Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Virol ; 96(2): e29436, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38380509

RESUMO

Kaposi sarcoma (KS), caused by Herpesvirus-8 (HHV-8; KSHV), shows sporadic, endemic, and epidemic forms. While familial clustering of KS was previously recorded, the molecular basis of hereditary predilection to KS remains largely unknown. We demonstrate through genetic studies that a dominantly inherited missense mutation in BPTF segregates with a phenotype of classical KS in multiple immunocompetent individuals in two families. Using an rKSHV.219-infected CRISPR/cas9-model, we show that BPTFI2012T mutant cells exhibit higher latent-to-lytic ratio, decreased virion production, increased LANA staining, and latent phenotype in viral transcriptomics. RNA-sequencing demonstrated that KSHV infection dysregulated oncogenic-like response and P53 pathways, MAPK cascade, and blood vessel development pathways, consistent with KS. BPTFI2012T also enriched pathways of viral genome regulation and replication, immune response, and chemotaxis, including downregulation of IFI16, SHFL HLAs, TGFB1, and HSPA5, all previously associated with KSHV infection and tumorigenesis. Many of the differentially expressed genes are regulated by Rel-NF-κB, which regulates immune processes, cell survival, and proliferation and is pivotal to oncogenesis. We thus demonstrate BPTF mutation-mediated monogenic hereditary predilection of KSHV virus-induced oncogenesis, and suggest BPTF as a drug target.


Assuntos
Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Carcinogênese , Herpesvirus Humano 8/fisiologia , NF-kappa B/metabolismo , Sarcoma de Kaposi/genética , Latência Viral/genética , Replicação Viral
2.
Neurogenetics ; 21(4): 301-304, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32488727

RESUMO

Mutations in myotubularin-related protein 2 (MTMR2) were shown to underlie Charcot-Marie-Tooth type 4B1 (CMT4B1) disease, a rare autosomal recessive demyelinating neuropathy, characterized by severe early-onset motor and sensory neuropathy. We describe three siblings of consanguineous kindred presenting with hypotonia, reduced muscle tone, action tremor, dysmetria, areflexia, and skeletal deformities, consistent with a diagnosis of CMT. Whole-exome sequencing identified a novel homozygous c.336_337 insertion mutation in MTMR2, resulting in a frameshift and putative truncated protein. In this concise report, we discuss the clinical presentation of this rare disease and support the limited number of observations regarding the pathogenesis of MTMR2-related neuropathies.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Homozigoto , Mutação , Doenças do Sistema Nervoso/genética , Proteínas Tirosina Fosfatases não Receptoras/genética , Biópsia , Consanguinidade , Saúde da Família , Feminino , Humanos , Masculino , Músculos/patologia , Linhagem , Fenótipo , Análise de Sequência de DNA , Sequenciamento do Exoma
3.
Mol Genet Genomic Med ; 8(9): e1167, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32048457

RESUMO

BACKGROUND: Multiple sulfatase deficiency (MSD, MIM #272200) is an ultrarare congenital disorder caused by SUMF1 mutation and often misdiagnosed due to its complex clinical presentation. Impeded by a lack of natural history, knowledge gained from individual case studies forms the source for a reliable diagnosis and consultation of patients and parents. METHODS: We collected clinical records as well as genetic and metabolic test results from two MSD patients. The functional properties of a novel SUMF1 variant were analyzed after expression in a cell culture model. RESULTS: We report on two MSD patients-the first neonatal type reported in Israel-both presenting with this most severe manifestation of MSD. Our patients showed uniform clinical symptoms with persistent pulmonary hypertension, hypotonia, and dysmorphism at birth. Both patients were homozygous for the same novel SUMF1 mutation (c.1043C>T, p.A348V). Functional analysis revealed that the SUMF1-encoded variant of formylglycine-generating enzyme is highly instable and lacks catalytic function. CONCLUSION: The obtained results confirm genotype-phenotype correlation in MSD, expand the spectrum of clinical presentation and are relevant for diagnosis including the extremely rare neonatal severe type of MSD.


