mtb to prime an adaptive immune response to ESX1 substrates. However, blocking EspA disulfide bond formation severely attenuates the ability of Mtb to survive and cause disease in mice. Strikingly, we show that inhibition of EspA disulfide bond formation also significantly compromises the stability of the mycobacterial cell wall, as does deletion of the ESX1 locus or individual components of the ESX1 system. Thus, we demonstrate that EspA is a major determinant of ESX1-mediated virulence independent of its function in ESX1 secretion. We propose that ESX1 and EspA play central roles in the virulence of Mtb in vivo because they alter the integrity of the mycobacterial cell wall.


Assuntos
Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Tuberculose/patologia , Virulência , Animais , Dissulfetos/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidade , Fagossomos , Taxa de Sobrevida , Tuberculose/imunologia , Tuberculose/microbiologia
5.
Infect Immun ; 76(9): 4199-205, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18591224

RESUMO

Mycobacterium tuberculosis infection elicits antigen-specific CD8(+) T cells that are required to control disease. It is unknown how the major histocompatibility complex class I (MHC-I) pathway samples mycobacterial antigens. CFP10 and ESAT6 are important virulence factors secreted by M. tuberculosis, and they are immunodominant targets of the human and murine T-cell response. Here, we test the hypothesis that CFP10 secretion by M. tuberculosis is required for the priming of CD8(+) T cells in vivo. Our results reveal an explicit dependence upon the bacterial secretion of the CFP10 antigen for the induction of antigen-specific CD8(+) T cells in vivo. By using well-defined M. tuberculosis mutants and carefully controlling for virulence, we show that ESX-1 function is required for the priming of CD8(+) T cells specific for CFP10. CD4(+) and CD8(+) T-cell responses to mycobacterial antigens secreted independently of ESX-1 were unaffected, suggesting that ESX-1-dependent phagosomal escape is not required for CD8(+) T-cell priming during infection. We propose that the overrepresentation of secreted proteins as dominant targets of the CD8(+) T-cell response during M. tuberculosis infection is a consequence of their preferential sampling by the MHC-I pathway. The implications of these findings should be considered in all models of antigen presentation during M. tuberculosis infection and in vaccine development.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Linfócitos T CD8-Positivos/imunologia , Mycobacterium tuberculosis/imunologia , Animais , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Feminino , Proteínas de Homeodomínio/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Transporte Proteico , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/fisiologia , Fatores de Transcrição/deficiência , Fatores de Transcrição/fisiologia
6.
J Immunol ; 177(9): 6361-9, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17056567

RESUMO

Whether true memory T cells develop in the face of chronic infection such as tuberculosis remains controversial. To address this question, we studied CD8+ T cells specific for the Mycobacterium tuberculosis ESAT6-related Ags TB10.3 and TB10.4. The shared epitope TB10.3/10.4(20-28) is presented by H-2 K(d), and 20-30% of the CD8+ T cells in the lungs of chronically infected mice are specific for this Ag following respiratory infection with M. tuberculosis. These TB10.3/10.4(20-28)-specific CD8+ T cells produce IFN-gamma and TNF and express CD107 on their cell surface, which indicates their likely role as CTL in vivo. Nearly all of the Ag-specific CD8+ T cells in the lungs of chronically infected mice had a T effector cell phenotype based on their low expression of CD62L and CD45RB. In contrast, a population of TB10.3/10.4(20-28)-specific CD8+ T cells was identified in the lymphoid organs that express high levels of CD62L and CD45RB. Antibiotic treatment to resolve the infection led to a contraction of the Ag-specific CD8+ T cell population and was accompanied by an increase in the proportion of CD8+ T cells with a central memory phenotype. Finally, challenge of memory-immune mice with M. tuberculosis was accompanied by significant expansion of TB10.3/10.4(20-28)-specific CD8+ T cells, which suggests that these cells are in fact functional memory T cells.


Assuntos
Antígenos de Bactérias/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar/imunologia , Animais , Feminino , Interferon gama/metabolismo , Selectina L/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Pulmão/imunologia , Pulmão/microbiologia , Tecido Linfoide/imunologia , Tecido Linfoide/microbiologia , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA