RESUMO
BACKGROUND: Schistosomiasis is a major global health problem caused by blood-dwelling parasitic worms, which is currently tackled primarily by mass administration of the drug praziquantel. Appropriate drug treatment strategies are informed by diagnostics that establish the prevalence and intensity of infection, which, in regions of low transmission, should be highly sensitive. METHODS: To identify sensitive new serological markers of Schistosoma mansoni infections, we have compiled a recombinant protein library of parasite cell-surface and secreted proteins expressed in mammalian cells. RESULTS: Together with a time series of sera samples from volunteers experimentally infected with a defined number of male parasites, we probed this protein library to identify several markers that can detect primary infections with as low as 10 parasites and as early as 5 weeks postinfection. CONCLUSIONS: These new markers could be further explored as valuable tools to detect ongoing and previous S mansoni infections, including in endemic regions where transmission is low.
Assuntos
Esquistossomose mansoni , Esquistossomose , Animais , Biomarcadores , Humanos , Masculino , Mamíferos , Camundongos , Praziquantel/uso terapêutico , Proteínas Recombinantes , Schistosoma mansoni , Esquistossomose/tratamento farmacológico , Esquistossomose mansoni/diagnóstico , Esquistossomose mansoni/tratamento farmacológico , Esquistossomose mansoni/parasitologiaRESUMO
Background: The virus SARS-CoV-2 can exploit biological vulnerabilities (e.g. host proteins) in susceptible hosts that predispose to the development of severe COVID-19. Methods: To identify host proteins that may contribute to the risk of severe COVID-19, we undertook proteome-wide genetic colocalisation tests, and polygenic (pan) and cis-Mendelian randomisation analyses leveraging publicly available protein and COVID-19 datasets. Results: Our analytic approach identified several known targets (e.g. ABO, OAS1), but also nominated new proteins such as soluble Fas (colocalisation probability >0.9, p=1 × 10-4), implicating Fas-mediated apoptosis as a potential target for COVID-19 risk. The polygenic (pan) and cis-Mendelian randomisation analyses showed consistent associations of genetically predicted ABO protein with several COVID-19 phenotypes. The ABO signal is highly pleiotropic, and a look-up of proteins associated with the ABO signal revealed that the strongest association was with soluble CD209. We demonstrated experimentally that CD209 directly interacts with the spike protein of SARS-CoV-2, suggesting a mechanism that could explain the ABO association with COVID-19. Conclusions: Our work provides a prioritised list of host targets potentially exploited by SARS-CoV-2 and is a precursor for further research on CD209 and FAS as therapeutically tractable targets for COVID-19. Funding: MAK, JSc, JH, AB, DO, MC, EMM, MG, ID were funded by Open Targets. J.Z. and T.R.G were funded by the UK Medical Research Council Integrative Epidemiology Unit (MC_UU_00011/4). JSh and GJW were funded by the Wellcome Trust Grant 206194. This research was funded in part by the Wellcome Trust [Grant 206194]. For the purpose of open access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission.
Individuals who become infected with the virus that causes COVID-19 can experience a wide variety of symptoms. These can range from no symptoms or minor symptoms to severe illness and death. Key demographic factors, such as age, gender and race, are known to affect how susceptible an individual is to infection. However, molecular factors, such as unique gene mutations and gene expression levels can also have a major impact on patient responses by affecting the levels of proteins in the body. Proteins that are too abundant or too scarce may mean the difference between dying from or surviving COVID-19. Identifying the molecular factors in a host that affect how viruses can infect individuals, evade immune defences or trigger severe illness, could provide new ways to treat patients with COVID-19. Such factors are likely to remain constant, even when the virus mutates into new strains. Hence, insights would likely apply across all virus strains, including current strains, such as alpha and delta, and any new strains that may emerge in the future. Using such a 'natural experiment' approach, Karim et al. compared the genetic profiles of over 30,000 COVID-19 patients and a million healthy individuals. Nine proteins were found to have an impact on COVID-19 infection and disease severity. Four proteins were ranked as top priorities for potential treatment targets. One protein, called CD209 (also known as DC-SIGN), is involved in how the virus enters the host cells, and had one of the strongest associations with COVID-19. Two proteins, called IL-6R and FAS, were involved in the immune response and could be responsible for the immune over-activation often seen in severe COVID-19. Finally, one protein, called OAS1, formed part of the body's innate antiviral defence system and appeared to reduce susceptibility to COVID-19. Knowing more about the proteins that influence the severity of COVID-19 opens up new ways to predict, protect and treat patients who may have severe or fatal reactions to infection. Indeed, one of the identified proteins (IL-6R) had already been targeted in recent clinical trials with some encouraging results. Considering CD209 as a potential receptor for the virus could provide another avenue for therapeutics, similar to previously successful approaches to block the virus' known interaction with a receptor protein. Ultimately, this research could supply an entirely new set of treatment options to help combat the COVID-19 pandemic.
Assuntos
COVID-19/virologia , Estudo de Associação Genômica Ampla , SARS-CoV-2/fisiologia , 2',5'-Oligoadenilato Sintetase/genética , COVID-19/genética , COVID-19/imunologia , COVID-19/fisiopatologia , Moléculas de Adesão Celular , Humanos , Lectinas Tipo C , Proteoma , Receptores de Superfície Celular , Receptores Depuradores Classe A/genética , Índice de Gravidade de Doença , Receptor fas/genéticaRESUMO
An emerging theme from large-scale genetic screens that identify genes essential for cell fitness is that essentiality of a given gene is highly context-specific. Identification of such contexts could be the key to defining gene function and also to develop novel therapeutic interventions. Here, we present Context-specific Essentiality Network-tools (CEN-tools), a website and python package, in which users can interrogate the essentiality of a gene from large-scale genome-scale CRISPR screens in a number of biological contexts including tissue of origin, mutation profiles, expression levels and drug responses. We show that CEN-tools is suitable for the systematic identification of genetic dependencies and for more targeted queries. The associations between genes and a given context are represented as dependency networks (CENs), and we demonstrate the utility of these networks in elucidating novel gene functions. In addition, we integrate the dependency networks with existing protein-protein interaction networks to reveal context-dependent essential cellular pathways in cancer cells. Together, we demonstrate the applicability of CEN-tools in aiding the current efforts to define the human cellular dependency map.
Assuntos
Biologia Computacional/métodos , Genes Essenciais , Melanoma/genética , Melanoma/metabolismo , Metabolômica/métodos , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Inativação de Genes , Redes Reguladoras de Genes , Humanos , Melanoma/patologia , Mutação , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo , Transdução de Sinais/genética , Neoplasias Cutâneas/patologia , SoftwareRESUMO
Plasmodium falciparum RH5 is a secreted parasite ligand that is essential for erythrocyte invasion through direct interaction with the host erythrocyte receptor basigin. RH5 forms a tripartite complex with two other secreted parasite proteins, CyRPA and RIPR, and is tethered to the surface of the parasite through membrane-anchored P113. Antibodies against RH5, CyRPA, and RIPR can inhibit parasite invasion, suggesting that vaccines containing these three components have the potential to prevent blood-stage malaria. To further explore the role of the P113-RH5 interaction, we selected monoclonal antibodies against P113 that were either inhibitory or noninhibitory for RH5 binding. Using a Fab fragment as a crystallization chaperone, we determined the crystal structure of the RH5 binding region of P113 and showed that it is composed of two domains with structural similarities to rhamnose-binding lectins. We identified the RH5 binding site on P113 by using a combination of hydrogen-deuterium exchange mass spectrometry and site-directed mutagenesis. We found that a monoclonal antibody to P113 that bound to this interface and inhibited the RH5-P113 interaction did not inhibit parasite blood-stage growth. These findings provide further structural information on the protein interactions of RH5 and will be helpful in guiding the development of blood-stage malaria vaccines that target RH5.IMPORTANCE Malaria is a deadly infectious disease primarily caused by the parasite Plasmodium falciparum It remains a major global health problem, and there is no highly effective vaccine. A parasite protein called RH5 is centrally involved in the invasion of host red blood cells, making it-and the other parasite proteins it interacts with-promising vaccine targets. We recently identified a protein called P113 that binds RH5, suggesting that it anchors RH5 to the parasite surface. In this paper, we use structural biology to locate and characterize the RH5 binding region on P113. These findings will be important to guide the development of new antimalarial vaccines to ultimately prevent this disease, which affects some of the poorest people on the planet.
Assuntos
Proteínas de Transporte/metabolismo , Cisteína/metabolismo , Plasmodium falciparum/metabolismo , Domínios Proteicos , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Animais , Anticorpos Monoclonais/metabolismo , Sítios de Ligação , Cisteína/análise , Eritrócitos/parasitologia , Feminino , Malária/parasitologia , Camundongos , Plasmodium falciparum/química , Plasmodium falciparum/genética , Ligação Proteica , Proteínas de Protozoários/imunologiaRESUMO
Lack of understanding of the nature and physiological regulation of γδ T cell ligands has considerably hampered full understanding of the function of these cells. We developed an unbiased approach to identify human γδ T cells ligands by the production of a soluble TCR-γδ (sTCR-γδ) tetramer from a synovial Vδ1 γδ T cell clone from a Lyme arthritis patient. The sTCR-γδ was used in flow cytometry to initially define the spectrum of ligand expression by both human tumor cell lines and certain human primary cells. Analysis of diverse tumor cell lines revealed high ligand expression on several of epithelial or fibroblast origin, whereas those of hematopoietic origin were largely devoid of ligand. This allowed a bioinformatics-based identification of candidate ligands using RNAseq data from each tumor line. We further observed that whereas fresh monocytes and T cells expressed low to negligible levels of TCR-γδ ligands, activation of these cells resulted in upregulation of surface ligand expression. Ligand upregulation on monocytes was partly dependent upon IL-1ß. The sTCR-γδ tetramer was then used to bind candidate ligands from lysates of activated monocytes and analyzed by mass spectrometry. Surface TCR-γδ ligand was eliminated by treatment with trypsin or removal of glycosaminoglycans, and also suppressed by inhibition of endoplasmic reticulum-Golgi transport. Of particular interest was that inhibition of glycolysis also blocked TCR-γδ ligand expression. These findings demonstrate the spectrum of ligand(s) expression for human synovial Vδ1 γδ T cells as well as the physiology that regulates their expression.
Assuntos
Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Subpopulações de Linfócitos T/metabolismo , Linhagem Celular , Glicólise , Humanos , Ligantes , Ativação Linfocitária , Monócitos/metabolismo , Multimerização Proteica , Receptores de Antígenos de Linfócitos T gama-delta/química , Membrana Sinovial/citologia , Subpopulações de Linfócitos T/imunologiaRESUMO
The immunoreceptor tyrosine-based inhibition motif (ITIM)-containing receptor G6b-B is critical for platelet production and activation. Loss of G6b-B results in severe macrothrombocytopenia, myelofibrosis and aberrant platelet function in mice and humans. Using a combination of immunohistochemistry, affinity chromatography and proteomics, we identified the extracellular matrix heparan sulfate (HS) proteoglycan perlecan as a G6b-B binding partner. Subsequent in vitro biochemical studies and a cell-based genetic screen demonstrated that the interaction is specifically mediated by the HS chains of perlecan. Biophysical analysis revealed that heparin forms a high-affinity complex with G6b-B and mediates dimerization. Using platelets from humans and genetically modified mice, we demonstrate that binding of G6b-B to HS and multivalent heparin inhibits platelet and megakaryocyte function by inducing downstream signaling via the tyrosine phosphatases Shp1 and Shp2. Our findings provide novel insights into how G6b-B is regulated and contribute to our understanding of the interaction of megakaryocytes and platelets with glycans.
Assuntos
Plaquetas/fisiologia , Heparitina Sulfato/metabolismo , Megacariócitos/fisiologia , Receptores Imunológicos/metabolismo , Animais , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica , Multimerização Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Receptores Imunológicos/deficiência , Receptores Imunológicos/genética , Transdução de SinaisRESUMO
Interactions mediated by cell surface receptors initiate important instructive signaling cues but can be difficult to detect in biochemical assays because they are often highly transient and membrane-embedded receptors are difficult to solubilize in their native conformation. Here, we address these biochemical challenges by using a genome-scale, cell-based genetic screening approach using CRISPR gene knockout technology to identify cellular pathways required for specific cell surface recognition events. By using high-affinity monoclonal antibodies and low-affinity ligands, we determined the necessary screening parameters, including the importance of establishing binding contributions from the glycocalyx, that permitted the unequivocal identification of genes encoding directly interacting membrane-embedded receptors with high statistical confidence. Importantly, we show that this genome-wide screening approach additionally identified receptor-specific pathways that are required for functional display of receptors on the cell surface that included chaperones, enzymes that add post-translational modifications, trafficking proteins, and transcription factors. Finally, we demonstrate the utility of the approach by identifying IGF2R (insulin like growth factor 2 receptor) as a binding partner for the R2 subunit of GABAB receptors. We show that this interaction is direct and is critically dependent on mannose-6-phosphate, providing a mechanism for the internalization and regulation of GABAB receptor signaling. We conclude that this single approach can reveal both the molecular nature and the genetic pathways required for functional cell surface display of receptors recognized by antibodies, secreted proteins, and membrane-embedded ligands without the need to make any prior assumptions regarding their biochemical properties.
Assuntos
Proteínas de Membrana/metabolismo , Mapeamento de Interação de Proteínas/métodos , Proteoma/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Glicocálix/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana/genética , Ligação Proteica , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteoma/genéticaRESUMO
The development of a highly effective vaccine remains a key strategic goal to aid the control and eventual eradication of Plasmodium falciparum malaria. In recent years, the reticulocyte-binding protein homolog 5 (RH5) has emerged as the most promising blood-stage P. falciparum candidate antigen to date, capable of conferring protection against stringent challenge in Aotus monkeys. We report on the first clinical trial to our knowledge to assess the RH5 antigen - a dose-escalation phase Ia study in 24 healthy, malaria-naive adult volunteers. We utilized established viral vectors, the replication-deficient chimpanzee adenovirus serotype 63 (ChAd63), and the attenuated orthopoxvirus modified vaccinia virus Ankara (MVA), encoding RH5 from the 3D7 clone of P. falciparum. Vaccines were administered i.m. in a heterologous prime-boost regimen using an 8-week interval and were well tolerated. Vaccine-induced anti-RH5 serum antibodies exhibited cross-strain functional growth inhibition activity (GIA) in vitro, targeted linear and conformational epitopes within RH5, and inhibited key interactions within the RH5 invasion complex. This is the first time to our knowledge that substantial RH5-specific responses have been induced by immunization in humans, with levels greatly exceeding the serum antibody responses observed in African adults following years of natural malaria exposure. These data support the progression of RH5-based vaccines to human efficacy testing.
Assuntos
Anticorpos Neutralizantes , Proteínas de Transporte/imunologia , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Proteínas de Protozoários/imunologia , Vacinação , Imunidade Adaptativa , Adulto , Anticorpos Antiprotozoários/sangue , Proteínas de Transporte/genética , Epitopos/imunologia , Feminino , Vetores Genéticos , Humanos , Imunização , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/genética , Vaccinia virus , Adulto JovemRESUMO
Fertilization is the culminating event of sexual reproduction, which involves the union of the sperm and egg to form a single, genetically distinct organism. Despite the fundamental role of fertilization, the basic mechanisms involved have remained poorly understood. However, these mechanisms must involve an ordered schedule of cellular recognition events between the sperm and egg to ensure successful fusion. In this article, we review recent progress in our molecular understanding of mammalian fertilization, highlighting the areas in which genetic approaches have been particularly informative and focusing especially on the roles of secreted and cell surface proteins, expressed in a sex-specific manner, that mediate sperm-egg interactions. We discuss how the sperm interacts with the female reproductive tract, zona pellucida, and the oolemma. Finally, we review recent progress made in elucidating the mechanisms that reduce polyspermy and ensure that eggs normally fuse with only a single sperm.
Assuntos
Fertilização/genética , Interações Espermatozoide-Óvulo/genética , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Tetraspanina 29/genética , Zona Pelúcida/fisiologiaRESUMO
BACKGROUND: A vaccine targeting Plasmodium vivax will be an essential component of any comprehensive malaria elimination program, but major gaps in our understanding of P. vivax biology, including the protein-protein interactions that mediate merozoite invasion of reticulocytes, hinder the search for candidate antigens. Only one ligand-receptor interaction has been identified, that between P. vivax Duffy Binding Protein (PvDBP) and the erythrocyte Duffy Antigen Receptor for Chemokines (DARC), and strain-specific immune responses to PvDBP make it a complex vaccine target. To broaden the repertoire of potential P. vivax merozoite-stage vaccine targets, we exploited a recent breakthrough in expressing full-length ectodomains of Plasmodium proteins in a functionally-active form in mammalian cells and initiated a large-scale study of P. vivax merozoite proteins that are potentially involved in reticulocyte binding and invasion. METHODOLOGY/PRINCIPAL FINDINGS: We selected 39 P. vivax proteins that are predicted to localize to the merozoite surface or invasive secretory organelles, some of which show homology to P. falciparum vaccine candidates. Of these, we were able to express 37 full-length protein ectodomains in a mammalian expression system, which has been previously used to express P. falciparum invasion ligands such as PfRH5. To establish whether the expressed proteins were correctly folded, we assessed whether they were recognized by antibodies from Cambodian patients with acute vivax malaria. IgG from these samples showed at least a two-fold change in reactivity over naïve controls in 27 of 34 antigens tested, and the majority showed heat-labile IgG immunoreactivity, suggesting the presence of conformation-sensitive epitopes and native tertiary protein structures. Using a method specifically designed to detect low-affinity, extracellular protein-protein interactions, we confirmed a predicted interaction between P. vivax 6-cysteine proteins P12 and P41, further suggesting that the proteins are natively folded and functional. This screen also identified two novel protein-protein interactions, between P12 and PVX_110945, and between MSP3.10 and MSP7.1, the latter of which was confirmed by surface plasmon resonance. CONCLUSIONS/SIGNIFICANCE: We produced a new library of recombinant full-length P. vivax ectodomains, established that the majority of them contain tertiary structure, and used them to identify predicted and novel protein-protein interactions. As well as identifying new interactions for further biological studies, this library will be useful in identifying P. vivax proteins with vaccine potential, and studying P. vivax malaria pathogenesis and immunity. TRIAL REGISTRATION: ClinicalTrials.gov NCT00663546.
Assuntos
Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Malária Vivax/prevenção & controle , Plasmodium vivax/imunologia , Proteínas de Protozoários/imunologia , Fatores Etários , Animais , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/genética , Camboja , Eritrócitos/parasitologia , Biblioteca Gênica , Células HEK293 , Humanos , Malária Vivax/parasitologia , Masculino , Merozoítos/química , Merozoítos/imunologia , Plasmodium vivax/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas de Protozoários/genética , Proteínas Recombinantes/imunologia , Vacinas Sintéticas/imunologiaAssuntos
Antígenos CD/imunologia , Antígenos de Plaquetas Humanas/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Isoanticorpos/sangue , Proteínas de Neoplasias/imunologia , Antígenos CD/genética , Antígenos CD/isolamento & purificação , Antígenos de Plaquetas Humanas/genética , Epitopos/imunologia , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/isolamento & purificação , Glicosilação , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Integrina alfa2/genética , Integrina alfa2/imunologia , Isoanticorpos/imunologia , Mutagênese Sítio-Dirigida , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/isolamento & purificação , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/isolamento & purificação , SolubilidadeRESUMO
Several known or putative glycosyltransferases are required for the synthesis of laminin-binding glycans on alpha-dystroglycan (αDG), including POMT1, POMT2, POMGnT1, LARGE, Fukutin, FKRP, ISPD and GTDC2. Mutations in these glycosyltransferase genes result in defective αDG glycosylation and reduced ligand binding by αDG causing a clinically heterogeneous group of congenital muscular dystrophies, commonly referred to as dystroglycanopathies. The most severe clinical form, Walker-Warburg syndrome (WWS), is characterized by congenital muscular dystrophy and severe neurological and ophthalmological defects. Here, we report two homozygous missense mutations in the ß-1,3-N-acetylglucosaminyltransferase 1 (B3GNT1) gene in a family affected with WWS. Functional studies confirmed the pathogenicity of the mutations. First, expression of wild-type but not mutant B3GNT1 in human prostate cancer (PC3) cells led to increased levels of αDG glycosylation. Second, morpholino knockdown of the zebrafish b3gnt1 orthologue caused characteristic muscular defects and reduced αDG glycosylation. These functional studies identify an important role of B3GNT1 in the synthesis of the uncharacterized laminin-binding glycan of αDG and implicate B3GNT1 as a novel causative gene for WWS.
Assuntos
Mutação de Sentido Incorreto , N-Acetilglucosaminiltransferases/genética , Síndrome de Walker-Warburg/genética , Animais , Linhagem Celular Tumoral , Mapeamento Cromossômico , Estudos de Coortes , Distroglicanas/metabolismo , Feminino , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Glicosilação , Homozigoto , Humanos , Lactente , Laminina/metabolismo , Masculino , Distrofia Muscular do Cíngulo dos Membros/genética , N-Acetilglucosaminiltransferases/metabolismo , Linhagem , Fenótipo , Ligação Proteica , Síndrome de Walker-Warburg/patologia , Peixe-Zebra/genéticaRESUMO
Current vaccine strategies against the asexual blood stage of Plasmodium falciparum are mostly focused on well-studied merozoite antigens that induce immune responses after natural exposure, but have yet to induce robust protection in any clinical trial. Here we compare human-compatible viral-vectored vaccines targeting ten different blood-stage antigens. We show that the full-length P. falciparum reticulocyte-binding protein homologue 5 (PfRH5) is highly susceptible to cross-strain neutralizing vaccine-induced antibodies, out-performing all other antigens delivered by the same vaccine platform. We find that, despite being susceptible to antibody, PfRH5 is unlikely to be under substantial immune selection pressure; there is minimal acquisition of anti-PfRH5 IgG antibodies in malaria-exposed Kenyans. These data challenge the widespread beliefs that any merozoite antigen that is highly susceptible to immune attack would be subject to significant levels of antigenic polymorphism, and that erythrocyte invasion by P. falciparum is a degenerate process involving a series of parallel redundant pathways.
Assuntos
Anticorpos Neutralizantes/biossíntese , Anticorpos Antiprotozoários/biossíntese , Proteínas de Transporte/antagonistas & inibidores , Vacinas Antimaláricas/biossíntese , Malária Falciparum/prevenção & controle , Merozoítos/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Vacinação , Adenoviridae , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/metabolismo , Proteínas de Transporte/imunologia , Proteínas de Transporte/metabolismo , Proteção Cruzada , Ensaio de Imunoadsorção Enzimática , Eritrócitos/imunologia , Eritrócitos/parasitologia , Escherichia coli , Vetores Genéticos , Humanos , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/sangue , Malária Falciparum/imunologia , Merozoítos/imunologia , Camundongos , Plasmídeos , Plasmodium falciparum/imunologia , Coelhos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologiaRESUMO
BACKGROUND: Monoclonal antibodies with high affinity and selectivity that work on wholemount fixed tissues are valuable reagents to the cell and developmental biologist, and yet isolating them remains a long and unpredictable process. Here we report a rapid and scalable method to select and express recombinant mouse monoclonal antibodies that are essentially equivalent to those secreted by parental IgG-isotype hybridomas. RESULTS: Increased throughput was achieved by immunizing mice with pools of antigens and cloning - from small numbers of hybridoma cells - the functionally rearranged light and heavy chains into a single expression plasmid. By immunizing with the ectodomains of zebrafish cell surface receptor proteins expressed in mammalian cells and screening for formalin-resistant epitopes, we selected antibodies that gave expected staining patterns on wholemount fixed zebrafish embryos. CONCLUSIONS: This method can be used to quickly select several high quality monoclonal antibodies from a single immunized mouse and facilitates their distribution using plasmids.
Assuntos
Anticorpos Monoclonais/genética , Clonagem Molecular/métodos , Proteínas Recombinantes/genética , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Linhagem Celular , Linhagem Celular Tumoral , Expressão Gênica , Humanos , Hibridomas/imunologia , Imunoglobulina G/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Peixe-Zebra/embriologia , Peixe-Zebra/imunologiaRESUMO
Many viral proteins limit host immune defenses, and their genes often originate from their hosts. CD200 (OX2) is a broadly distributed cell surface glycoprotein that interacts with a receptor on myeloid cells (CD200R) that is implicated in locally preventing macrophage activation. Distant, but recognizable, homologues of CD200 have been identified in many herpesviruses and poxviruses. Here, we show that the product of the K14 open reading frame from human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus) interacts with human CD200R and is expressed at the surfaces of infected cells solely during the lytic cycle. Despite sharing only 40% primary sequence identity, K14 and CD200 interacted with CD200R with an almost identical and low affinity (K(D) = 0.5 microM), in contrast to other characterized viral homologue interactions. Cells expressing CD200 or K14 on the cell surface were able to inhibit secretion by activated macrophages of proinflammatory cytokines such as tumor necrosis factor alpha, an effect that could be specifically relieved by addition of monoclonal antibodies and soluble monomeric CD200 protein. We conclude that CD200 delivers local down-modulatory signals to myeloid cells through direct cell-cell contact and that the K14 viral homologue closely mimics this.
Assuntos
Antígenos de Superfície/metabolismo , Regulação para Baixo , Herpesvirus Humano 8/patogenicidade , Ativação de Macrófagos , Mimetismo Molecular , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Antígenos CD , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Humanos , Ligantes , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Receptores de Orexina , Filogenia , Receptores de Superfície Celular , Proteínas Virais/química , Proteínas Virais/genéticaRESUMO
OX2 (now designated CD200) is a membrane protein expressed by a broad range of cell types. It is the ligand for a receptor restricted to myeloid cells, with the potential to deliver inhibitory signals. This is indicated by the CD200-deficient mouse model, in which myeloid cells are more activated when stimulated immunologically than cells from normal mice. The unusual tissue distribution of CD200 indicates where myeloid cells can be restrictively controlled through cell-cell contact. Recent data on CD200 will be reviewed in the context of other proteins that might have similar roles, in particular, the interaction between CD47 and SIRPalpha (CD172a).