Assuntos
Doença da Deficiência de Múltiplas Sulfatases/genética , Mutação de Sentido Incorreto , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Fenótipo , Linhagem Celular Tumoral , Pré-Escolar , Estabilidade Enzimática , Homozigoto , Humanos , Lactente , Masculino , Doença da Deficiência de Múltiplas Sulfatases/patologia , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo
4.
Eur J Hum Genet ; 27(6): 928-940, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30723319

RESUMO

Studies of ciliopathies have served in elucidating much of our knowledge of structure and function of primary cilia. We report humans with Bardet-Biedl syndrome who display intellectual disability, retinitis pigmentosa, obesity, short stature and brachydactyly, stemming from a homozyogous truncation mutation in SCAPER, a gene previously associated with mitotic progression. Our findings, based on linkage analysis and exome sequencing studies of two remotely related large consanguineous families, are in line with recent reports of SCAPER variants associated with intellectual disability and retinitis pigmentosa. Using immuno-fluorescence and live cell imaging in NIH/3T3 fibroblasts and SH-SY5Y neuroblastoma cell lines over-expressing SCAPER, we demonstrate that both wild type and mutant SCAPER are expressed in primary cilia and co-localize with tubulin, forming bundles of microtubules. While wild type SCAPER was rarely localized along the ciliary axoneme and basal body, the aberrant protein remained sequestered to the cilia, mostly at the ciliary tip. Notably, longer cilia were demonstrated both in human affected fibroblasts compared to controls, as well as in NIH/3T3 cells transfected with mutant versus wildtype SCAPER. As SCAPER expression is known to peak at late G1 and S phase, overlapping the timing of ciliary resorption, our data suggest a possible role of SCAPER in ciliary dynamics and disassembly, also affecting microtubule-related mitotic progression. Thus, we outline a human ciliopathy syndrome and demonstrate that it is caused by a mutation in SCAPER, affecting primary cilia.


Assuntos
Síndrome de Bardet-Biedl , Proteínas de Transporte , Cílios , Deficiência Intelectual , Mutação , Retinose Pigmentar , Animais , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/metabolismo , Síndrome de Bardet-Biedl/patologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cílios/genética , Cílios/metabolismo , Cílios/patologia , Feminino , Humanos , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Masculino , Camundongos , Células NIH 3T3 , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Retinose Pigmentar/patologia
5.
Brain ; 142(3): 574-585, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715179

RESUMO

Microtubule associated protein 11 (MAP11, previously termed C7orf43) encodes a highly conserved protein whose function is unknown. Through genome-wide linkage analysis combined with whole exome sequencing, we demonstrate that human autosomal recessive primary microcephaly is caused by a truncating mutation in MAP11. Moreover, homozygous MAP11-orthologue CRISPR/Cas9 knock-out zebrafish presented with microcephaly and decreased neuronal proliferation, recapitulating the human phenotype. We demonstrate that MAP11 is ubiquitously transcribed with high levels in brain and cerebellum. Immunofluorescence and co-immunoprecipitation studies in SH-SY5Y cells showed that MAP11 associates with mitotic spindles, co-localizing and physically associating with α-tubulin during mitosis. MAP11 expression precedes α-tubulin in gap formation of cell abscission at the midbody and is co-localized with PLK1, a key regulator of cytokinesis, at the edges of microtubule extensions of daughter cells post cytokinesis abscission, implicating a role in mitotic spindle dynamics and in regulation of cell abscission during cytokinesis. Finally, lentiviral-mediated silencing of MAP11 diminished SH-SY5Y cell viability, reducing proliferation rather than affecting apoptosis. Thus, MAP11 encodes a microtubule-associated protein that plays a role in spindle dynamics and cell division, in which mutations cause microcephaly in humans and zebrafish.


Assuntos
Microcefalia/etiologia , Microcefalia/genética , Proteínas Associadas aos Microtúbulos/genética , Animais , Proteínas de Ciclo Celular/metabolismo , Criança , Pré-Escolar , Citocinese , Modelos Animais de Doenças , Feminino , Células HeLa , Humanos , Masculino , Microcefalia/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/genética , Mitose , Mutação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fuso Acromático/genética , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Quinase 1 Polo-Like
6.
Am J Med Genet A ; 176(2): 330-336, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29226520

RESUMO

SLC25A1 mutations are associated with combined D,L-2-hydroxyglutaric aciduria (DL- 2HGA; OMIM #615182), characterized by muscular hypotonia, severe neurodevelopmental dysfunction and intractable seizures. SLC25A1 encodes the mitochondrial citrate carrier (CIC), which mediates efflux of the mitochondrial tricarboxylic acid (TCA) cycle intermediates citrate and isocitrate in exchange for cytosolic malate. Only a single family with an SLC25A1 mutation has been described in which mitochondrial respiratory chain dysfunction was documented, specifically in complex IV. Five infants of two consanguineous Bedouin families of the same tribe presented with small head circumference and neonatal-onset encephalopathy with severe muscular weakness, intractable seizures, respiratory distress, and lack of psychomotor development culminating in early death. Ventricular septal defects (VSD) were demonstrated in three patients. Blood and CSF lactate were elevated with normal levels of plasma amino acids and free carnitine and increased 2-OH-glutaric acid urinary exertion. EEG was compatible with white matter disorder. Brain MRI revealed ventriculomegaly, thin corpus callosum with increased lactate peak on spectroscopy. Mitochondrial complex V deficiency was demonstrated in skeletal muscle biopsy of one infant. Homozygosity mapping and sequencing ruled out homozygosity of affected individuals in all known complex V-associated genes. Whole exome sequencing identified a novel homozygous SLC25A1 c.713A>G (p.Asn238Ser) mutation, segregating as expected in the affected kindred and not found in 220 control alleles. Thus, SLC25A1 mutations might be associated with mitochondrial complex V deficiency and should be considered in the differential diagnosis of mitochondrial respiratory chain defects.


Assuntos
Proteínas de Transporte de Ânions/genética , Homozigoto , Mitocôndrias/genética , Proteínas Mitocondriais/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Mutação , Adolescente , Adulto , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética/métodos , Predisposição Genética para Doença , Humanos , Lactente , Recém-Nascido , Masculino , Transportadores de Ânions Orgânicos , Linhagem , Fenótipo , Adulto Jovem
7.
Eur J Hum Genet ; 25(8): 966-972, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28488683

RESUMO

Twelve individuals of consanguineous Bedouin kindred presented with autosomal recessive progressive spastic paraplegia evident as of age 0-24 months, with spasticity of lower limbs, hyperreflexia, toe walking and equinus deformity. Kyphoscolisois was evident in older patients. Most had atrophy of the lateral aspects of the tongue and few had intellectual disability. Nerve conduction velocity, electromyography and head and spinal cord magnetic resonance imaging were normal in tested subjects. Muscle biopsy showed occasional central nuclei and fiber size variability with small angular fibers. Genome-wide linkage analysis identified a 6.7Mbp disease-associated locus on chromosome 3q21.3-3q22.2 (LOD score 9.02; D3S1290). Whole-exome sequencing identified a single homozygous variant within this locus, c.51_52ins(28); p.(V18fs56*) in KY, segregating in the family as expected and not found in 190 Bedouin controls. High KY transcript levels were demonstrated in muscular organs with lower expression in the CNS. The phenotype is reminiscent of kyphoscoliosis seen in Ky null mice. Two recent studies done independently and parallel to ours describe somewhat similar phenotypes in one and two patients with KY mutations. KY encodes a tranglutaminase-like peptidase, which interacts with muscle cytoskeletal proteins and is part of a Z-band protein complex, suggesting the disease mechanism may resemble myofibrillar myopathy. However, the mixed myopathic-neurologic features caused by human and mouse Ky mutations are difficult to explain by loss of KY sarcomere stabilizing function alone. KY transcription in CNS tissues may imply that it also has a role in neuromotor function, in line with the irregularity of neuromuscular junction in Ky null mutant mice.


Assuntos
Mutação , Peptídeo Hidrolases/genética , Paraplegia Espástica Hereditária/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Homozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Linhagem , Peptídeo Hidrolases/metabolismo , Fenótipo , Paraplegia Espástica Hereditária/diagnóstico , Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA