Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
J Cardiovasc Magn Reson ; 26(2): 101045, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38795790

RESUMO

BACKGROUND: Novel treatment strategies are needed to improve the structure and function of the myocardium post-infarction. In vitro-matured pluripotent stem cell-derived cardiomyocytes (PSC-CMs) have been shown to be a promising regenerative strategy. We hypothesized that mature PSC-CMs will have anisotropic structure and improved cell alignment when compared to immature PSC-CMs using cardiovascular magnetic resonance (CMR) in a guinea pig model of cardiac injury. METHODS: Guinea pigs (n = 16) were cryoinjured on day -10, followed by transplantation of either 108 polydimethylsiloxane (PDMS)-matured PSC-CMs (n = 6) or 108 immature tissue culture plastic (TCP)-generated PSC-CMs (n = 6) on day 0. Vehicle (sham-treated) subjects were injected with a pro-survival cocktail devoid of cells (n = 4), while healthy controls (n = 4) did not undergo cryoinjury or treatment. Animals were sacrificed on either day +14 or day +28 post-transplantation. Animals were imaged ex vivo on a 7T Bruker MRI. A 3D diffusion tensor imaging (DTI) sequence was used to quantify structure via fractional anisotropy (FA), mean diffusivity (MD), and myocyte alignment measured by the standard deviation of the transverse angle (TA). RESULTS: MD and FA of mature PDMS grafts demonstrated anisotropy was not significantly different than the healthy control hearts (MD = 1.1 ± 0.12 × 10-3 mm2/s vs 0.93 ± 0.01 × 10-3 mm2/s, p = 0.4 and FA = 0.22 ± 0.05 vs 0.26 ± 0.001, p = 0.5). Immature TCP grafts exhibited significantly higher MD than the healthy control (1.3 ± 0.08 × 10-3 mm2/s, p < 0.05) and significantly lower FA than the control (0.12 ± 0.02, p < 0.05) but were not different from mature PDMS grafts in this small cohort. TA of healthy controls showed low variability and was not significantly different than mature PDMS grafts (p = 0.4) while immature TCP grafts were significantly different (p < 0.001). DTI parameters of mature graft tissue trended toward that of the healthy myocardium, indicating the grafted cardiomyocytes may have a similar phenotype to healthy tissue. Contrast-enhanced magnetic resonance images corresponded well to histological staining, demonstrating a non-invasive method of localizing the repopulated cardiomyocytes within the scar. CONCLUSIONS: The DTI measures within graft tissue were indicative of anisotropic structure and showed greater myocyte organization compared to the scarred territory. These findings show that MRI is a valuable tool to assess the structural impacts of regenerative therapies.

2.
J Exp Clin Cancer Res ; 41(1): 273, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36096808

RESUMO

BACKGROUND: Lamins, key nuclear lamina components, have been proposed as candidate risk biomarkers in different types of cancer but their accuracy is still debated. AKTIP is a telomeric protein with the property of being enriched at the nuclear lamina. AKTIP has similarity with the tumor susceptibility gene TSG101. AKTIP deficiency generates genome instability and, in p53-/- mice, the reduction of the mouse counterpart of AKTIP induces the exacerbation of lymphomas. Here, we asked whether the distribution of AKTIP is altered in cancer cells and whether this is associated with alterations of lamins. METHODS: We performed super-resolution imaging, quantification of lamin expression and nuclear morphology on HeLa, MCF7, and A549 tumor cells, and on non-transformed fibroblasts from healthy donor and HGPS (LMNA c.1824C > T p.Gly608Gly) and EDMD2 (LMNA c.775 T > G) patients. As proof of principle model combining a defined lamin alteration with a tumor cell setting, we produced HeLa cells exogenously expressing the HGPS lamin mutant progerin that alters nuclear morphology. RESULTS: In HeLa cells, AKTIP locates at less than 0.5 µm from the nuclear rim and co-localizes with lamin A/C. As compared to HeLa, there is a reduced co-localization of AKTIP with lamin A/C in both MCF7 and A549. Additionally, MCF7 display lower amounts of AKTIP at the rim. The analyses in non-transformed fibroblasts show that AKTIP mislocalizes in HGPS cells but not in EDMD2. The integrated analysis of lamin expression, nuclear morphology, and AKTIP topology shows that positioning of AKTIP is influenced not only by lamin expression, but also by nuclear morphology. This conclusion is validated by progerin-expressing HeLa cells in which nuclei are morphologically altered and AKTIP is mislocalized. CONCLUSIONS: Our data show that the combined alteration of lamin and nuclear morphology influences the localization of the tumor-associated factor AKTIP. The results also point to the fact that lamin alterations per se are not predictive of AKTIP mislocalization, in both non-transformed and tumor cells. In more general terms, this study supports the thesis that a combined analytical approach should be preferred to predict lamin-associated changes in tumor cells. This paves the way of next translational evaluation to validate the use of this combined analytical approach as risk biomarker.


Assuntos
Lamina Tipo A , Progéria , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Fibroblastos/metabolismo , Células HeLa , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Camundongos , Progéria/genética , Progéria/metabolismo , Progéria/patologia , Telômero/metabolismo
3.
J Imaging ; 8(7)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35877647

RESUMO

We conducted a systematic review of recent literature to understand the current challenges in the use of optical see-through head-mounted displays (OST-HMDs) for augmented reality (AR) assisted surgery. Using Google Scholar, 57 relevant articles from 1 January 2021 through 18 March 2022 were identified. Selected articles were then categorized based on a taxonomy that described the required components of an effective AR-based navigation system: data, processing, overlay, view, and validation. Our findings indicated a focus on orthopedic (n=20) and maxillofacial surgeries (n=8). For preoperative input data, computed tomography (CT) (n=34), and surface rendered models (n=39) were most commonly used to represent image information. Virtual content was commonly directly superimposed with the target site (n=47); this was achieved by surface tracking of fiducials (n=30), external tracking (n=16), or manual placement (n=11). Microsoft HoloLens devices (n=24 in 2021, n=7 in 2022) were the most frequently used OST-HMDs; gestures and/or voice (n=32) served as the preferred interaction paradigm. Though promising system accuracy in the order of 2-5 mm has been demonstrated in phantom models, several human factors and technical challenges-perception, ease of use, context, interaction, and occlusion-remain to be addressed prior to widespread adoption of OST-HMD led surgical navigation.

4.
NMR Biomed ; 35(3): e4643, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34791720

RESUMO

Stress imaging identifies ischemic myocardium by comparing hemodynamics during rest and hyperemic stress. Hyperemia affects multiple hemodynamic parameters in myocardium, including myocardial blood flow (MBF), myocardial blood volume (MBV), and venous blood oxygen levels (PvO2 ). Cardiac T2 is sensitive to these changes and therefore is a promising non-contrast option for stress imaging; however, the impact of individual hemodynamic factors on T2 is poorly understood, making the connection from altered T2 to changes within the tissue difficult. To better understand this interplay, we performed T2 mapping and measured various hemodynamic factors independently in healthy pigs at multiple levels of hyperemic stress, induced by different doses of adenosine (0.14-0.56 mg/kg/min). T1 mapping quantified changes in MBV. MBF was assessed with microspheres, and oxygen consumption was determined by the rate pressure product (RPP). Simulations were also run to better characterize individual contributions to T2. Myocardial T2, MBF, oxygen consumption, and MBV all changed to varying extents between each level of adenosine stress (T2 = 37.6-41.8 ms; MBF = 0.48-1.32 mL/min/g; RPP = 6507-4001 bmp*mmHg; maximum percent change in MBV = 1.31%). Multivariable analyses revealed MBF as the dominant influence on T2 during hyperemia (significant ß-values >7). Myocardial oxygen consumption had almost no effect on T2 (ß-values <0.002); since PvO2 is influenced by both oxygen consumption and MBF, PvO2 changes detected by T2 during adenosine stress can be attributed to MBF. Simulations varying PvO2 and MBV confirmed that PvO2 had the strongest influence on T2, but MBV became important at high PvO2 . Together, these data suggest a model where, during adenosine stress, myocardial T2 responds predominantly to changes in MBF, but at high hyperemia MBV is also influential. Thus, changes in adenosine stress T2 can now be interpreted in terms of the physiological changes that led to it, enabling T2 mapping to become a viable non-contrast option to detect ischemic myocardial tissue.


Assuntos
Adenosina/farmacologia , Circulação Coronária/fisiologia , Coração/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Animais , Feminino , Hemodinâmica/efeitos dos fármacos , Hiperemia/diagnóstico por imagem , Hiperemia/fisiopatologia , Masculino , Microesferas , Isquemia Miocárdica/diagnóstico por imagem , Oxigênio/sangue , Consumo de Oxigênio , Suínos
6.
J Cell Sci ; 134(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34635908

RESUMO

Desmosomes, strong cell-cell junctions of epithelia and cardiac muscle, link intermediate filaments to cell membranes and mechanically integrate cells across tissues, dissipating mechanical stress. They comprise five major protein classes - desmocollins and desmogleins (the desmosomal cadherins), plakoglobin, plakophilins and desmoplakin - whose individual contribution to the structure and turnover of desmosomes is poorly understood. Using live-cell imaging together with fluorescence recovery after photobleaching (FRAP) and fluorescence loss and localisation after photobleaching (FLAP), we show that desmosomes consist of two contrasting protein moieties or modules: a very stable moiety of desmosomal cadherins, desmoplakin and plakoglobin, and a highly mobile plakophilin (Pkp2a). As desmosomes mature from Ca2+ dependence to Ca2+-independent hyper-adhesion, their stability increases, but Pkp2a remains highly mobile. We show that desmosome downregulation during growth-factor-induced cell scattering proceeds by internalisation of whole desmosomes, which still retain a stable moiety and highly mobile Pkp2a. This molecular mobility of Pkp2a suggests a transient and probably regulatory role for Pkp2a in desmosomes. This article has an associated First Person interview with the first author of the paper.


Assuntos
Desmossomos , Placofilinas , Caderinas , Membrana Celular , Desmogleínas , Desmoplaquinas/genética , Humanos , Placofilinas/genética , gama Catenina
7.
Nat Commun ; 12(1): 188, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420028

RESUMO

Nod-like receptor (NLR) proteins activate pyroptotic cell death and IL-1 driven inflammation by assembling and activating the inflammasome complex. Closely related sensor proteins NLRP1 and CARD8 undergo unique auto-proteolysis-dependent activation and are implicated in auto-inflammatory diseases; however, their mechanisms of activation are not understood. Here we report the structural basis of how the activating domains (FIINDUPA-CARD) of NLRP1 and CARD8 self-oligomerize to assemble distinct inflammasome complexes. Recombinant FIINDUPA-CARD of NLRP1 forms a two-layered filament, with an inner core of oligomerized CARD surrounded by an outer ring of FIINDUPA. Biochemically, self-assembled NLRP1-CARD filaments are sufficient to drive ASC speck formation in cultured human cells-a process that is greatly enhanced by NLRP1-FIINDUPA which forms oligomers in vitro. The cryo-EM structures of NLRP1-CARD and CARD8-CARD filaments, solved here at 3.7 Å, uncover unique structural features that enable NLRP1 and CARD8 to discriminate between ASC and pro-caspase-1. In summary, our findings provide structural insight into the mechanisms of activation for human NLRP1 and CARD8 and reveal how highly specific signaling can be achieved by heterotypic CARD interactions within the inflammasome complexes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Inflamassomos/química , Inflamassomos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Proteínas Adaptadoras de Sinalização CARD/genética , Caspase 1/metabolismo , Microscopia Crioeletrônica , Células HEK293 , Humanos , Inflamassomos/genética , Inflamação , Simulação de Acoplamento Molecular , Mutação , Proteínas NLR , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Transdução de Sinais
8.
Catheter Cardiovasc Interv ; 97(3): 437-442, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-32243080

RESUMO

OBJECTIVE: To create an experimental chronic total occlusion (CTO) model with calcification by dietary modification (cholesterol, calcium carbonate, vitamin D) and local injection of pro-calcification factors (dipotassium phosphate, calcium chloride, and bone morphogenetic protein-2 [BMP-2]). BACKGROUND: Percutaneous revascularization of CTOs frequently fails in heavily calcified occlusions. Development of novel approaches requires a reproducible preclinical model of calcified CTO. METHODS: CTOs were created in 18 femoral arteries of 9 New Zealand White rabbits using the thrombin injection model. Dietary interventions included a high cholesterol diet (0.5% or 0.25%), calcium carbonate (150 mg × 3-5 days/week), and vitamin D (50,000 U × 3-5 days/week). In selected animals, BMP-2 (1-4 µg), dipotassium phosphate, and calcium chloride were injected locally at the time of CTO creation. Animals were sacrificed at 2 weeks (n = 4 arteries), 6 weeks (n = 4 arteries), and 10-12 weeks (n = 14 arteries). RESULTS: CTOs showed evidence of chronic lipid feeding (foam cells) and chronic inflammation (intimal/medial fibrosis and microvessels, inflammatory cells, internal elastic lamina disruption). In calcium/vitamin D supplemented rabbits, mineralization (calcification and/or ossification) was evident as early as 2 weeks post CTO creation, and in 78% of the overall arteries. Mineralization changes were not present in the absence of calcium/vitamin D dietary supplements. Mineralization occurred in 85% of BMP-treated arteries and 60% of arteries without BMP. CONCLUSIONS: Complex mineralization occurs in preclinical CTO models with dietary supplementation of cholesterol with vitamin D and calcium.


Assuntos
Calcinose , Oclusão Coronária , Intervenção Coronária Percutânea , Animais , Doença Crônica , Oclusão Coronária/diagnóstico por imagem , Modelos Animais de Doenças , Artéria Femoral , Microvasos , Coelhos , Resultado do Tratamento
9.
Basic Res Cardiol ; 115(3): 24, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32140789

RESUMO

Intramyocardial hemorrhage is an independent predictor of adverse outcomes in ST-segment elevation myocardial infarction (STEMI). Iron deposition resulting from ischemia-reperfusion injury (I/R) is pro-inflammatory and has been associated with adverse remodeling. The role of iron chelation in hemorrhagic acute myocardial infarction (AMI) has never been explored. The purpose of this study was to investigate the cardioprotection offered by the iron-chelating agent deferiprone (DFP) in a porcine AMI model by evaluating hemorrhage neutralization and subsequent cardiac remodeling. Two groups of animals underwent a reperfused AMI procedure: control and DFP treated (N = 7 each). A comprehensive MRI examination was performed in healthy state and up to week 4 post-AMI, followed by histological assessment. Infarct size was not significantly different between the two groups; however, the DFP group demonstrated earlier resolution of hemorrhage (by T2* imaging) and edema (by T2 imaging). Additionally, ventricular enlargement and myocardial hypertrophy (wall thickness and mass) were significantly smaller with DFP, suggesting reduced adverse remodeling, compared to control. The histologic results were consistent with the MRI findings. To date, there is no effective targeted therapy for reperfusion hemorrhage. Our proof-of-concept study is the first to identify hemorrhage-derived iron as a therapeutic target in I/R and exploit the cardioprotective properties of an iron-chelating drug candidate in the setting of AMI. Iron chelation could potentially serve as an adjunctive therapy in hemorrhagic AMI.


Assuntos
Cardiotônicos/farmacologia , Deferiprona/uso terapêutico , Hemorragia/tratamento farmacológico , Hemorragia/etiologia , Quelantes de Ferro/uso terapêutico , Infarto do Miocárdio/complicações , Miocárdio/patologia , Remodelação Ventricular/efeitos dos fármacos , Animais , Cardiotônicos/farmacocinética , Cardiotônicos/uso terapêutico , Deferiprona/farmacocinética , Deferiprona/farmacologia , Modelos Animais de Doenças , Feminino , Hemorragia/patologia , Quelantes de Ferro/farmacocinética , Quelantes de Ferro/farmacologia , Infarto do Miocárdio/patologia , Suínos
10.
Stem Cell Reports ; 12(5): 967-981, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31056479

RESUMO

Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) show considerable promise for regenerating injured hearts, and we therefore tested their capacity to stably engraft in a translationally relevant preclinical model, the infarcted pig heart. Transplantation of immature hESC-CMs resulted in substantial myocardial implants within the infarct scar that matured over time, formed vascular networks with the host, and evoked minimal cellular rejection. While arrhythmias were rare in infarcted pigs receiving vehicle alone, hESC-CM recipients experienced frequent monomorphic ventricular tachycardia before reverting back to normal sinus rhythm by 4 weeks post transplantation. Electroanatomical mapping and pacing studies implicated focal mechanisms, rather than macro-reentry, for these graft-related tachyarrhythmias as evidenced by an abnormal centrifugal pattern with earliest electrical activation in histologically confirmed graft tissue. These findings demonstrate the suitability of the pig model for the preclinical development of a hESC-based cardiac therapy and provide new insights into the mechanistic basis of electrical instability following hESC-CM transplantation.


Assuntos
Arritmias Cardíacas/diagnóstico , Células-Tronco Embrionárias Humanas/citologia , Infarto do Miocárdio/terapia , Miócitos Cardíacos/citologia , Regeneração/fisiologia , Transplante de Células-Tronco/métodos , Taquicardia/diagnóstico , Animais , Arritmias Cardíacas/etiologia , Diferenciação Celular/fisiologia , Sobrevivência Celular/fisiologia , Eletroencefalografia , Xenoenxertos , Humanos , Imageamento por Ressonância Magnética , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/fisiopatologia , Transplante de Células-Tronco/efeitos adversos , Suínos , Taquicardia/etiologia
11.
Sci Rep ; 9(1): 2524, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30792430

RESUMO

Superresolution microscopy offers the advantage of imaging biological structures within cells at the nano-scale. Here we apply two superresolution microscopy techniques, specifically 3D structured illumination microscopy (3D-SIM) and direct stochastic optical reconstruction microscopy (dSTORM), a type of single molecule localisation microscopy, to localise IRSp53 protein and its I-BAR domain in relation to F-actin within filopodia. IRSp53 generates dynamic (extending and retracting) filopodia 300 nm wide with a distinct gap between IRSp53 and F-actin. By contrast, protrusions induced by the I-BAR domain alone are non-dynamic measuring between 100-200 nm in width and exhibit a comparatively closer localisation of the I-BAR domain with the F-actin. The data suggest that IRSp53 membrane localisation is spatially segregated to the lateral edges of filopodia, in contrast to the I-BAR domain is uniformly distributed throughout the membranes of protrusions. Modeling of fluorescence recovery after photobleaching (FRAP) data suggests that a greater proportion of I-BAR domain is associated with membranes when compared to full length IRSp53. The significance of this new data relates to the role filopodia play in cell migration and its importance to cancer.


Assuntos
Actinas/genética , Membrana Celular/ultraestrutura , Proteínas do Tecido Nervoso/ultraestrutura , Imagem Individual de Molécula/métodos , Actinas/ultraestrutura , Animais , Membrana Celular/genética , Movimento Celular/genética , Recuperação de Fluorescência Após Fotodegradação/métodos , Humanos , Camundongos , Neoplasias/genética , Neoplasias/patologia , Proteínas do Tecido Nervoso/genética , Ligação Proteica/genética , Domínios Proteicos/genética
12.
PLoS One ; 14(1): e0209665, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30699149

RESUMO

The cytoskeletal protein vimentin plays a key role in positioning of organelles within the cytosol and has been linked to the regulation of numerous cellular processes including autophagy, however, how vimentin regulates autophagy remains relatively unexplored. Here we report that inhibition of vimentin using the steroidal lactone Withaferin A (WFA) causes vimentin to aggregate, and this is associated with the relocalisation of organelles including autophagosomes and lysosomes from the cytosol to a juxtanuclear location. Vimentin inhibition causes autophagosomes to accumulate, and we demonstrate this results from modulation of mechanistic target of rapamycin (mTORC1) activity, and disruption of autophagosome-lysosome fusion. We suggest that vimentin plays a physiological role in autophagosome and lysosome positioning, thus identifying vimentin as a key factor in the regulation of mTORC1 and autophagy.


Assuntos
Organelas/fisiologia , Vimentina/metabolismo , Vimentina/fisiologia , Autofagossomos/metabolismo , Autofagia/fisiologia , Linhagem Celular Tumoral , Citoesqueleto/fisiologia , Citosol , Células HEK293 , Humanos , Filamentos Intermediários/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fusão de Membrana/fisiologia , Transdução de Sinais , Vitanolídeos/farmacologia
13.
J Cardiovasc Magn Reson ; 20(1): 45, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29961424

RESUMO

BACKGROUND: Following acute myocardial infarction (AMI), microvascular integrity and function may be compromised as a result of microvascular obstruction (MVO) and vasodilator dysfunction. It has been observed that both infarcted and remote myocardial territories may exhibit impaired myocardial blood flow (MBF) patterns associated with an abnormal vasodilator response. Arterial spin labeled (ASL) CMR is a novel non-contrast technique that can quantitatively measure MBF. This study investigates the feasibility of ASL-CMR to assess MVO and vasodilator response in swine. METHODS: Thirty-one swine were included in this study. Resting ASL-CMR was performed on 24 healthy swine (baseline group). A subset of 13 swine from the baseline group underwent stress ASL-CMR to assess vasodilator response. Fifteen swine were subjected to a 90-min left anterior descending (LAD) coronary artery occlusion followed by reperfusion. Resting ASL-CMR was performed post-AMI at 1-2 days (N = 9, of which 6 were from the baseline group), 1-2 weeks (N = 8, of which 4 were from the day 1-2 group), and 4 weeks (N = 4, of which 2 were from the week 1-2 group). Resting first-pass CMR and late gadolinium enhancement (LGE) were performed post-AMI for reference. RESULTS: At rest, regional MBF and physiological noise measured from ASL-CMR were 1.08 ± 0.62 and 0.15 ± 0.10 ml/g/min, respectively. Regional MBF increased to 1.47 ± 0.62 ml/g/min with dipyridamole vasodilation (P < 0.001). Significant reduction in MBF was found in the infarcted region 1-2 days, 1-2 weeks, and 4 weeks post-AMI compared to baseline (P < 0.03). This was consistent with perfusion deficit seen on first-pass CMR and with MVO seen on LGE. There were no significant differences between measured MBF in the remote regions pre and post-AMI (P > 0.60). CONCLUSIONS: ASL-CMR can assess vasodilator response in healthy swine and detect significant reduction in regional MBF at rest following AMI. ASL-CMR is an alternative to gadolinium-based techniques for assessment of MVO and microvascular integrity within infarcted, as well as salvageable and remote myocardium. This has the potential to provide early indications of adverse remodeling processes post-ischemia.


Assuntos
Circulação Coronária , Vasos Coronários/diagnóstico por imagem , Imagem Cinética por Ressonância Magnética/métodos , Microcirculação , Microvasos/diagnóstico por imagem , Infarto do Miocárdio/diagnóstico por imagem , Marcadores de Spin , Vasodilatação , Animais , Circulação Coronária/efeitos dos fármacos , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/fisiopatologia , Dipiridamol/administração & dosagem , Modelos Animais de Doenças , Estudos de Viabilidade , Feminino , Microcirculação/efeitos dos fármacos , Microvasos/efeitos dos fármacos , Microvasos/fisiopatologia , Infarto do Miocárdio/fisiopatologia , Valor Preditivo dos Testes , Sus scrofa , Vasodilatação/efeitos dos fármacos , Vasodilatadores/administração & dosagem
14.
Magn Reson Med ; 80(5): 1922-1934, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29656481

RESUMO

PURPOSE: Most MR-guided catheter-based procedures, and imaging of patients with implanted medical devices, are currently contraindicated due to a significant risk of heating associated with induced RF currents. The induced RF current produces a corresponding artifact which can be used to remotely characterize current and safely predict RF heating. Application of this remote technique in vivo to safely quantify RF heating risk may allow for execution of many scans currently contraindicated. Sources of phase other than induced RF current may present difficulty in practical in vivo. METHODS: A custom ultra-short echo time (UTE) sequence was developed to minimize unwanted phase contributions. A phantom experiment was performed to compare current characterization using a stock gradient-echo (GRE) sequence and the custom UTE sequence following calibration of the temperature measurement apparatus using a previously published heating prediction technique. Animal experiments were used to investigate the feasibility of using the UTE sequence to quantify RF heating. RESULTS: Current characterization and heating prediction with a stock GRE sequence was equivalent to that with the custom UTE sequence. Heating measurements and image-based predictions in animal experiments agreed within error in all experiments. CONCLUSION: Through comparison of measured heating and image-based prediction, feasibility of using a custom UTE sequence to quantify RF heating risk in vivo was demonstrated.


Assuntos
Temperatura Alta , Imageamento por Ressonância Magnética/métodos , Termometria/métodos , Animais , Artefatos , Temperatura Corporal , Procedimentos Endovasculares , Coração/diagnóstico por imagem , Humanos , Segurança do Paciente , Imagens de Fantasmas , Ondas de Rádio , Processamento de Sinais Assistido por Computador , Cirurgia Assistida por Computador , Suínos
15.
Front Immunol ; 9: 397, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29545805

RESUMO

Centrosome- and Golgi-localized protein kinase N-associated protein (CG-NAP), also known as AKAP450, is a cytosolic scaffolding protein involved in the targeted positioning of multiple signaling molecules, which are critical for cellular functioning. Here, we show that CG-NAP is predominantly expressed in human primary T-lymphocytes, localizes in close proximity (<0.2 µm) with centrosomal and Golgi structures and serves as a docking platform for Protein Kinase A (PKA). GapmeR-mediated knockdown of CG-NAP inhibits LFA-1-induced T-cell migration and impairs T-cell chemotaxis toward the chemokine SDF-1α. Depletion of CG-NAP dislocates PKARIIα, disrupts centrosomal and non-centrosomal microtubule nucleation, causes Golgi fragmentation, and impedes α-tubulin tyrosination and acetylation, which are important for microtubule dynamics and stability in migrating T-cells. Furthermore, we show that CG-NAP coordinates PKA-mediated phosphorylation of pericentrin and dynein in T-cells. Overall, our findings provide critical insights into the roles of CG-NAP in regulating cytoskeletal architecture and T-cell migration.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Centrossomo/metabolismo , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Complexo de Golgi/metabolismo , Microtúbulos/fisiologia , Proteína Quinase C/metabolismo , Linfócitos T/fisiologia , Movimento Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dineínas/metabolismo , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Transporte Proteico , Transdução de Sinais
16.
J Cell Biol ; 217(4): 1537-1552, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29440513

RESUMO

Fluorescent labeling of endogenous proteins for live-cell imaging without exogenous expression of tagged proteins or genetic manipulations has not been routinely possible. We describe a simple versatile antibody-based imaging approach (VANIMA) for the precise localization and tracking of endogenous nuclear factors. Our protocol can be implemented in every laboratory allowing the efficient and nonharmful delivery of organic dye-conjugated antibodies, or antibody fragments, into different metazoan cell types. Live-cell imaging permits following the labeled probes bound to their endogenous targets. By using conventional and super-resolution imaging we show dynamic changes in the distribution of several nuclear transcription factors (i.e., RNA polymerase II or TAF10), and specific phosphorylated histones (γH2AX), upon distinct biological stimuli at the nanometer scale. Hence, considering the large panel of available antibodies and the simplicity of their implementation, VANIMA can be used to uncover novel biological information based on the dynamic behavior of transcription factors or posttranslational modifications in the nucleus of single live cells.


Assuntos
Núcleo Celular/metabolismo , Técnica Direta de Fluorescência para Anticorpo , Histonas/metabolismo , Microscopia Confocal , Análise de Célula Única/métodos , Fatores de Transcrição/metabolismo , Animais , Apoptose , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Núcleo Celular/patologia , Proliferação de Células , Fibroblastos/metabolismo , Humanos , Cinética , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Fosforilação , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo , Fatores de Transcrição/genética
17.
J Vasc Surg ; 67(6): 1844-1854.e2, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29248239

RESUMO

OBJECTIVE: Limitations with current peripheral arterial imaging modalities make selection of patients for percutaneous vascular interventions difficult. The purpose of this study was to determine whether a novel preprocedural magnetic resonance imaging (MRI) method can identify lesions that would be more challenging to cross during percutaneous vascular intervention. METHODS: Fourteen patients with peripheral arterial disease underwent MRI before their intervention. A novel steady-state free precession flow-independent magnetic resonance (MR) angiogram was used to locate lesions, and an ultrashort echo time image was used to characterize hard lesion components including calcium and dense collagen. Lesions were characterized as hard if ≥50% of the lumen was occluded with calcium or collagen (as determined by MR image characteristics) in the hardest cross section within the lesion. The primary outcome was the time it took to cross a guidewire through the target lesion. The secondary outcome was the need for stenting. RESULTS: Of 14 lesions, 8 (57%) were defined as hard and 6 (43%) were soft on the basis of MR image characteristics. Hard lesions took significantly longer to cross than soft lesions (average, 14 minutes 49 seconds vs 2 minutes 17 seconds; P = .003). Hard lesions also required stenting more often than soft lesions (Fisher exact test, P = .008). Of 14 lesions, 2 (14%) could not be crossed with a guidewire, and both lesions were hard. MR images also detected occult patencies and noncalcified hard lesions that could not be seen on X-ray angiography. CONCLUSIONS: MRI can be used to determine which peripheral arterial lesions are more difficult to cross with a guidewire. Future work will determine whether MRI lesion characterization can predict long-term endovascular outcomes to aid in procedure planning.


Assuntos
Artérias/diagnóstico por imagem , Procedimentos Endovasculares , Extremidade Inferior/irrigação sanguínea , Angiografia por Ressonância Magnética/métodos , Doença Arterial Periférica/diagnóstico , Stents , Idoso , Idoso de 80 Anos ou mais , Artérias/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença Arterial Periférica/cirurgia , Curva ROC
18.
Sci Rep ; 7(1): 16474, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29184084

RESUMO

The endoplasmic reticulum (ER) is a single organelle in eukaryotic cells that extends throughout the cell and is involved in a large number of cellular functions. Using a combination of fixed and live cells (human MRC5 lung cells) in diffraction limited and super-resolved fluorescence microscopy (STORM) experiments, we determined that the average persistence length of the ER tubules was 3.03 ± 0.24 µm. Removing the branched network junctions from the analysis caused a slight increase in the average persistence length to 4.71 ± 0.14 µm, and provides the tubule's persistence length with a moderate length scale dependence. The average radius of the tubules was 44.1 ± 3.2 nm. The bending rigidity of the ER tubule membranes was found to be 10.9 ± 1.2 kT (17.0 ± 1.3 kT without branch points). We investigated the dynamic behaviour of ER tubules in live cells, and found that the ER tubules behaved like semi-flexible fibres under tension. The majority of the ER tubules experienced equilibrium transverse fluctuations under tension, whereas a minority number of them had active super-diffusive motions driven by motor proteins. Cells thus actively modulate the dynamics of the ER in a well-defined manner, which is expected in turn to impact on its many functions.


Assuntos
Retículo Endoplasmático/metabolismo , Imagem Molecular , Biomarcadores , Linhagem Celular Tumoral , Imunofluorescência , Humanos , Microscopia de Fluorescência , Imagem Molecular/métodos
19.
Front Immunol ; 8: 1517, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29176976

RESUMO

Adoptive therapy with polyclonal regulatory T cells (Tregs) has shown efficacy in suppressing detrimental immune responses in experimental models of autoimmunity and transplantation. The lack of specificity is a potential limitation of Treg therapy, as studies in mice have demonstrated that specificity can enhance the therapeutic potency of Treg. We will discuss that vectors encoding T cell receptors or chimeric antigen receptors provide an efficient gene-transfer platform to reliably produce Tregs of defined antigen specificity, thus overcoming the considerable difficulties of isolating low-frequency, antigen-specific cells that may be present in the natural Treg repertoire. The recent observations that Tregs can polarize into distinct lineages similar to the Th1, Th2, and Th17 subsets described for conventional T helper cells raise the possibility that Th1-, Th2-, and Th17-driven pathology may require matching Treg subsets for optimal therapeutic efficacy. In the future, genetic engineering may serve not only to enforce FoxP3 expression and a stable Treg phenotype but it may also enable the expression of particular transcription factors that drive differentiation into defined Treg subsets. Together, established and recently developed gene transfer and editing tools provide exciting opportunities to produce tailor-made antigen-specific Treg products with defined functional activities.

20.
HPB (Oxford) ; 19(9): 757-767, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28651898

RESUMO

BACKGROUND: Ischaemia Reperfusion (IR) injury is a major cause of morbidity, mortality and graft loss following Orthotopic Liver Transplantation (OLT). Utilising marginal grafts, which are more susceptible to IR injury, makes this a key research goal. Remote Ischaemic Preconditioning (RIPC) has been shown to ameliorate hepatic IR injury in experimental models. Whether RIPC can reduce IR injury in human liver transplant recipients is unknown. METHODS: Forty patients undergoing liver transplantation were randomized to RIPC or a sham. RIPC was induced through three 5 min cycles of alternate ischaemia and reperfusion of the left leg prior to surgery. Data on clinical outcomes was collected prospectively. Per-operative cytokine levels were measured. RESULTS: Fourty five of 51 patients approached (88%) were willing to enroll in the study. Five patients were excluded and 40 randomized, of which 20 underwent RIPC which was successfully completed in all patients. There were no complications following RIPC. Median day 3 AST levels were slightly higher in the RIPC group (221 IU vs 149 IU, p = 1.00). CONCLUSIONS: RIPC is acceptable and safe in liver transplant recipients. This study has not demonstrated evidence of a reduction in short-term measures of IR injury. Longer follow up will be required and consideration of an altered protocol.


Assuntos
Precondicionamento Isquêmico/métodos , Perna (Membro)/irrigação sanguínea , Transplante de Fígado/efeitos adversos , Traumatismo por Reperfusão/prevenção & controle , Adulto , Aspartato Aminotransferases/sangue , Biomarcadores/sangue , Citocinas/sangue , Método Duplo-Cego , Estudos de Viabilidade , Feminino , Humanos , Precondicionamento Isquêmico/efeitos adversos , Precondicionamento Isquêmico/mortalidade , Tempo de Internação , Transplante de Fígado/mortalidade , Londres , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos , Fluxo Sanguíneo Regional , Traumatismo por Reperfusão/sangue , Traumatismo por Reperfusão/diagnóstico , Traumatismo por Reperfusão/etiologia , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA