Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(16)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39201478

RESUMO

Phytochemicals have a long and successful history in drug discovery. With recent advancements in analytical techniques and methodologies, discovering bioactive leads from natural compounds has become easier. Computational techniques like molecular docking, QSAR modelling and machine learning, and network pharmacology are among the most promising new tools that allow researchers to make predictions concerning natural products' potential targets, thereby guiding experimental validation efforts. Additionally, approaches like LC-MS or LC-NMR speed up compound identification by streamlining analytical processes. Integrating structural and computational biology aids in lead identification, thus providing invaluable information to understand how phytochemicals interact with potential targets in the body. An emerging computational approach is machine learning involving QSAR modelling and deep neural networks that interrelate phytochemical properties with diverse physiological activities such as antimicrobial or anticancer effects.


Assuntos
Descoberta de Drogas , Compostos Fitoquímicos , Relação Quantitativa Estrutura-Atividade , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Descoberta de Drogas/métodos , Humanos , Aprendizado de Máquina , Simulação de Acoplamento Molecular , Produtos Biológicos/química , Produtos Biológicos/farmacologia
2.
Kidney Int Rep ; 9(6): 1876-1891, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38899206

RESUMO

Introduction: Inflammation is a significant contributor to cardiorenal morbidity and mortality in diabetic kidney disease (DKD). The pathophysiological mechanisms linking systemic, subacute inflammation and local, kidney injury-initiated immune maladaptation is partially understood. Methods: Here, we explored the expression of proinflammatory cytokines in patients with DKD; investigated mouse models of type 1 and type 2 diabetes (T2D); evaluated glomerular signaling in vitro; performed post hoc analyses of systemic and urinary markers of inflammation; and initiated a phase 2b clinical study (FRONTIER-1; NCT04170543). Results: Transcriptomic profiling of kidney biopsies from patients with DKD revealed significant glomerular upregulation of interleukin-33 (IL-33). Inhibition of IL-33 signaling reduced glomerular damage and albuminuria in the uninephrectomized db/db mouse model (T2D/DKD). On a cellular level, inhibiting IL-33 improved glomerular endothelial health by decreasing cellular inflammation and reducing release of proinflammatory cytokines. Therefore, FRONTIER-1 was designed to test the safety and efficacy of the IL-33-targeted monoclonal antibody tozorakimab in patients with DKD. So far, 578 patients are enrolled in FRONTIER-1. The baseline inflammation status of participants (N > 146) was assessed in blood and urine. Comparison to independent reference cohorts (N > 200) validated the distribution of urinary tumor necrosis factor receptor 1 (TNFR1) and C-C motif chemokine ligand 2 (CCL2). Treatment with dapagliflozin for 6 weeks did not alter these biomarkers significantly. Conclusion: We show that blocking the IL-33 pathway may mitigate glomerular endothelial inflammation in DKD. The findings from the FRONTIER-1 study will provide valuable insights into the therapeutic potential of IL-33 inhibition in DKD.

3.
J Immunother Cancer ; 12(4)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38580334

RESUMO

BACKGROUND: Checkpoint inhibitor-induced hepatitis (CPI-hepatitis) is an emerging problem with the widening use of CPIs in cancer immunotherapy. Here, we developed a mouse model to characterize the mechanism of CPI-hepatitis and to therapeutically target key pathways driving this pathology. METHODS: C57BL/6 wild-type (WT) mice were dosed with toll-like receptor (TLR)9 agonist (TLR9-L) for hepatic priming combined with anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) plus anti-programmed cell death 1 (PD-1) ("CPI") or phosphate buffered saline (PBS) control for up to 7 days. Flow cytometry, histology/immunofluorescence and messenger RNA sequencing were used to characterize liver myeloid/lymphoid subsets and inflammation. Hepatocyte damage was assessed by plasma alanine transaminase (ALT) and cytokeratin-18 (CK-18) measurements. In vivo investigations of CPI-hepatitis were carried out in Rag2-/- and Ccr2rfp/rfp transgenic mice, as well as following anti-CD4, anti-CD8 or cenicriviroc (CVC; CCR2/CCR5 antagonist) treatment. RESULTS: Co-administration of combination CPIs with TLR9-L induced liver pathology closely resembling human disease, with increased infiltration and clustering of granzyme B+perforin+CD8+ T cells and CCR2+ monocytes, 7 days post treatment. This was accompanied by apoptotic hepatocytes surrounding these clusters and elevated ALT and CK-18 plasma levels. Liver RNA sequencing identified key signaling pathways (JAK-STAT, NF-ΚB) and cytokine/chemokine networks (Ifnγ, Cxcl9, Ccl2/Ccr2) as drivers of CPI-hepatitis. Using this model, we show that CD8+ T cells mediate hepatocyte damage in experimental CPI-hepatitis. However, their liver recruitment, clustering, and cytotoxic activity is dependent on the presence of CCR2+ monocytes. The absence of hepatic monocyte recruitment in Ccr2rfp/rfp mice and CCR2 inhibition by CVC treatment in WT mice was able to prevent the development and reverse established experimental CPI-hepatitis. CONCLUSION: This newly established mouse model provides a platform for in vivo mechanistic studies of CPI-hepatitis. Using this model, we demonstrate the central role of liver infiltrating CCR2+ monocyte interaction with tissue-destructive CD8+ T cells in the pathogenesis of CPI-hepatitis and highlight CCR2 inhibition as a novel therapeutic target.


Assuntos
Hepatite , Monócitos , Humanos , Camundongos , Animais , Linfócitos T CD8-Positivos , Receptor Toll-Like 9 , Camundongos Endogâmicos C57BL , Hepatite/tratamento farmacológico , Hepatite/etiologia
4.
Kidney Int ; 106(1): 85-97, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38431215

RESUMO

Despite the recent advances in our understanding of the role of lipids, metabolites, and related enzymes in mediating kidney injury, there is limited integrated multi-omics data identifying potential metabolic pathways driving impaired kidney function. The limited availability of kidney biopsies from living donors with acute kidney injury has remained a major constraint. Here, we validated the use of deceased transplant donor kidneys as a good model to study acute kidney injury in humans and characterized these kidneys using imaging and multi-omics approaches. We noted consistent changes in kidney injury and inflammatory markers in donors with reduced kidney function. Neighborhood and correlation analyses of imaging mass cytometry data showed that subsets of kidney cells (proximal tubular cells and fibroblasts) are associated with the expression profile of kidney immune cells, potentially linking these cells to kidney inflammation. Integrated transcriptomic and metabolomic analysis of human kidneys showed that kidney arachidonic acid metabolism and seven other metabolic pathways were upregulated following diminished kidney function. To validate the arachidonic acid pathway in impaired kidney function we demonstrated increased levels of cytosolic phospholipase A2 protein and related lipid mediators (prostaglandin E2) in the injured kidneys. Further, inhibition of cytosolic phospholipase A2 reduced injury and inflammation in human kidney proximal tubular epithelial cells in vitro. Thus, our study identified cell types and metabolic pathways that may be critical for controlling inflammation associated with impaired kidney function in humans.


Assuntos
Injúria Renal Aguda , Fenótipo , Humanos , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/etiologia , Masculino , Pessoa de Meia-Idade , Metabolômica/métodos , Feminino , Transplante de Rim/efeitos adversos , Adulto , Citometria por Imagem/métodos , Rim/patologia , Rim/metabolismo , Fosfolipases A2/metabolismo , Ácido Araquidônico/metabolismo , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Transcriptoma , Dinoprostona/metabolismo , Dinoprostona/análise , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Biópsia , Multiômica
5.
J Pathol ; 257(3): 300-313, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35239186

RESUMO

P2RX7, an ionotropic receptor for extracellular adenosine triphosphate (ATP), is expressed on immune cells, including macrophages, monocytes, and dendritic cells and is upregulated on nonimmune cells following injury. P2RX7 plays a role in many biological processes, including production of proinflammatory cytokines such as interleukin (IL)-1ß via the canonical inflammasome pathway. P2RX7 has been shown to be important in inflammation and fibrosis and may also play a role in autoimmunity. We have developed and phenotyped a novel P2RX7 knockout (KO) inbred rat strain and, taking advantage of the human-resembling unique histopathological features of rat models of glomerulonephritis, we induced three models of disease: nephrotoxic nephritis, experimental autoimmune glomerulonephritis, and experimental autoimmune vasculitis. We found that deletion of P2RX7 does not protect rats from models of experimental glomerulonephritis or the development of autoimmunity. Notably, treatment with A-438079, a P2RX7 antagonist, was equally protective in WKY WT and P2RX7 KO rats, revealing its 'off-target' properties. We identified a novel ATP/P2RX7/K+ efflux-independent and caspase-1/8-dependent pathway for the production of IL-1ß in rat dendritic cells, which was absent in macrophages. Taken together, these results comprehensively establish that inflammation and autoimmunity in glomerulonephritis is independent of P2RX7 and reveals the off-target properties of drugs previously known as selective P2RX7 antagonists. Rat mononuclear phagocytes may be able to utilise an 'alternative inflammasome' pathway to produce IL-1ß independently of P2RX7, which may account for the susceptibility of P2RX7 KO rats to inflammation and autoimmunity in glomerulonephritis. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Glomerulonefrite , Receptores Purinérgicos P2X7 , Vasculite , Trifosfato de Adenosina/metabolismo , Animais , Caspase 1/metabolismo , Caspases , Inflamassomos/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos , Ratos Endogâmicos WKY , Receptores Purinérgicos P2X7/metabolismo , Vasculite/metabolismo , Vasculite/patologia
6.
Sci Rep ; 11(1): 16532, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400685

RESUMO

Recent advances in induced pluripotent stem cells (iPSCs), genome editing technologies and 3D organoid model systems highlight opportunities to develop new in vitro human disease models to serve drug discovery programs. An ideal disease model would accurately recapitulate the relevant disease phenotype and provide a scalable platform for drug and genetic screening studies. Kidney organoids offer a high cellular complexity that may provide greater insights than conventional single-cell type cell culture models. However, genetic manipulation of the kidney organoids requires prior generation of genetically modified clonal lines, which is a time and labor consuming procedure. Here, we present a methodology for direct differentiation of the CRISPR-targeted cell pools, using a doxycycline-inducible Cas9 expressing hiPSC line for high efficiency editing to eliminate the laborious clonal line generation steps. We demonstrate the versatile use of genetically engineered kidney organoids by targeting the autosomal dominant polycystic kidney disease (ADPKD) genes: PKD1 and PKD2. Direct differentiation of the respective knockout pool populations into kidney organoids resulted in the formation of cyst-like structures in the tubular compartment. Our findings demonstrated that we can achieve > 80% editing efficiency in the iPSC pool population which resulted in a reliable 3D organoid model of ADPKD. The described methodology may provide a platform for rapid target validation in the context of disease modeling.


Assuntos
Sistemas CRISPR-Cas , Descoberta de Drogas/métodos , Edição de Genes/métodos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Terapia de Alvo Molecular , Rim Policístico Autossômico Dominante/genética , Células A549 , Animais , Diferenciação Celular , Células Cultivadas , Doxiciclina/farmacologia , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Rim/citologia , Organoides/efeitos dos fármacos , Rim Policístico Autossômico Dominante/tratamento farmacológico , RNA Guia de Cinetoplastídeos/genética , Suínos , Canais de Cátion TRPP/genética
7.
Sci Rep ; 11(1): 5894, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723357

RESUMO

The aetiology and progression of hypertension involves various endogenous systems, such as the renin angiotensin system, the sympathetic nervous system, and endothelial dysfunction. Recent data suggest that vascular inflammation may also play a key role in the pathogenesis of hypertension. This study sought to determine whether high intraluminal pressure results in vascular inflammation. Leukocyte adhesion was assessed in rat carotid arteries exposed to 1 h of high intraluminal pressure. The effect of intraluminal pressure on signaling mechanisms including reactive oxygen species production (ROS), arginase expression, and NFĸB translocation was monitored. 1 h exposure to high intraluminal pressure (120 mmHg) resulted in increased leukocyte adhesion and inflammatory gene expression in rat carotid arteries. High intraluminal pressure also resulted in a downstream signaling cascade of ROS production, arginase expression, and NFĸB translocation. This process was found to be angiotensin II-independent and mediated by the mechanosensor caveolae, as caveolin-1 (Cav1)-deficient endothelial cells and mice were protected from pressure-induced vascular inflammatory signaling and leukocyte adhesion. Cav1 deficiency also resulted in a reduction in pressure-induced glomerular macrophage infiltration in vivo. These findings demonstrate Cav1 is an important mechanosensor in pressure-induced vascular and renal inflammation.


Assuntos
Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Caveolina 1/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Pressão Sanguínea , Cavéolas/metabolismo , Adesão Celular , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Endotélio Vascular/ultraestrutura , Hipertensão/patologia , Rim/patologia , Leucócitos/patologia , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Modelos Biológicos , NF-kappa B/metabolismo , Norepinefrina , Ratos , Espécies Reativas de Oxigênio/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo
8.
J Hepatol ; 75(1): 177-189, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33631227

RESUMO

BACKGROUND & AIMS: Checkpoint inhibitor-related hepatitis (CPI-Hep) is an emerging clinical challenge. We aimed to gain insights into the immunopathology of CPI-Hep by comprehensively characterising myeloid and lymphoid subsets. METHODS: CPI-treated patients with or without related hepatitis (CPI-Hep; n = 22 and CPI-noHep; n = 7) were recruited. Phenotypic and transcriptional profiling of peripheral immune subsets was performed and compared with 19 healthy controls (HCs). In vitro monocyte-derived macrophages (MoMFs) were assessed for activation and cytokine production. CD163, CCR2, CD68, CD3, CD8 and granzyme B expression was assessed using immunohistochemistry/immunofluorescence (n = 4). RESULTS: A significant total monocyte depletion was observed in CPI-Hep compared with HCs (p = 0.04), along with a proportionate increase in the classical monocyte population (p = 0.0002) and significant upregulation of CCR2, CD163 and downregulation of CCR7. Soluble CD163 levels were significantly elevated in CPI-Hep compared with HCs (p <0.0001). In vitro MoMFs from CPI-Hep showed enhanced production of pro-inflammatory cytokines. CD8+ T cells demonstrated increased perforin, granzyme B, ICOS and HLA-DR expression in CPI-Hep. Transcriptional profiling indicated the presence of activated monocyte and enhanced effector CD8+ T cell populations in CPI-Hep. Immunohistochemistry demonstrated co-localisation of CD8+/granzyme B+ T cells with CD68+CCR2+/CD68+CD163+ macrophages in CPI-Hep liver tissue. CONCLUSIONS: CPI-Hep is associated with activation of peripheral monocytes and an enhanced cytotoxic, effector CD8+ T cell phenotype. These changes were reflected by liver inflammation composed of CD163+/CCR2+ macrophages and CD8+ T cells. LAY SUMMARY: Some patients who receive immunotherapy for cancer develop liver inflammation, which requires cessation of cancer treatment. Herein, we describe ways in which the white blood cells of patients who develop liver inflammation differ from those of patients who receive the same immunotherapy but do not experience liver-related side effects. Targeting some of the pathways we identify may help to prevent or manage this side effect and facilitate cancer treatment.


Assuntos
Antígenos CD/imunologia , Antígenos de Diferenciação Mielomonocítica/imunologia , Antineoplásicos/efeitos adversos , Linfócitos T CD8-Positivos/imunologia , Doença Hepática Induzida por Substâncias e Drogas , Inibidores de Checkpoint Imunológico/efeitos adversos , Macrófagos/imunologia , Receptores CCR2/imunologia , Receptores CCR7/imunologia , Receptores de Superfície Celular/imunologia , Antineoplásicos/administração & dosagem , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Descoberta de Drogas , Feminino , Humanos , Inibidores de Checkpoint Imunológico/administração & dosagem , Inibidores de Checkpoint Imunológico/imunologia , Ativação de Macrófagos/imunologia , Masculino , Pessoa de Meia-Idade , Linfócitos T Citotóxicos/imunologia
9.
J Clin Invest ; 131(4)2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33320839

RESUMO

Patients with acute liver failure (ALF) have systemic innate immune suppression and increased susceptibility to infections. Programmed cell death 1 (PD-1) expression by macrophages has been associated with immune suppression during sepsis and cancer. We therefore examined the role of the programmed cell death 1/programmed death ligand 1 (PD-1/PD-L1) pathway in regulating Kupffer cell (KC) inflammatory and antimicrobial responses in acetaminophen-induced (APAP-induced) acute liver injury. Using intravital imaging and flow cytometry, we found impaired KC bacterial clearance and systemic bacterial dissemination in mice with liver injury. We detected increased PD-1 and PD-L1 expression in KCs and lymphocyte subsets, respectively, during injury resolution. Gene expression profiling of PD-1+ KCs revealed an immune-suppressive profile and reduced pathogen responses. Compared with WT mice, PD-1-deficient mice and anti-PD-1-treated mice with liver injury showed improved KC bacterial clearance, a reduced tissue bacterial load, and protection from sepsis. Blood samples from patients with ALF revealed enhanced PD-1 and PD-L1 expression by monocytes and lymphocytes, respectively, and that soluble PD-L1 plasma levels could predict outcomes and sepsis. PD-1 in vitro blockade restored monocyte functionality. Our study describes a role for the PD-1/PD-L1 axis in suppressing KC and monocyte antimicrobial responses after liver injury and identifies anti-PD-1 immunotherapy as a strategy to reduce infection susceptibility in ALF.


Assuntos
Bactérias/imunologia , Infecções Bacterianas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Células de Kupffer/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Acetaminofen/efeitos adversos , Acetaminofen/uso terapêutico , Adulto , Animais , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/genética , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/microbiologia , Feminino , Humanos , Células de Kupffer/microbiologia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia
10.
Nat Commun ; 11(1): 4697, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943639

RESUMO

Unassisted metastasis through the lymphatic system is a mechanism of dissemination thus far ascribed only to cancer cells. Here, we report that Streptococcus pyogenes also hijack lymphatic vessels to escape a local infection site, transiting through sequential lymph nodes and efferent lymphatic vessels to enter the bloodstream. Contrasting with previously reported mechanisms of intracellular pathogen carriage by phagocytes, we show S. pyogenes remain extracellular during transit, first in afferent and then efferent lymphatics that carry the bacteria through successive draining lymph nodes. We identify streptococcal virulence mechanisms important for bacterial lymphatic dissemination and show that metastatic streptococci within infected lymph nodes resist and subvert clearance by phagocytes, enabling replication that can seed intense bloodstream infection. The findings establish the lymphatic system as both a survival niche and conduit to the bloodstream for S. pyogenes, explaining the phenomenon of occult bacteraemia. This work provides new perspectives in streptococcal pathogenesis with implications for immunity.


Assuntos
Linfonodos/microbiologia , Metástase Linfática , Vasos Linfáticos/microbiologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/patogenicidade , Animais , Bacteriemia/microbiologia , Bacteriemia/patologia , Modelos Animais de Doenças , Feminino , Interleucina-8/metabolismo , Linfonodos/imunologia , Linfonodos/patologia , Metástase Linfática/patologia , Sistema Linfático , Vasos Linfáticos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neutrófilos/microbiologia , Fagocitose , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/patologia , Streptococcus pyogenes/genética , Virulência
11.
Gut ; 67(2): 333-347, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28450389

RESUMO

OBJECTIVE: Acute liver failure (ALF) is characterised by overwhelming hepatocyte death and liver inflammation with massive infiltration of myeloid cells in necrotic areas. The mechanisms underlying resolution of acute hepatic inflammation are largely unknown. Here, we aimed to investigate the impact of Mer tyrosine kinase (MerTK) during ALF and also examine how the microenvironmental mediator, secretory leucocyte protease inhibitor (SLPI), governs this response. DESIGN: Flow cytometry, immunohistochemistry, confocal imaging and gene expression analyses determined the phenotype, functional/transcriptomic profile and tissue topography of MerTK+ monocytes/macrophages in ALF, healthy and disease controls. The temporal evolution of macrophage MerTK expression and its impact on resolution was examined in APAP-induced acute liver injury using wild-type (WT) and Mer-deficient (Mer-/-) mice. SLPI effects on hepatic myeloid cells were determined in vitro and in vivo using APAP-treated WT mice. RESULTS: We demonstrate a significant expansion of resolution-like MerTK+HLA-DRhigh cells in circulatory and tissue compartments of patients with ALF. Compared with WT mice which show an increase of MerTK+MHCIIhigh macrophages during the resolution phase in ALF, APAP-treated Mer-/- mice exhibit persistent liver injury and inflammation, characterised by a decreased proportion of resident Kupffer cells and increased number of neutrophils. Both in vitro and in APAP-treated mice, SLPI reprogrammes myeloid cells towards resolution responses through induction of a MerTK+HLA-DRhigh phenotype which promotes neutrophil apoptosis and their subsequent clearance. CONCLUSIONS: We identify a hepatoprotective, MerTK+, macrophage phenotype that evolves during the resolution phase following ALF and represents a novel immunotherapeutic target to promote resolution responses following acute liver injury.


Assuntos
Falência Hepática Aguda/imunologia , Falência Hepática Aguda/metabolismo , Macrófagos/metabolismo , Inibidor Secretado de Peptidases Leucocitárias/farmacologia , c-Mer Tirosina Quinase/metabolismo , Acetaminofen , Adulto , Idoso , Animais , Estudos de Casos e Controles , Feminino , Expressão Gênica , Genes MHC da Classe II , Antígenos HLA-DR/metabolismo , Humanos , Células de Kupffer/imunologia , Células de Kupffer/metabolismo , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/patologia , Macrófagos/imunologia , Masculino , Camundongos , Pessoa de Meia-Idade , Monócitos/imunologia , Monócitos/metabolismo , Neutrófilos/fisiologia , Fenótipo , Inibidor Secretado de Peptidases Leucocitárias/metabolismo , Inibidor Secretado de Peptidases Leucocitárias/uso terapêutico , Transcriptoma , c-Mer Tirosina Quinase/deficiência , c-Mer Tirosina Quinase/genética
12.
Front Immunol ; 9: 2948, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619308

RESUMO

Acute and acute-on-chronic liver failure (ALF and ACLF), though distinct clinical entities, are considered syndromes of innate immune dysfunction. Patients with ALF and ACLF display evidence of a pro-inflammatory state with local liver inflammation, features of systemic inflammatory response syndrome (SIRS) and vascular endothelial dysfunction that drive progression to multi-organ failure. In an apparent paradox, these patients are concurrently immunosuppressed, exhibiting acquired immune defects that render them highly susceptible to infections. This paradigm of tissue injury succeeded by immunosuppression is seen in other inflammatory conditions such as sepsis, which share poor outcomes and infective complications that account for high morbidity and mortality. Monocyte and macrophage dysfunction are central to disease progression of ALF and ACLF. Activation of liver-resident macrophages (Kupffer cells) by pathogen and damage associated molecular patterns leads to the recruitment of innate effector cells to the injured liver. Early monocyte infiltration may contribute to local tissue destruction during the propagation phase and results in secretion of pro-inflammatory cytokines that drive SIRS. In the hepatic microenvironment, recruited monocytes mature into macrophages following local reprogramming so as to promote resolution responses in a drive to maintain tissue integrity. Intra-hepatic events may affect circulating monocytes through spill over of soluble mediators and exposure to apoptotic cell debris during passage through the liver. Hence, peripheral monocytes show numerous acquired defects in acute liver failure syndromes that impair their anti-microbial programmes and contribute to enhanced susceptibility to sepsis. This review will highlight the cellular and molecular mechanisms by which monocytes and macrophages contribute to the pathophysiology of ALF and ACLF, considering both hepatic inflammation and systemic immunosuppression. We identify areas for further research and potential targets for immune-based therapies to treat these devastating conditions.


Assuntos
Insuficiência Hepática Crônica Agudizada/imunologia , Falência Hepática/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Doença Aguda , Insuficiência Hepática Crônica Agudizada/patologia , Hepatite/imunologia , Hepatite/patologia , Humanos , Falência Hepática/patologia , Modelos Imunológicos , Sepse/imunologia , Sepse/patologia , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Síndrome de Resposta Inflamatória Sistêmica/patologia
13.
Sci Rep ; 6: 21785, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26911995

RESUMO

We aimed to develop a quantitative antibody-based near infrared fluorescence (NIRF) approach for the imaging of oxidized LDL in atherosclerosis. LO1, a well- characterized monoclonal autoantibody that reacts with malondialdehyde-conjugated LDL, was labeled with a NIRF dye to yield LO1-750. LO1-750 specifically identified necrotic core in ex vivo human coronary lesions. Injection of LO1-750 into high fat (HF) fed atherosclerotic Ldlr(-/-) mice led to specific focal localization within the aortic arch and its branches, as detected by fluorescence molecular tomography (FMT) combined with micro-computed tomography (CT). Ex vivo confocal microscopy confirmed LO1-750 subendothelial localization of LO1-750 at sites of atherosclerosis, in the vicinity of macrophages. When compared with a NIRF reporter of MMP activity (MMPSense-645-FAST), both probes produced statistically significant increases in NIRF signal in the Ldlr(-/-) model in relation to duration of HF diet. Upon withdrawing the HF diet, the reduction in oxLDL accumulation, as demonstrated with LO1-750, was less marked than the effect seen on MMP activity. In the rabbit, in vivo injected LO1-750 localization was successfully imaged ex vivo in aortic lesions with a customised intra-arterial NIRF detection catheter. A partially humanized chimeric LO1-Fab-Cys localized similarly to the parent antibody in murine atheroma showing promise for future translation.


Assuntos
Aterosclerose/patologia , Autoanticorpos/química , Corantes Fluorescentes/química , Lipoproteínas LDL/química , Albendazol , Animais , Antígenos/imunologia , Aorta Torácica/diagnóstico por imagem , Aterosclerose/diagnóstico por imagem , Autoanticorpos/sangue , Autoanticorpos/imunologia , Dieta Hiperlipídica , Feminino , Corantes Fluorescentes/metabolismo , Meia-Vida , Humanos , Imuno-Histoquímica , Lipoproteínas LDL/imunologia , Macrófagos/citologia , Macrófagos/imunologia , Malondialdeído/química , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Microscopia de Fluorescência , Extratos Vegetais , Coelhos , Receptores de LDL/deficiência , Receptores de LDL/genética , Microtomografia por Raio-X
14.
Dis Model Mech ; 9(4): 463-71, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26769799

RESUMO

The Wistar Kyoto (WKY) rat and the spontaneously hypertensive (SHR) rat inbred strains are well-established models for human crescentic glomerulonephritis (CRGN) and metabolic syndrome, respectively. Novel transgenic (Tg) strains add research opportunities and increase scientific value to well-established rat models. We have created two novel Tg strains using Sleeping Beauty transposon germline transgenesis, ubiquitously expressing green fluorescent protein (GFP) under the rat elongation factor 1 alpha (EF1a) promoter on the WKY and SHR genetic backgrounds. The Sleeping Beauty system functioned with high transgenesis efficiency; 75% of new rats born after embryo microinjections were transgene positive. By ligation-mediated PCR, we located the genome integration sites, confirming no exonic disruption and defining a single or low copy number of the transgenes in the new WKY-GFP and SHR-GFP Tg lines. We report GFP-bright expression in embryos, tissues and organs in both lines and show preliminaryin vitroandin vivoimaging data that demonstrate the utility of the new GFP-expressing lines for adoptive transfer, transplantation and fate mapping studies of CRGN, metabolic syndrome and other traits for which these strains have been extensively studied over the past four decades.


Assuntos
Expressão Gênica , Proteínas de Fluorescência Verde/genética , Modelos Animais , Animais , Células da Medula Óssea/citologia , Elementos de DNA Transponíveis/genética , Embrião de Mamíferos/metabolismo , Técnicas de Transferência de Genes , Proteínas de Fluorescência Verde/sangue , Microscopia Intravital , Leucócitos/metabolismo , Macrófagos/metabolismo , Microinjeções , Especificidade de Órgãos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Ratos Transgênicos
15.
Blood ; 124(24): 3646-55, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25293769

RESUMO

Tissue factor (TF) (CD142) is a 47 kDa transmembrane cell surface glycoprotein that triggers the extrinsic coagulation cascade and links thrombosis with inflammation. Although macrophage TF expression is known to be regulated at the RNA level, very little is known about the mechanisms involved. Poly(adenosine 5'-diphosphate [ADP]-ribose)-polymerase (PARP)-14 belongs to a family of intracellular proteins that generate ADP-ribose posttranslational adducts. Functional screening of PARP-14-deficient macrophages mice revealed that PARP-14 deficiency leads to increased TF expression and functional activity in macrophages after challenge with bacterial lipopolysaccharide. This was related to an increase in TF messenger RNA (mRNA) stability. Ribonucleoprotein complex immunoprecipitation and biotinylated RNA pull-down assays demonstrated that PARP-14 forms a complex with the mRNA-destabilizing protein tristetraprolin (TTP) and a conserved adenylate-uridylate-rich element in the TF mRNA 3' untranslated region. TF mRNA regulation by PARP-14 was selective, as tumor necrosis factor (TNF)α mRNA, which is also regulated by TTP, was not altered in PARP-14 deficient macrophages. Consistent with the in vitro data, TF expression and TF activity, but not TNFα expression, were increased in Parp14(-/-) mice in vivo. Our study provides a novel mechanism for the posttranscriptional regulation of TF expression, indicating that this is selectively regulated by PARP-14.


Assuntos
Regulação da Expressão Gênica , Macrófagos/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Tromboplastina/biossíntese , Tristetraprolina/metabolismo , Regiões 3' não Traduzidas/fisiologia , Animais , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Knockout , Poli(ADP-Ribose) Polimerases/genética , Estabilidade de RNA/efeitos dos fármacos , Estabilidade de RNA/fisiologia , Tromboplastina/genética , Tristetraprolina/genética , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética
16.
Arterioscler Thromb Vasc Biol ; 34(9): 2120-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25060791

RESUMO

OBJECTIVE: Patients with chronic kidney disease (CKD) display impaired cholesterol efflux capacity and elevated CD14(++)CD16(+) monocyte counts. In mice, dysfunctional cholesterol efflux causes monocytosis. It is unknown whether cholesterol efflux capacity and monocyte subsets are associated in CKD. APPROACH AND RESULTS: In 438 patients with CKD, mediators of cholesterol efflux capacity (high-density lipoprotein cholesterol/apolipoprotein A-I) and monocyte subsets were analyzed as predictors of cardiovascular events. Monocyte subset-specific intracellular lipid content, CD36, CD68, and ABCA1 were measured in a subgroup. Experimentally, we analyzed subset-specific cholesterol efflux capacity and response to oxidized low-density lipoprotein cholesterol stimulation in CKD. Epidemiologically, both low Apo-I and low high-density lipoprotein cholesterol were associated with high CD14(++)CD16(+) monocyte counts in linear regression analyses (apolipoprotein A-I: ß=-0.171; P<0.001; high-density lipoprotein cholesterol: ß=-0.138; P=0.005), but not with counts of other monocyte subsets. In contrast to apolipoprotein A-I or high-density lipoprotein cholesterol, higher CD14(++)CD16(+) monocyte counts independently predicted cardiovascular events (hazard ratio per increase of 1 cell/µL: 1.011 [1.003-1.020]; P=0.007). Experimentally, CD14(++)CD16(+) monocytes demonstrated preferential lipid accumulation, high CD36, CD68, and low ABCA1 expression and, consequently, displayed low cholesterol efflux capacity, avid oxidized low-density lipoprotein cholesterol uptake, and potent intracellular interleukin-6, interleukin-1ß, and tumor necrosis factor-α production. CONCLUSIONS: Taken together, mediators of cholesterol efflux are associated with CD14(++)CD16(+) monocyte counts, which independently predict adverse outcome in CKD.


Assuntos
Apolipoproteína A-I/análise , Doenças Cardiovasculares/epidemiologia , HDL-Colesterol/sangue , Monócitos , Insuficiência Renal Crônica/sangue , Transportador 1 de Cassete de Ligação de ATP/sangue , Idoso , Doenças Cardiovasculares/etiologia , Feminino , Proteínas Ligadas por GPI/análise , Humanos , Imunofenotipagem , Interleucina-1beta/sangue , Interleucina-6/biossíntese , Interleucina-6/sangue , Contagem de Leucócitos , Lipídeos/sangue , Receptores de Lipopolissacarídeos/análise , Lipoproteínas LDL/sangue , Masculino , Pessoa de Meia-Idade , Monócitos/classificação , Estudos Prospectivos , Receptores de IgG/análise , Insuficiência Renal Crônica/complicações , Método Simples-Cego , Fator de Necrose Tumoral alfa/análise
17.
PLoS One ; 9(5): e97422, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24846287

RESUMO

Soluble P-selectin (sP-selectin), a biomarker of inflammatory related pathologies including cardiovascular and peripheral vascular diseases, also has pro-atherosclerotic effects including the ability to increase leukocyte recruitment and modulate thrombotic responses in vivo. The current study explores its role in progressing atherosclerotic plaque disease. Apoe-/- mice placed on a high fat diet (HFD) were given daily injections of recombinant dimeric murine P-selectin (22.5 µg/kg/day) for 8 or 16 weeks. Saline or sE-selectin injections were used as negative controls. In order to assess the role of sP-selectin on atherothrombosis an experimental plaque remodelling murine model, with sm22α-hDTR Apoe-/- mice on a HFD in conjunction with delivery of diphtheria toxin to induce targeted vascular smooth muscle apoptosis, was used. These mice were similarly given daily injections of sP-selectin for 8 or 16 weeks. While plaque mass and aortic lipid content did not change with sP-selectin treatment in Apoe-/- or SM22α-hDTR Apoe-/- mice on HFD, increased plasma MCP-1 and a higher plaque CD45 content in Apoe-/- HFD mice was observed. As well, a significant shift towards a more unstable plaque phenotype in the SM22α-hDTR Apoe-/- HFD mice, with increased macrophage accumulation and lower collagen content, leading to a lower plaque stability index, was observed. These results demonstrate that chronically raised sP-selectin favours progression of an unstable atherosclerotic plaque phenotype.


Assuntos
Gorduras na Dieta/efeitos adversos , Macrófagos/metabolismo , Selectina-P/sangue , Placa Aterosclerótica/metabolismo , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Gorduras na Dieta/farmacologia , Modelos Animais de Doenças , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout , Selectina-P/genética , Placa Aterosclerótica/induzido quimicamente , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia
18.
Expert Opin Ther Pat ; 24(7): 779-90, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24773534

RESUMO

INTRODUCTION: Monocytes and macrophages are heterogeneous populations of effector cells in the innate immune system. Once thought to be obligatory precursors for macrophages, monocytes are now known to have several distinct sub-populations and their own independent functions. This separation of the two lineages has opened new therapeutic avenues in inflammation and created new technologies targeting the mononuclear phagocyte system (MPS). AREAS COVERED: A search of Google Patents and PatentScope has revealed numerous patents targeting monocytes and macrophages. This review will focus on seven patents from 2009 to 2013, utilizing autologous monocyte and macrophage adoptive transfer, genetic manipulation of the MPS, therapeutic nanoparticles and liposomes or combinations of these strategies. Patents that target monocyte recruitment are also briefly reviewed. EXPERT OPINION: While monocyte and macrophage targeting has yielded some promising results in animal models, these often fail to translate well to successful clinical trials. The paradigm of how cells in the MPS interact and evolve is constantly being updated, and caution must be exercised in developing immunomodulatory agents until this relationship is better understood.


Assuntos
Imunoterapia/métodos , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Animais , Sistemas de Liberação de Medicamentos , Humanos , Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/uso terapêutico , Macrófagos/imunologia , Monócitos/imunologia , Patentes como Assunto
19.
Nat Commun ; 5: 3039, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24423728

RESUMO

Tuned and distinct responses of macrophages and dendritic cells to Toll-like receptor 4 (TLR4) activation induced by lipopolysaccharide (LPS) underpin the balance between innate and adaptive immunity. However, the molecule(s) that confer these cell-type-specific LPS-induced effects remain poorly understood. Here we report that the integrin α(M) (CD11b) positively regulates LPS-induced signalling pathways selectively in myeloid dendritic cells but not in macrophages. In dendritic cells, which express lower levels of CD14 and TLR4 than macrophages, CD11b promotes MyD88-dependent and MyD88-independent signalling pathways. In particular, in dendritic cells CD11b facilitates LPS-induced TLR4 endocytosis and is required for the subsequent signalling in the endosomes. Consistent with this, CD11b deficiency dampens dendritic cell-mediated TLR4-triggered responses in vivo leading to impaired T-cell activation. Thus, by modulating the trafficking and signalling functions of TLR4 in a cell-type-specific manner CD11b fine tunes the balance between adaptive and innate immune responses initiated by LPS.


Assuntos
Antígeno CD11b/fisiologia , Células Dendríticas/fisiologia , Macrófagos/fisiologia , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/fisiologia , Imunidade Adaptativa/fisiologia , Animais , Antígeno CD11b/genética , Células Cultivadas , Quimiocina CCL5/metabolismo , Citocinas/metabolismo , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Feminino , Imunidade Inata/fisiologia , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/fisiologia
20.
J Vis Exp ; (54)2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21876531

RESUMO

Worldwide, hypertension is reported to be in approximately a quarter of the population and is the leading biomedical risk factor for mortality worldwide. In the vasculature hypertension is associated with endothelial dysfunction and increased inflammation leading to atherosclerosis and various disease states such as chronic kidney disease(2), stroke(3) and heart failure(4). An initial step in vascular inflammation leading to atherogenesis is the adhesion cascade which involves the rolling, tethering, adherence and subsequent transmigration of leukocytes through the endothelium. Recruitment and accumulation of leukocytes to the endothelium is mediated by an upregulation of adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), intracellular cell adhesion molecule-1 (ICAM-1) and E-selectin as well as increases in cytokine and chemokine release and an upregulation of reactive oxygen species(5). In vitro methods such as static adhesion assays help to determine mechanisms involved in cell-to-cell adhesion as well as the analysis of cell adhesion molecules. Methods employed in previous in vitro studies have demonstrated that acute increases in pressure on the endothelium can lead to monocyte adhesion, an upregulation of adhesion molecules and inflammatory markers(6) however, similar to many in vitro assays, these findings have not been performed in real time under physiological flow conditions, nor with whole blood. Therefore, in vivo assays are increasingly utilised in animal models to demonstrate vascular inflammation and plaque development. Intravital microscopy is now widely used to assess leukocyte adhesion, rolling, migration and transmigration(7-9). When combining the effects of pressure on leukocyte to endothelial adhesion the in vivo studies are less extensive. One such study examines the real time effects of flow and shear on arterial growth and remodelling but inflammatory markers were only assessed via immunohistochemistry(10). Here we present a model for recording leukocyte adhesion in real time in intact pressurised blood vessels using whole blood perfusion. The methodology is a modification of an ex vivo vessel chamber perfusion model(9) which enables real-time analysis of leukocyte-endothelial adhesive interactions in intact vessels. Our modification enables the manipulation of the intraluminal pressure up to 200 mmHg allowing for study not only under physiological flow conditions but also pressure conditions. While pressure myography systems have been previously demonstrated to observe vessel wall and lumen diameter(11) as well as vessel contraction this is the first time demonstrating leukocyte-endothelial interactions in real time. Here we demonstrate the technique using carotid arteries harvested from rats and cannulated to a custom-made flow chamber coupled to a fluorescent microscope. The vessel chamber is equipped with a large bottom coverglass allowing a large diameter objective lens with short working distance to image the vessel. Furthermore, selected agonist and/or antagonists can be utilized to further investigate the mechanisms controlling cell adhesion. Advantages of this method over intravital microscopy include no involvement of invasive surgery and therefore a higher throughput can be obtained. This method also enables the use of localised inhibitor treatment to the desired vessel whereas intravital only enables systemic inhibitor treatment.


Assuntos
Pressão Sanguínea/fisiologia , Adesão Celular/fisiologia , Endotélio Vascular/fisiologia , Leucócitos/fisiologia , Microscopia de Fluorescência/métodos , Imagem de Perfusão/métodos , Animais , Endotélio Vascular/citologia , Leucócitos/citologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA