Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxicol Rep ; 8: 155-161, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33473352

RESUMO

Species differences in hepatic metabolism of thyroxine (T4) by uridine diphosphate glucuronosyl transferase (UGT) and susceptibility to thyroid hormone imbalance could underlie differences in thyroid carcinogenesis caused by hepatic enzyme inducers in rats and humans. To investigate this hypothesis we examined profiles of hepatic UGT induction by the prototypical CAR activator phenobarbital (PB) in rat and human liver 3D microtissues. The rationale for this approach was that 3D microtissues would generate data more relevant to humans. Rat and human liver 3D microtissues were exposed to PB over a range of concentrations (500 u M - 2000 u M) and times (24-96 hr). Microarray and proteomics analyses were performed on parallel samples to generate integrated differentially expressed gene (DEG) datasets. Bioinformatics analysis of DEG data, including CAR response element (CRE) sequence analysis of UGT promoters, was used to assess species differences in UGT induction relative to CAR-mediated transactivation potential. A higher proportion of human UGT promoters were found to contain consensus CREs compared to the rat homologs. UGTs 1a6, 2b17 and 2b37 were upregulated by PB in rat liver 3D microtissues, but unaltered in human liver 3D microtissues. By contrast, human UGTs 1A8, 1A10 and 2B10 showed higher levels of induction (RNA and /or protein) compared to the rat homologs. There was general concordance between the presence of CREs and the induction of UGT RNA. As UGT1A and 2B isoforms metabolise T4, these results suggest that differences in UGT induction could contribute to differential susceptibility to CAR-mediated thyroid carcinogenesis in rats and humans.

2.
Toxicol Rep ; 6: 998-1005, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31673501

RESUMO

Characterisation of the mode of action (MOA) of constitutive androstane receptor (CAR)-mediated rodent liver tumours involves measurement 5 key events including activation of the CAR receptor, altered gene expression, hepatocellular proliferation, clonal expansion and increased hepatocellular adenomas/carcinomas. To test whether or not liver 3D microtissues (LiMTs) recapitulate CAR- mediated procarcinogenic key events in response to the prototypical CAR activator phenobarbital (PB) we performed hepatocyte proliferation (LI%) analysis in rat and human LiMTs using a microTMA technology in conjunction with integrated transcriptomics (microarray) and proteomics analysis. The rationale for this approach was that LiMTs containing parenchymal and non-parenchymal cells (NPCs) are more physiologically representative of liver and thus would generate data more relevant to the in vivo situation. Rat and human LiMTs were treated with PB over a range of concentrations (500 uM - 2000 uM) and times (24 h - 96 h) in a dose-response/time-course analysis. There was a dose-dependent induction of LI% in rat LiMTs, however there was little or no effect of PB on LI% in human LiMTs. ATP levels in the rat and human LiMTs were similar to control in all of the PB treatments. There was also a dose- and time-dependent PB-mediated RNA induction of CAR regulated genes CYP2B6/Cyp2b2, CYP3A7/Cyp3a9 and UGT1A6/Ugt1a6 in human and rat LiMTs, respectively. These CAR regulated genes were also upregulated at the protein level. Ingenuity pathways analysis (IPA) indicated that there was a significant (Z score >2.0;-log p value >) activation of CAR by PB in both human and rat LiMTs. These results indicate that human and rat LiMTs showed the expected responses at the level of PB-induced hepatocyte proliferation and enzyme induction with rat LiMTs showing significant dose-dependent effects while human LiMTs showed no proliferation response but did show dose-dependent enzyme induction at the RNA and protein levels. In conclusion LiMTs serve as a model to provide mechanistic data for 3 of the 5 key events considered necessary to establish a CAR-mediated MOA for liver tumourigenesis and thus can potentially reduce the use of animals when compiling mechanistic data packages.

3.
Redox Biol ; 14: 198-210, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28942197

RESUMO

There is a need for robust in vitro models to sensitively capture skeletal muscle adverse toxicities early in the research and development of novel xenobiotics. To this end, an in vitro rat skeletal muscle model (L6) was used to study the translation of transcriptomics data generated from an in vivo rat model. Novel sulfonyl isoxazoline herbicides were associated with skeletal muscle toxicity in an in vivo rat model. Gene expression pathway analysis on skeletal muscle tissues taken from in vivo repeat dose studies identified enriched pathways associated with mitochondrial dysfunction, oxidative stress, energy metabolism, protein regulation and cell cycle. Mitochondrial dysfunction and oxidative stress were further explored using in vitro L6 metabolic models. These models demonstrated that the sulfonyl isoxazoline compounds induced mitochondrial dysfunction, mitochondrial superoxide production and apoptosis. These in vitro findings accurately concurred with the in vivo transcriptomics data, thereby confirming the ability of the L6 skeletal muscle models to identify relevant in vivo mechanisms of xenobiotic-induced toxicity. Moreover, these results highlight the sensitivity of the L6 galactose media model to study mitochondrial perturbation associated with skeletal muscle toxicity; this model may be utilised to rank the potency of novel xenobiotics upon further validation.


Assuntos
Mitocôndrias/efeitos dos fármacos , Músculo Esquelético/metabolismo , Xenobióticos/toxicidade , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular , Feminino , Isoxazóis/química , Isoxazóis/toxicidade , Mitocôndrias/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Transcriptoma/efeitos dos fármacos
4.
Free Radic Biol Med ; 95: 357-68, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26654758

RESUMO

The peroxisome proliferator-activated receptors (PPARs) are ligand activated nuclear receptors that regulate cellular homoeostasis and metabolism. PPARs control the expression of genes involved in fatty-acid and lipid metabolism. Despite evidence showing beneficial effects of their activation in the treatment of metabolic diseases, particularly dyslipidaemias and type 2 diabetes, PPAR agonists have also been associated with a variety of side effects and adverse pathological changes. Agonists have been developed that simultaneously activate the three PPAR receptors (PPARα, γ and δ) in the hope that the beneficial effects can be harnessed while avoiding some of the negative side effects. In this study, the hepatic effects of a discontinued PPAR-pan agonist (a triple agonist of PPAR-α, -γ, and -δ), was investigated after dietary treatment of male Sprague-Dawley (SD) rats. The agonist induced liver enlargement in conjunction with metabolomic and lipidomic remodelling. Increased concentrations of several metabolites related to processes of oxidation, such as oxo-methionine, methyl-cytosine and adenosyl-methionine indicated increased stress and immune status. These changes are reflected in lipidomic changes, and increased energy demands as determined by free fatty acid (decreased 18:3 n-3, 20:5 n-3 and increased ratios of n-6/n-3 fatty acids) triacylglycerol, phospholipid (decreased and increased bulk changes respectively) and eicosanoid content (increases in PGB2 and 15-deoxy PGJ2). We conclude that the investigated PPAR agonist, GW625019, induces liver enlargement, accompanied by lipidomic remodelling, oxidative stress and increases in several pro-inflammatory eicosanoids. This suggests that such pathways should be monitored in the drug development process and also outline how PPAR agonists induce liver proliferation.


Assuntos
Fígado/efeitos dos fármacos , Estresse Oxidativo/genética , PPAR alfa/genética , PPAR gama/genética , PPAR beta/genética , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/patologia , Ácidos Graxos não Esterificados/metabolismo , Metabolismo dos Lipídeos/genética , Lipídeos/biossíntese , Lipídeos/genética , Fígado/metabolismo , Fígado/patologia , PPAR alfa/agonistas , PPAR gama/agonistas , PPAR beta/agonistas , Ratos , Ratos Sprague-Dawley
5.
Toxicol Lett ; 235(3): 189-98, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25865432

RESUMO

ABC transporters play an important role in the disposition of avermectins in several animal species. In this study the interactions of three key avermectins, abamectin, emamectin and ivermectin, with human and mouse homologues of MDR1 (ABCB1/Abcb1a) and MRP (ABCC/Abcc), transporters endogenously expressed by human SH-SY5Y and mouse N2a neuroblastoma cells were investigated. In both cell lines, retention of the fluorescent dye H33342 was found to be significantly increased in the presence of avermectins and cyclosporin A. These effects were shown to be unresponsive to the BCRP inhibitor Ko-143 and therefore MDR1/Mdr1-dependent. Avermectins inhibited MDR1/Mdr1a-mediated H33342 dye efflux, with apparent Ki values of 0.24±0.08 and 0.18±0.02µM (ivermectin); 0.60±0.07 and 0.56±0.02µM (emamectin) and 0.95±0.08 and 0.77±0.25µM (abamectin) in SH-SY5Y and N2a cells, respectively. There were some apparent affinity differences for MDR1 and Mdr1a within each cell line (affinity for ivermectin>emamectin≥abamectin, P<0.05 by One-Way ANOVA), but importantly, the Ki values for individual avermectins for human MDR1 or mouse Mdr1a were not significantly different. MK571-sensitive retention of GSMF confirmed the expression of MRP/Mrp efflux transporters in both cell lines. Avermectins inhibited MRP/Mrp-mediated dye efflux with IC50 values of 1.58±0.51 and 1.94±0.72µM (ivermectin); 1.87±0.57 and 2.74±1.01µM (emamectin) and 2.25±0.01 and 1.68±0.63µM (abamectin) in SH-SY5Y and N2a cells, respectively. There were no significant differences in IC50 values between individual avermectins or between human MRP and mouse Mrp. Kinetic data for endogenous human MDR1/MRP isoforms in SH-SY5Y cells and mouse Mdr1a/b/Mrp isoforms in N2a cells are comparable for the selected avermectins. All are effluxed at concentrations well above 0.05-0.1µM ivermectin detected in plasma (Ottesen and Campbell, 1994; Ottesen and Campbell, 1994) This is an important finding in the light of toxicity seen in the Mdr1-deficient animal models CF-1 mice, Mdr1ab (-/-) double knockout mice and Collie dogs. We also confirm MRP/Mrp-mediated avermectin transport in both N2a and SH-SY5Y cell lines.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Genes MDR/fisiologia , Ivermectina/análogos & derivados , Neuroblastoma/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Regulação da Expressão Gênica , Humanos , Ivermectina/metabolismo , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
PLoS One ; 9(9): e107041, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25269082

RESUMO

The heart is the first organ required to function during embryonic development and is absolutely necessary for embryo survival. Cardiac activity is dependent on both the sinoatrial node (SAN), which is the pacemaker of heart's electrical activity, and the cardiac conduction system which transduces the electrical signal though the heart tissue, leading to heart muscle contractions. Defects in the development of cardiac electrical function may lead to severe heart disorders. The Erbb2 (Epidermal Growth Factor Receptor 2) gene encodes a member of the EGF receptor family of receptor tyrosine kinases. The Erbb2 receptor lacks ligand-binding activity but forms heterodimers with other EGF receptors, stabilising their ligand binding and enhancing kinase-mediated activation of downstream signalling pathways. Erbb2 is absolutely necessary in normal embryonic development and homozygous mouse knock-out Erbb2 embryos die at embryonic day (E)10.5 due to severe cardiac defects. We have isolated a mouse line, l11Jus8, from a random chemical mutagenesis screen, which carries a hypomorphic missense mutation in the Erbb2 gene. Homozygous mutant embryos exhibit embryonic lethality by E12.5-13. The l11Jus8 mutants display cardiac haemorrhage and a failure of atrial function due to defects in atrial electrical signal propagation, leading to an atrial-specific conduction block, which does not affect ventricular conduction. The l11Jus8 mutant phenotype is distinct from those reported for Erbb2 knockout mouse mutants. Thus, the l11Jus8 mouse reveals a novel function of Erbb2 during atrial conduction system development, which when disrupted causes death at mid-gestation.


Assuntos
Átrios do Coração/metabolismo , Cardiopatias Congênitas/genética , Receptor ErbB-2/genética , Potenciais de Ação , Animais , Função Atrial , Átrios do Coração/embriologia , Átrios do Coração/fisiopatologia , Sistema de Condução Cardíaco/embriologia , Sistema de Condução Cardíaco/fisiopatologia , Cardiopatias Congênitas/fisiopatologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação de Sentido Incorreto , Receptor ErbB-2/metabolismo
7.
Redox Biol ; 2: 224-33, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24494197

RESUMO

Mitochondrial toxicity is increasingly being implicated as a contributing factor to many xenobiotic-induced organ toxicities, including skeletal muscle toxicity. This has necessitated the need for predictive in vitro models that are able to sensitively detect mitochondrial toxicity of chemical entities early in the research and development process. One such cell model involves substituting galactose for glucose in the culture media. Since cells cultured in galactose are unable to generate sufficient ATP from glycolysis they are forced to rely on mitochondrial oxidative phosphorylation for ATP generation and consequently are more sensitive to mitochondrial perturbation than cells grown in glucose. The aim of this study was to characterise cellular growth, bioenergetics and mitochondrial toxicity of the L6 rat skeletal muscle cell line cultured in either high glucose or galactose media. L6 myoblasts proliferated more slowly when cultured in galactose media, although they maintained similar levels of ATP. Galactose cultured L6 cells were significantly more sensitive to classical mitochondrial toxicants than glucose-cultured cells, confirming the cells had adapted to galactose media. Analysis of bioenergetic function with the XF Seahorse extracellular flux analyser demonstrated that oxygen consumption rate (OCR) was significantly increased whereas extracellular acidification rate (ECAR), a measure of glycolysis, was decreased in cells grown in galactose. Mitochondria operated closer to state 3 respiration and had a lower mitochondrial membrane potential and basal mitochondrial O2 (•-) level compared to cells in the glucose model. An antimycin A (AA) dose response revealed that there was no difference in the sensitivity of OCR to AA inhibition between glucose and galactose cells. Importantly, cells in glucose were able to up-regulate glycolysis, while galactose cells were not. These results confirm that L6 cells are able to adapt to growth in a galactose media model and are consequently more susceptible to mitochondrial toxicants.


Assuntos
Técnicas de Cultura de Células/métodos , Galactose/metabolismo , Glucose/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Antimicina A/farmacologia , Linhagem Celular , Metabolismo Energético , Células Hep G2 , Humanos , Modelos Biológicos , Consumo de Oxigênio , Ratos
8.
J Proteome Res ; 12(12): 5775-90, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24161236

RESUMO

Non-genotoxic carcinogens (NGCs) promote tumor growth by altering gene expression, which ultimately leads to cancer without directly causing a change in DNA sequence. As a result NGCs are not detected in mutagenesis assays. While there are proposed biomarkers of carcinogenic potential, the definitive identification of non-genotoxic carcinogens still rests with the rat and mouse long-term bioassay. Such assays are expensive and time-consuming and require a large number of animals, and their relevance to human health risk assessments is debatable. Metabolomics and lipidomics in combination with pathology and clinical chemistry were used to profile perturbations produced by 10 compounds that represented a range of rat non-genotoxic hepatocarcinogens (NGC), non-genotoxic non-hepatocarcinogens (non-NGC), and a genotoxic hepatocarcinogen. Each compound was administered at its maximum tolerated dose level for 7, 28, and 91 days to male Fisher 344 rats. Changes in liver metabolite concentration differentiated the treated groups across different time points. The most significant differences were driven by pharmacological mode of action, specifically by the peroxisome proliferator activated receptor alpha (PPAR-α) agonists. Despite these dominant effects, good predictions could be made when differentiating NGCs from non-NGCs. Predictive ability measured by leave one out cross validation was 87% and 77% after 28 days of dosing for NGCs and non-NGCs, respectively. Among the discriminatory metabolites we identified free fatty acids, phospholipids, and triacylglycerols, as well as precursors of eicosanoid and the products of reactive oxygen species linked to processes of inflammation, proliferation, and oxidative stress. Thus, metabolic profiling is able to identify changes due to the pharmacological mode of action of xenobiotics and contribute to early screening for non-genotoxic potential.


Assuntos
Carcinógenos/toxicidade , Neoplasias Hepáticas Experimentais/metabolismo , Fígado/efeitos dos fármacos , Metabolômica , Mutagênicos/toxicidade , Animais , Biomarcadores/metabolismo , Carcinógenos/classificação , Dano ao DNA , Eicosanoides/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Expressão Gênica , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/patologia , Masculino , Mutagênicos/classificação , PPAR alfa/agonistas , PPAR alfa/genética , PPAR alfa/metabolismo , Fosfolipídeos/metabolismo , Ratos , Ratos Endogâmicos F344 , Espécies Reativas de Oxigênio/metabolismo , Triglicerídeos/metabolismo
9.
Toxicol Sci ; 128(2): 532-43, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22584684

RESUMO

In recent years, accumulating evidence supports the importance of microRNAs in liver physiology and disease; however, few studies have examined the involvement of these noncoding genes in chemical hepatocarcinogenesis. Here, we examined the liver microRNA profile of male Fischer rats exposed through their diet to genotoxic (2-acetylaminofluorene) and epigenetic (phenobarbital, diethylhexylphthalate, methapyrilene HCL, monuron, and chlorendic acid) chemical hepatocarcinogens, as well as to non-hepatocarcinogenic treatments (benzophenone, and diethylthiourea) for 3 months. The effects of these treatments on liver pathology, plasma clinical parameters, and liver mRNAs were also determined. All hepatocarcinogens affected the expression of liver mRNAs, while the hepatic microRNA profiles were associated with the mode of action of the chemical treatments and corresponded to chemical carcinogenicity. The three nuclear receptor-activating chemicals (phenobarbital, benzophenone, and diethylhexylphthalate) were characterized by the highly correlated induction of the miR-200a/200b/429, which is involved in protecting the epithelial status of cells and of the miR-96/182 clusters. The four non-nuclear receptor-activating hepatocarcinogens were characterized by the early, persistent induction of miR-34, which was associated with DNA damage and oxidative stress in vivo and in vitro. Repression of this microRNA in a hepatoma cell line led to increased cell growth; thus, miR-34a could act to block abnormal cell proliferation in cells exposed to DNA damage or oxidative stress. This study supports the proposal that hepatic microRNA profiles could assist in the earlier evaluation and identification of hepatocarcinogens, especially those acting by epigenetic mechanisms.


Assuntos
Carcinógenos/toxicidade , Epigênese Genética , Neoplasias Hepáticas Experimentais/induzido quimicamente , Fígado/metabolismo , MicroRNAs/genética , Mutagênicos/toxicidade , Animais , Fígado/efeitos dos fármacos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Endogâmicos F344 , Reação em Cadeia da Polimerase em Tempo Real
10.
BMC Genomics ; 11: 9, 2010 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-20053287

RESUMO

BACKGROUND: Non-genotoxic carcinogens are notoriously difficult to identify as they do not damage DNA directly and have diverse modes of action, necessitating long term in vivo studies. The early effects of the classic rodent non-genotoxic hepatocarcinogen phenobarbital have been investigated in the Fisher rat using a combination of metabolomics and transcriptomics, to investige early stage mechanistic changes that are predictive of longer term pathology. RESULTS: Liver and blood plasma were profiled across 14 days, and multivariate statistics used to identify perturbed pathways. Both metabolomics and transcriptomics detected changes in the liver which were dose dependent, even after one day of exposure. Integration of the two datasets associated perturbations with specific pathways. Hepatic glycogen was decreased due to a decrease in synthesis, and plasma triglycerides were decreased due to an increase in fatty acid uptake by the liver. Hepatic succinate was increased and this was associated with increased heme biosynthesis. Glutathione synthesis was also increased, presumably in response to oxidative stress. Liquid Chromatography Mass Spectrometry demonstrated a remodeling of lipid species, possibly resulting from proliferation of the smooth endoplasmic reticulum. CONCLUSIONS: The data fusion of metabolomic and transcriptomic changes proved to be a highly sensitive approach for monitoring early stage changes in altered hepatic metabolism, oxidative stress and cytochrome P450 induction simultaneously. This approach is particularly useful in interpreting changes in metabolites such as succinate which are hubs of metabolism.


Assuntos
Perfilação da Expressão Gênica , Fígado/efeitos dos fármacos , Metaboloma , Fenobarbital/toxicidade , Animais , Análise por Conglomerados , Sistema Enzimático do Citocromo P-450/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Fígado/metabolismo , Fígado/patologia , Espectroscopia de Ressonância Magnética , Masculino , Análise Multivariada , Estresse Oxidativo , Plasma/efeitos dos fármacos , Plasma/metabolismo , Análise de Componente Principal , Ratos , Ratos Endogâmicos F344
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA