Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 417, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580813

RESUMO

The concept of agonist-independent signalling that can be attenuated by inverse agonists is a fundamental element of the cubic ternary complex model of G protein-coupled receptor (GPCR) activation. This model shows how a GPCR can exist in two conformational states in the absence of ligands; an inactive R state and an active R* state that differ in their affinities for agonists, inverse agonists, and G-protein alpha subunits. The proportion of R* receptors that exist in the absence of agonists determines the level of constitutive receptor activity. In this study we demonstrate that mechanical stimulation can induce ß2-adrenoceptor agonist-independent Gs-mediated cAMP signalling that is sensitive to inhibition by inverse agonists such as ICI-118551 and propranolol. The size of the mechano-sensitive response is dependent on the cell surface receptor expression level in HEK293G cells, is still observed in a ligand-binding deficient D113A mutant ß2-adrenoceptor and can be attenuated by site-directed mutagenesis of the extracellular N-glycosylation sites on the N-terminus and second extracellular loop of the ß2-adrenoceptor. Similar mechano-sensitive agonist-independent responses are observed in HEK293G cells overexpressing the A2A-adenosine receptor. These data provide new insights into how agonist-independent constitutive receptor activity can be enhanced by mechanical stimulation and regulated by inverse agonists.


Assuntos
Agonistas Adrenérgicos beta , Agonismo Inverso de Drogas , Agonistas Adrenérgicos beta/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Transdução de Sinais , Ligantes , Receptores Adrenérgicos
2.
Biochem Pharmacol ; : 116007, 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38145828

RESUMO

Receptor tyrosine kinase inhibitors (RTKIs) suppress tumour growth by targeting vascular endothelial growth factor receptor 2 (VEGFR-2) which is an important mediator of angiogenesis. Here, we demonstrate that two potent RTKIs, axitinib and lenvatinib, are associated with hypertensive side effects. Doppler flowmetry was used to evaluate regional haemodynamic profiles of axitinib and lenvatinib. Male Sprague Dawley rats (350-500 g) were instrumented with Doppler flow probes (renal and mesenteric arteries and descending abdominal aorta) and catheters (jugular vein and distal abdominal aorta, via the caudal artery). Rats were dosed daily with axitinib (3 or 6 mg.kg-1) or lenvatinib (1 or 3 mg.kg-1) and regional haemodynamics were recorded over a maximum of 4 days. Both RTKIs caused significant (p < 0.05) increases in mean arterial pressure (MAP), which was accompanied by significant (p < 0.05) vasoconstriction in both the mesenteric and hindquarters vascular beds. To gain insight into the involvement of endothelin-1 (ET-1) in RTKI-mediated hypertension, we also monitored heart rate (HR) and MAP in response to axitinib or lenvatinib in animals treated with the ETA receptor selective antagonist sitaxentan (5 mg.kg-1) or the mixed ETA/ETB receptor antagonist bosentan (15 mg.kg-1) over two days. Co-treatment with bosentan or sitaxentan markedly reduced the MAP effects mediated by both RTKIs (p < 0.05). Bosentan, but not sitaxentan, also attenuated ET-1 mediated increases in HR. These data suggest that selective antagonists of ETA receptors may be appropriate to alleviate the hypertensive effects of axitinib and lenvatinib.

3.
Biochem Pharmacol ; 214: 115672, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37406966

RESUMO

Vascular endothelial growth factor (VEGF) is an important mediator of angiogenesis, proliferation and migration of vascular endothelial cells. It is well known that cardiovascular safety liability for a wide range of small molecule tyrosine kinase inhibitors (TKIs) can result from interference with the VEGFR2 signalling system. In this study we have developed a ligand-binding assay using a fluorescent analogue of sunitinib (sunitinib-red) and full length VEGFR2 tagged on its C-terminus with the bioluminescent protein nanoluciferase to monitor ligand-binding to VEGFR2 using bioluminescence resonance energy transfer (BRET). This NanoBRET assay is a proximity-based assay (requiring the fluorescent and bioluminescent components to be within 10 nm of each other) that can monitor the binding of ligands to the kinase domain of VEGFR2. Sunitinib-red was not membrane permeable but was able to monitor the binding affinity and kinetics of a range of TKIs in cell lysates. Kinetic studies showed that sunitinib-red bound rapidly to VEGFR2 at 25 °C and that cediranib had slower binding kinetics with an average residence time of 111 min. Comparison between the log Ki values for inhibition of binding of sunitinib-red and log IC50 values for attenuation of VEGF165a-stimulated NFAT responses showed very similar values for compounds that inhibited sunitinib-red binding. However, two compounds that failed to inhibit sunitinib-red binding (dasatinib and entospletinib) were still able to attenuate VEGFR2-mediated NFAT signalling through inhibition of downstream signalling events. These results suggest that these compounds may still exhibit cardiovascular liabilities as a result of interference with downstream VEGFR2 signalling.


Assuntos
Fator A de Crescimento do Endotélio Vascular , Sunitinibe , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Ligantes , Cinética , Inibidores de Proteínas Quinases/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
4.
Pharmacol Res Perspect ; 10(3): e00975, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35643970

RESUMO

A2A and A2B adenosine receptors produce regionally selective regulation of vascular tone and elicit differing effects on mean arterial pressure (MAP), whilst inducing tachycardia. The tachycardia induced by the stimulation of A2A or A2B receptors has been suggested to be mediated by a reflex increase in sympathetic activity. Here, we have investigated the role of ß1 - and ß2 -adrenoceptors in mediating the different cardiovascular responses to selective A2A and A2B receptor stimulation. Hemodynamic variables were measured in conscious male Sprague-Dawley rats (350-450 g) via pulsed Doppler flowmetry. The effect of intravenous infusion (3 min per dose) of the A2A -selective agonist CGS 21680 (0.1, 0.3, 1.0 µg.kg-1 .min-1 ) or the A2B -selective agonist BAY 60-6583 (4.0, 13.3, 40.0 µg.kg-1 .min-1 ) in the absence or following pre-treatment with the non-selective ß-antagonist propranolol (1.0 mg.kg-1 ), the selective ß1 -antagonist CGP 20712A (200 µg.kg-1 ), or the selective ß2 -antagonist ICI 118,551 (2.0 mg.kg-1 ) was investigated (maintenance doses also administered). CGP 20712A and propranolol significantly reduced the tachycardic response to CGS 21680, with no change in the effect on MAP. ICI 118,551 increased BAY 60-6583-mediated renal and mesenteric flows, but did not affect the heart rate response. CGP 20712A attenuated the BAY 60-6583-induced tachycardia. These data imply a direct stimulation of the sympathetic activity via cardiac ß1 -adrenoceptors as a mechanism for the A2A - and A2B -induced tachycardia. However, the regionally selective effects of A2B agonists on vascular conductance were independent of sympathetic activity and may be exploitable for the treatment of acute kidney injury and mesenteric ischemia.


Assuntos
Antagonistas Adrenérgicos beta , Propranolol , Adenosina/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Pressão Sanguínea , Masculino , Propranolol/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos beta/fisiologia , Taquicardia/induzido quimicamente
5.
FASEB J ; 36(4): e22214, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35230706

RESUMO

Adenosine is a local mediator that regulates changes in the cardiovascular system via activation of four G protein-coupled receptors (A1 , A2A , A2B , A3 ). Here, we have investigated the effect of A2A and A2B -selective agonists on vasodilatation in three distinct vascular beds of the rat cardiovascular system. NanoBRET ligand binding studies were used to confirm receptor selectivity. The regional hemodynamic effects of adenosine A2A and A2B selective agonists were investigated in conscious rats. Male Sprague-Dawley rats (350-450 g) were chronically implanted with pulsed Doppler flow probes on the renal artery, mesenteric artery, and the descending abdominal aorta. Cardiovascular responses were measured following intravenous infusion (3 min for each dose) of the A2A -selective agonist CGS 21680 (0.1, 0.3, 1 µg kg-1 min-1 ) or the A2B -selective agonist BAY 60-6583 (4,13.3, 40 µg kg-1 min-1 ) following predosing with the A2A -selective antagonist SCH 58261 (0.1 or 1 mg kg-1 min-1 ), the A2B /A2A antagonist PSB 1115 (10 mg kg-1 min-1 ) or vehicle. The A2A -selective agonist CGS 21680 produced a striking increase in heart rate (HR) and hindquarters vascular conductance (VC) that was accompanied by a significant decrease in mean arterial pressure (MAP) in conscious rats. In marked contrast, the A2B -selective agonist BAY 60-6583 significantly increased HR and VC in the renal and mesenteric vascular beds, but not in the hindquarters. Taken together, these data indicate that A2A and A2B receptors are regionally selective in their regulation of vascular tone. These results suggest that the development of A2B receptor agonists to induce vasodilatation in the kidney may provide a good therapeutic approach for the treatment of acute kidney injury.


Assuntos
Agonistas do Receptor A2 de Adenosina/farmacologia , Hemodinâmica/efeitos dos fármacos , Receptor A2A de Adenosina/fisiologia , Receptor A2B de Adenosina/fisiologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Aminopiridinas/farmacologia , Animais , Células HEK293 , Humanos , Rim/irrigação sanguínea , Rim/efeitos dos fármacos , Masculino , Fenetilaminas/farmacologia , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Triazóis/farmacologia , Vasodilatação/efeitos dos fármacos , Xantinas/farmacologia
6.
Br J Pharmacol ; 178(12): 2393-2411, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33655497

RESUMO

BACKGROUND AND PURPOSE: VEGF-A is a key mediator of angiogenesis, primarily signalling via VEGF receptor 2 (VEGFR2). Endothelial cells also express the co-receptor neuropilin-1 (NRP1) that potentiates VEGF-A/VEGFR2 signalling. VEGFR2 and NRP1 had distinct real-time ligand binding kinetics when monitored using BRET. We previously characterised fluorescent VEGF-A isoforms tagged at a single site with tetramethylrhodamine (TMR). Here, we explored differences between VEGF-A isoforms in living cells that co-expressed both receptors. EXPERIMENTAL APPROACH: Receptor localisation was monitored in HEK293T cells expressing both VEGFR2 and NRP1 using membrane-impermeant HaloTag and SnapTag technologies. To isolate ligand binding pharmacology at a defined VEGFR2/NRP1 complex, we developed an assay using NanoBiT complementation technology whereby heteromerisation is required for luminescence emissions. Binding affinities and kinetics of VEGFR2-selective VEGF165 b-TMR and non-selective VEGF165 a-TMR were monitored using BRET from this defined complex. KEY RESULTS: Cell surface VEGFR2 and NRP1 were co-localised and formed a constitutive heteromeric complex. Despite being selective for VEGFR2, VEGF165 b-TMR had a distinct kinetic ligand binding profile at the complex that largely remained elevated in cells over 90 min. VEGF165 a-TMR bound to the VEGFR2/NRP1 complex with kinetics comparable to those of VEGFR2 alone. Using a binding-dead mutant of NRP1 did not affect the binding kinetics or affinity of VEGF165 a-TMR. CONCLUSION AND IMPLICATIONS: This NanoBiT approach enabled real-time ligand binding to be quantified in living cells at 37°C from a specified complex between a receptor TK and its co-receptor for the first time.


Assuntos
Neuropilina-1 , Fator A de Crescimento do Endotélio Vascular , Células Endoteliais/metabolismo , Células HEK293 , Humanos , Cinética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
7.
Commun Biol ; 3(1): 722, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33247190

RESUMO

To study the localisation of G protein-coupled receptors (GPCR) in their native cellular environment requires their visualisation through fluorescent labelling. To overcome the requirement for genetic modification of the receptor or the limitations of dissociable fluorescent ligands, here we describe rational design of a compound that covalently and selectively labels a GPCR in living cells with a fluorescent moiety. We designed a fluorescent antagonist, in which the linker incorporated between pharmacophore (ZM241385) and fluorophore (sulfo-cyanine5) is able to facilitate covalent linking of the fluorophore to the adenosine A2A receptor. We pharmacologically and biochemically demonstrate irreversible fluorescent labelling without impeding access to the orthosteric binding site and demonstrate its use in endogenously expressing systems. This offers a non-invasive and selective approach to study function and localisation of native GPCRs.


Assuntos
Corantes Fluorescentes , Receptores Acoplados a Proteínas G/metabolismo , Triazinas , Triazóis , Marcadores de Afinidade , Desenho de Fármacos , Células HEK293 , Humanos , Ligantes , Receptor A2A de Adenosina/metabolismo
8.
J Pharmacol Toxicol Methods ; 105: 106889, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32565326

RESUMO

Safety pharmacology is an essential part of drug development aiming to identify, evaluate and investigate undesirable pharmacodynamic properties of a drug primarily prior to clinical trials. In particular, cardiovascular adverse drug reactions (ADR) have halted many drug development programs. Safety pharmacology has successfully implemented a screening strategy to detect cardiovascular liabilities, but there is room for further refinement. In this setting, we present the INSPIRE project, a European Training Network in safety pharmacology for Early Stage Researchers (ESRs), funded by the European Commission's H2020-MSCA-ITN programme. INSPIRE has recruited 15 ESR fellows that will conduct an individual PhD-research project for a period of 36 months. INSPIRE aims to be complementary to ongoing research initiatives. With this as a goal, an inventory of collaborative research initiatives in safety pharmacology was created and the ESR projects have been designed to be complementary to this roadmap. Overall, INSPIRE aims to improve cardiovascular safety evaluation, either by investigating technological innovations or by adding mechanistic insight in emerging safety concerns, as observed in the field of cardio-oncology. Finally, in addition to its hands-on research pillar, INSPIRE will organize a number of summer schools and workshops that will be open to the wider community as well. In summary, INSPIRE aims to foster both research and training in safety pharmacology and hopes to inspire the future generation of safety scientists.


Assuntos
Sistema Cardiovascular/efeitos dos fármacos , Desenvolvimento de Medicamentos/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Farmacologia/métodos , Humanos , Segurança
9.
SLAS Discov ; 25(2): 186-194, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31583945

RESUMO

Receptor internalization in response to prolonged agonist treatment is an important regulator of G protein-coupled receptor (GPCR) function. The adenosine A1 receptor (A1AR) is one of the adenosine receptor family of GPCRs, and evidence for its agonist-induced internalization is equivocal. The recently developed NanoBiT technology uses split NanoLuc Luciferase to monitor changes in protein interactions. We have modified the human A1AR on the N-terminus with the small high-affinity HiBiT tag. In the presence of the large NanoLuc subunit (LgBiT), complementation occurs, reconstituting a full-length functional NanoLuc Luciferase. Here, we have used complemented luminescence to monitor the internalization of the A1AR in living HEK293 cells. Agonist treatment resulted in a robust decrease in cell-surface luminescence, indicating an increase in A1AR internalization. These responses were inhibited by the A1AR-selective antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), with an antagonist affinity that closely matched that measured using ligand binding with a fluorescent A1 receptor antagonist (CA200645). The agonist potencies for inducing A1AR internalization were very similar to the affinities previously determined by ligand binding, suggesting little or no amplification of the internalization response. By complementing the HiBiT tag to exogenous purified LgBiT, it was also possible to perform NanoBRET ligand-binding experiments using HiBiT-A1AR. This study demonstrates the use of NanoBiT technology to monitor internalization of the A1AR and offers the potential to combine these experiments with NanoBRET ligand-binding assays.


Assuntos
Adenosina/genética , Receptor A1 de Adenosina/genética , Receptores Acoplados a Proteínas G/genética , Adenosina/química , Agonistas do Receptor A1 de Adenosina/farmacologia , Células HEK293 , Humanos , Cinética , Ligantes , Mapas de Interação de Proteínas/efeitos dos fármacos , Mapas de Interação de Proteínas/genética , Receptor A1 de Adenosina/efeitos dos fármacos , Receptores Acoplados a Proteínas G/agonistas , Xantinas/farmacologia
10.
Br J Pharmacol ; 177(2): 346-359, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31596949

RESUMO

BACKGROUND AND PURPOSE: Adenosine is a local mediator that regulates physiological and pathological processes via activation of four GPCRs (A1 , A2A , A2B , and A3 ). We have investigated the effect of two A1 -receptor-selective agonists and the novel A1 -receptor bitopic ligand VCP746 on the rat cardiovascular system. EXPERIMENTAL APPROACH: The regional haemodynamic responses of these agonist was investigated in conscious rats. Male Sprague-Dawley rats (350-450 g) were chronically implanted with pulsed Doppler flow probes on the renal, mesenteric arteries and the descending abdominal aorta and the jugular vein and caudal artery catheterized. Cardiovascular responses were measured following intravenous infusion (3 min each dose) of CCPA (120, 400, and 1,200 ng·kg-1 ·min-1 ), capadenoson or adenosine (30, 100, and 300 µg·kg-1 ·min-1 ), or VCP746 (6, 20, and 60 µg·kg-1 ·min-1 ) following pre-dosing with DPCPX (0.1 mg·kg-1 , i.v.) or vehicle. KEY RESULTS: CCPA produced a significant A1 -receptor-mediated decrease in heart rate that was accompanied by vasoconstrictions in the renal and mesenteric vascular beds but an increase in hindquarters vascular conductance. The partial agonist capadenoson also produced an A1 -receptor-mediated bradycardia. In contrast, VCP746 produced increases in heart rate and renal and mesenteric vascular conductance that were not mediated by A1 -receptors. In vitro studies confirmed that VCP746 had potent agonist activity at both A2A - and A2B -receptors. CONCLUSIONS AND IMPLICATIONS: These results suggest VCP746 mediates its cardiovascular effects via activation of A2 rather than A1 adenosine receptors. This has implications for the design of future bitopic ligands that incorporate A1 allosteric ligand moieties.


Assuntos
Agonistas do Receptor A1 de Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Adenosina/análogos & derivados , Sistema Cardiovascular/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Receptor A1 de Adenosina/efeitos dos fármacos , Tiofenos/farmacologia , Adenosina/farmacologia , Aminopiridinas/farmacologia , Animais , Sistema Cardiovascular/metabolismo , Estado de Consciência , Agonismo Parcial de Drogas , Frequência Cardíaca/efeitos dos fármacos , Ligantes , Masculino , Ratos Sprague-Dawley , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/efeitos dos fármacos , Receptor A2A de Adenosina/metabolismo , Receptor A2B de Adenosina/efeitos dos fármacos , Receptor A2B de Adenosina/metabolismo , Fluxo Sanguíneo Regional/efeitos dos fármacos , Tiazóis/farmacologia
11.
Pharmacol Res Perspect ; 7(3): e00477, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31164986

RESUMO

Vandetanib and pazopanib are clinically available, multi-targeted inhibitors of vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) receptor tyrosine kinases. Short-term VEGF receptor inhibition is associated with hypertension in 15%-60% of patients, which may limit the use of these anticancer therapies over the longer term. To evaluate the longer-term cardiovascular implications of treatment, we investigated the "on"-treatment (21 days) and "off"-treatment (10 days) effects following daily administration of vandetanib, pazopanib, or vehicle, in conscious rats. Cardiovascular variables were monitored in unrestrained Sprague-Dawley rats instrumented with radiotelemetric devices. In Study 1, rats were randomly assigned to receive either daily intraperitoneal injections of vehicle (volume 0.5 mL; n = 5) or vandetanib 25 mg/kg/day (volume 0.5 mL; n = 6). In Study 2, rats received either vehicle (volume 0.5 mL; n = 4) or pazopanib 30 mg/kg/day (volume 0.5 mL; n = 7), dosed once every 24 hours for 21 days. All solutions were in 2% Tween, 5% propylene glycol in 0.9% saline solution. Vandetanib caused sustained increases in mean arterial pressure (MAP), systolic blood pressure (SBP), and diastolic blood pressure (DBP) compared to baseline and vehicle. Vandetanib also significantly altered the circadian cycling of MAP, SBP, and DBP. Elevations in SBP were detectable 162 hours after the last dose of vandetanib. Pazopanib also caused increases in MAP, SBP, and DBP. However, compared to vandetanib, these increases were of slower onset and a smaller magnitude. These data suggest that the cardiovascular consequences of vandetanib and pazopanib treatment are sustained, even after prolonged cessation of drug treatment.


Assuntos
Hipertensão/induzido quimicamente , Piperidinas/efeitos adversos , Pirimidinas/efeitos adversos , Quinazolinas/efeitos adversos , Sulfonamidas/efeitos adversos , Animais , Pressão Arterial/efeitos dos fármacos , Modelos Animais de Doenças , Esquema de Medicação , Humanos , Indazóis , Masculino , Piperidinas/administração & dosagem , Pirimidinas/administração & dosagem , Quinazolinas/administração & dosagem , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Sulfonamidas/administração & dosagem
12.
Br J Pharmacol ; 176(17): 3220-3235, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31162634

RESUMO

BACKGROUND AND PURPOSE: Vascular endothelial growth factor A (VEGF-A) is a key mediator of angiogenesis. A striking feature of the binding of a fluorescent analogue of VEGF165 a to nanoluciferase-tagged VEGF receptor 2 (VEGFR2) in living cells is that the BRET signal is not sustained and declines over time. This may be secondary to receptor internalisation. Here, we have compared the binding of three fluorescent VEGF-A isoforms to VEGFR2 in cells and isolated membrane preparations. EXPERIMENTAL APPROACH: Ligand-binding kinetics were monitored in both intact HEK293T cells and membranes (expressing nanoluciferase-tagged VEGFR2) using BRET between tagged receptor and fluorescent analogues of VEGF165 a, VEGF165 b, and VEGF121 a. VEGFR2 endocytosis in intact cells expressing VEGFR2 was monitored by following the appearance of fluorescent ligand-associated receptors in intracellular endosomes using automated quantitative imaging. KEY RESULTS: Quantitative analysis of the effect of fluorescent VEGF-A isoforms on VEGFR2 endocytosis in cells demonstrated that they produce a rapid and potent translocation of ligand-bound VEGFR2 into intracellular endosomes. NanoBRET can be used to monitor the kinetics of the binding of fluorescent VEGF-A isoforms to VEGFR2. In isolated membrane preparations, ligand-binding association curves were maintained for the duration of the 90-min experiment. Measurement of the koff at pH 6.0 in membrane preparations indicated shorter ligand residence times than those obtained at pH 7.4. CONCLUSIONS AND IMPLICATIONS: These studies suggest that rapid VEGF-A isoform-induced receptor endocytosis shortens agonist residence times on the receptor (1/koff ) as VEGFR2 moves from the plasma membrane to the intracellular endosomes.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Fluorescência , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Sítios de Ligação/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Células HEK293 , Humanos , Ligantes , Isoformas de Proteínas/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Quinazolinas/química , Relação Estrutura-Atividade , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
13.
Cell Chem Biol ; 26(6): 830-841.e9, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-30956148

RESUMO

Vascular endothelial growth factor (VEGF) is an important mediator of endothelial cell proliferation and angiogenesis via its receptor VEGFR2. A common tumor associated with elevated VEGFR2 signaling is infantile hemangioma that is caused by a rapid proliferation of vascular endothelial cells. The current first-line treatment for infantile hemangioma is the ß-adrenoceptor antagonist, propranolol, although its mechanism of action is not understood. Here we have used bioluminescence resonance energy transfer and VEGFR2 genetically tagged with NanoLuc luciferase to demonstrate that oligomeric complexes involving VEGFR2 and the ß2-adrenoceptor can be generated in both cell membranes and intracellular endosomes. These complexes are induced by agonist treatment and retain their ability to couple to intracellular signaling proteins. Furthermore, coupling of ß2-adrenoceptor to ß-arrestin2 is prolonged by VEGFR2 activation. These data suggest that protein-protein interactions between VEGFR2, the ß2-adrenoceptor, and ß-arrestin2 may provide insight into their roles in health and disease.


Assuntos
Receptores Adrenérgicos beta 2/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Células Cultivadas , Corantes Fluorescentes/química , Células HEK293 , Humanos , Ligantes , Luciferases/química , Luciferases/metabolismo , Ligação Proteica , Receptores Adrenérgicos beta 2/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
14.
Br J Pharmacol ; 176(7): 864-878, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30644086

RESUMO

BACKGROUND AND PURPOSE: Adenosine is a local mediator that regulates a number of physiological and pathological processes via activation of adenosine A1 -receptors. The activity of adenosine can be regulated at the level of its target receptor via drugs that bind to an allosteric site on the A1 -receptor. Here, we have investigated the species and probe dependence of two allosteric modulators on the binding characteristics of fluorescent and nonfluorescent A1 -receptor agonists. EXPERIMENTAL APPROACH: A Nano-luciferase (Nluc) BRET (NanoBRET) methodology was used. This used N-terminal Nluc-tagged A1 -receptors expressed in HEK293T cells in conjunction with both fluorescent A1 -receptor agonists (adenosine and NECA analogues) and a fluorescent antagonist CA200645. KEY RESULTS: PD 81,723 and VCP171 elicited positive allosteric effects on the binding affinity of orthosteric agonists at both the rat and human A1 -receptors that showed clear probe dependence. Thus, the allosteric effect on the highly selective partial agonist capadenoson was much less marked than for the full agonists NECA, adenosine, and CCPA in both species. VCP171 and, to a lesser extent, PD 81,723, also increased the specific binding of three fluorescent A1 -receptor agonists in a species-dependent manner that involved increases in Bmax and pKD . CONCLUSIONS AND IMPLICATIONS: These results demonstrate the power of the NanoBRET ligand-binding approach to study the effect of allosteric ligands on the binding of fluorescent agonists to the adenosine A1 -receptor in intact living cells. Furthermore, our studies suggest that VCP171 and PD 81,723 may switch a proportion of A1 -receptors to an active agonist conformation (R*).


Assuntos
Agonistas do Receptor Purinérgico P1/farmacologia , Receptor A1 de Adenosina/metabolismo , Regulação Alostérica , Animais , Células HEK293 , Humanos , Ligantes , Agonistas do Receptor Purinérgico P1/química , Ratos , Receptor A1 de Adenosina/química , Receptor A1 de Adenosina/genética
15.
iScience ; 6: 280-288, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30240618

RESUMO

The therapeutic action of a drug depends on its ability to engage with its molecular target in vivo. However, current drug discovery strategies quantify drug levels within organs rather than determining the binding of drugs directly to their specific molecular targets in vivo. This is a particular problem for assessing the therapeutic potential of drugs that target malignant tumors where access and binding may be impaired by disrupted vasculature and local hypoxia. Here we have used triple-negative human breast cancer cells expressing ß2-adrenoceptors tagged with the bioluminescence protein NanoLuc to provide a bioluminescence resonance energy transfer approach to directly quantify ligand binding to a G protein-coupled receptor in vivo using a mouse model of breast cancer.

16.
Cell Chem Biol ; 25(10): 1208-1218.e5, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30057299

RESUMO

Fluorescent VEGF-A isoforms have been evaluated for their ability to discriminate between VEGFR2 and NRP1 in real-time ligand binding studies in live cells using BRET. To enable this, we synthesized single-site (N-terminal cysteine) labeled versions of VEGF165a, VEGF165b, and VEGF121a. These were used in combination with N-terminal NanoLuc-tagged VEGFR2 or NRP1 to evaluate the selectivity of VEGF isoforms for these two membrane proteins. All fluorescent VEGF-A isoforms displayed high affinity for VEGFR2. Only VEGF165a-TMR bound to NanoLuc-NRP1 with a similar high affinity (4.4 nM). Competition NRP1 binding experiments yielded a rank order of potency of VEGF165a > VEGF189a > VEGF145a. VEGF165b, VEGF-Ax, VEGF121a, and VEGF111a were unable to bind to NRP1. There were marked differences in the kinetic binding profiles of VEGF165a-TMR for NRP1 and VEGFR2. These data emphasize the importance of the kinetic aspects of ligand binding to VEGFR2 and its co-receptors in the dynamics of VEGF signaling.


Assuntos
Neuropilina-1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Transferência de Energia , Corantes Fluorescentes/metabolismo , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Ligantes , Medições Luminescentes , Ligação Proteica , Isoformas de Proteínas/metabolismo , Rodaminas/metabolismo
17.
Int J Mol Sci ; 19(4)2018 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-29690653

RESUMO

Vascular endothelial growth factor-A (VEGF-A) is a key mediator of angiogenesis, signalling via the class IV tyrosine kinase receptor family of VEGF Receptors (VEGFRs). Although VEGF-A ligands bind to both VEGFR1 and VEGFR2, they primarily signal via VEGFR2 leading to endothelial cell proliferation, survival, migration and vascular permeability. Distinct VEGF-A isoforms result from alternative splicing of the Vegfa gene at exon 8, resulting in VEGFxxxa or VEGFxxxb isoforms. Alternative splicing events at exons 5⁻7, in addition to recently identified posttranslational read-through events, produce VEGF-A isoforms that differ in their bioavailability and interaction with the co-receptor Neuropilin-1. This review explores the molecular pharmacology of VEGF-A isoforms at VEGFR2 in respect to ligand binding and downstream signalling. To understand how VEGF-A isoforms have distinct signalling despite similar affinities for VEGFR2, this review re-evaluates the typical classification of these isoforms relative to the prototypical, “pro-angiogenic” VEGF165a. We also examine the molecular mechanisms underpinning the regulation of VEGF-A isoform signalling and the importance of interactions with other membrane and extracellular matrix proteins. As approved therapeutics targeting the VEGF-A/VEGFR signalling axis largely lack long-term efficacy, understanding these isoform-specific mechanisms could aid future drug discovery efforts targeting VEGF receptor pharmacology.


Assuntos
Isoformas de Proteínas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Células Endoteliais/metabolismo , Humanos , Transdução de Sinais/fisiologia
18.
Biochem Pharmacol ; 136: 62-75, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28392095

RESUMO

Vascular endothelial growth factor (VEGF) is an important mediator of angiogenesis. Here we have used a novel stoichiometric protein-labeling method to generate a fluorescent variant of VEGF (VEGF165a-TMR) labeled on a single cysteine within each protomer of the antiparallel VEGF homodimer. VEGF165a-TMR has then been used in conjunction with full length VEGFR2, tagged with the bioluminescent protein NanoLuc, to undertake a real time quantitative evaluation of VEGFR2 binding characteristics in living cells using bioluminescence resonance energy transfer (BRET). This provided quantitative information on VEGF-VEGFR2 interactions. At longer incubation times, VEGFR2 is internalized by VEGF165a-TMR into intracellular endosomes. This internalization can be prevented by the receptor tyrosine kinase inhibitors (RTKIs) cediranib, sorafenib, pazopanib or vandetanib. In the absence of RTKIs, the BRET signal is decreased over time as a consequence of the dissociation of agonist from the receptor in intracellular endosomes and recycling of VEGFR2 back to the plasma membrane.


Assuntos
Sistemas Computacionais , Endocitose/fisiologia , Corantes Fluorescentes/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Sequência de Aminoácidos , Relação Dose-Resposta a Droga , Endocitose/efeitos dos fármacos , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
19.
FASEB J ; 31(3): 1193-1203, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27986807

RESUMO

VEGF inhibitors, including receptor tyrosine kinase inhibitors, are used as adjunct therapies in a number of cancer treatments. An emerging issue with these drugs is that most cause hypertension. To gain insight into the physiological mechanisms involved, we evaluated their regional hemodynamic effects in conscious rats. Male Sprague Dawley rats (350-450 g) were chronically implanted with pulsed Doppler flow probes (renal and mesenteric arteries, and the descending abdominal aorta) and catheters (jugular vein, peritoneal cavity, and distal abdominal aorta). Regional hemodynamics were measured over 4 d, before and after daily administration of cediranib (3 and 6 mg/kg, 3 and 6 mg/kg/h for 1 h, i.v.), sorafenib (10 and 20 mg/kg, 10 and 20 mg kg/h for 1 h, i.v.), pazopanib (30 and100 mg/kg, i.p.), or vandetanib (12.5 and 25 mg/kg, i.p.). All drugs evoked significant increases (P < 0.05; n = 7-8) in mean arterial pressure, which were generally accompanied by significant mesenteric and hindquarters, but not renal, vasoconstrictions. The hypertensive effects of cediranib were unaffected by losartan (10 mg/kg/h), bosentan (20 mg/kg/h), or a combination of phentolamine and propranolol (each 1 mg/kg/h), suggesting a need for new strategies to overcome them.-Carter, J. J., Fretwell, L. V., Woolard, J. Effects of 4 multitargeted receptor tyrosine kinase inhibitors on regional hemodynamics in conscious, freely moving rats.


Assuntos
Hemodinâmica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Fluxo Sanguíneo Regional/efeitos dos fármacos , Antagonistas Adrenérgicos beta/administração & dosagem , Antagonistas Adrenérgicos beta/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/administração & dosagem , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Estado de Consciência , Indazóis , Losartan/administração & dosagem , Losartan/farmacologia , Masculino , Niacinamida/administração & dosagem , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Compostos de Fenilureia/administração & dosagem , Compostos de Fenilureia/farmacologia , Piperidinas/administração & dosagem , Piperidinas/farmacologia , Propranolol/administração & dosagem , Propranolol/farmacologia , Inibidores de Proteínas Quinases/administração & dosagem , Pirimidinas/administração & dosagem , Pirimidinas/farmacologia , Quinazolinas/administração & dosagem , Quinazolinas/farmacologia , Ratos , Ratos Sprague-Dawley , Sorafenibe , Sulfonamidas/administração & dosagem , Sulfonamidas/farmacologia
20.
Pharmacol Res Perspect ; 4(5): e00250, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27588207

RESUMO

Previous research has indicated that allosteric interactions across the dimer interface of ß1-adrenoceptors may be responsible for a secondary low affinity binding conformation. Here we have investigated the potential for probe dependence, in the determination of antagonist pKi values at the human ß1-adenoceptor, which may result from such allosterism interactions. Three fluorescent ß1-adrenoceptor ligands were used to investigate this using bioluminescence energy transfer (BRET) between the receptor-bound fluorescent ligand and the N-terminal NanoLuc tag of a human ß1-adrenoceptor expressed in HEK 293 cells (NanoBRET). This proximity assay showed high-affinity-specific binding to the NanoLuc- ß1-adrenoceptor with each of the three fluorescent ligands yielding KD values of 87.1 ± 10 nmol/L (n = 8), 38.1 ± 12 nmol/L (n = 7), 13.4 ± 2 nmol/L (n = 14) for propranolol-Peg8-BY630, propranolol- ß(Ala-Ala)-BY630 and CGP-12177-TMR, respectively. Parallel radioligand-binding studies with 3H-CGP12177 and TIRF microscopy, to monitor NanoLuc bioluminescence, confirmed a high cell surface expression of the NanoLuc- ß1-adrenoceptor in HEK 293 cells (circa 1500 fmol.mg protein-1). Following a 1 h incubation with fluorescent ligands and ß1-adrenoceptor competing antagonists, there were significant differences (P < 0.001) in the pKi values obtained for CGP20712a and CGP 12177 with the different fluorescent ligands and 3H-CGP 12177. However, increasing the incubation time to 2 h removed these significant differences. The data obtained show that the NanoBRET assay can be applied successfully to study ligand-receptor interactions at the human ß1-adrenoceptor. However, the study also emphasizes the importance of ensuring that both the fluorescent and competing ligands are in true equilibrium before interpretations regarding probe dependence can be made.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA