Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hum Genomics ; 10: 6, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26842383

RESUMO

The HUGO Gene Nomenclature Committee (HGNC) approves unique gene symbols and names for human loci. As well as naming genomic loci, we manually curate genes into family sets based on shared characteristics such as function, homology or phenotype. Each HGNC gene family has its own dedicated gene family report on our website, www.genenames.org . We have recently redesigned these reports to support the visualisation and browsing of complex relationships between families and to provide extra curated information such as family descriptions, protein domain graphics and gene family aliases. Here, we review how our gene families are curated and explain how to view, search and download the gene family data.


Assuntos
Bases de Dados Genéticas , Genômica , Proteínas de Neoplasias/genética , Humanos , Internet , Proteínas de Neoplasias/classificação
2.
Pharmacol Rev ; 67(2): 338-67, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25713288

RESUMO

The Adhesion family forms a large branch of the pharmacologically important superfamily of G protein-coupled receptors (GPCRs). As Adhesion GPCRs increasingly receive attention from a wide spectrum of biomedical fields, the Adhesion GPCR Consortium, together with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification, proposes a unified nomenclature for Adhesion GPCRs. The new names have ADGR as common dominator followed by a letter and a number to denote each subfamily and subtype, respectively. The new names, with old and alternative names within parentheses, are: ADGRA1 (GPR123), ADGRA2 (GPR124), ADGRA3 (GPR125), ADGRB1 (BAI1), ADGRB2 (BAI2), ADGRB3 (BAI3), ADGRC1 (CELSR1), ADGRC2 (CELSR2), ADGRC3 (CELSR3), ADGRD1 (GPR133), ADGRD2 (GPR144), ADGRE1 (EMR1, F4/80), ADGRE2 (EMR2), ADGRE3 (EMR3), ADGRE4 (EMR4), ADGRE5 (CD97), ADGRF1 (GPR110), ADGRF2 (GPR111), ADGRF3 (GPR113), ADGRF4 (GPR115), ADGRF5 (GPR116, Ig-Hepta), ADGRG1 (GPR56), ADGRG2 (GPR64, HE6), ADGRG3 (GPR97), ADGRG4 (GPR112), ADGRG5 (GPR114), ADGRG6 (GPR126), ADGRG7 (GPR128), ADGRL1 (latrophilin-1, CIRL-1, CL1), ADGRL2 (latrophilin-2, CIRL-2, CL2), ADGRL3 (latrophilin-3, CIRL-3, CL3), ADGRL4 (ELTD1, ETL), and ADGRV1 (VLGR1, GPR98). This review covers all major biologic aspects of Adhesion GPCRs, including evolutionary origins, interaction partners, signaling, expression, physiologic functions, and therapeutic potential.


Assuntos
Moléculas de Adesão Celular/metabolismo , AMP Cíclico/fisiologia , Modelos Moleculares , Receptores Acoplados a Proteínas G/metabolismo , Sistemas do Segundo Mensageiro , Animais , Adesão Celular , Moléculas de Adesão Celular/química , Membrana Celular/enzimologia , Membrana Celular/metabolismo , Movimento Celular , Humanos , Agências Internacionais , Ligantes , Farmacologia/tendências , Farmacologia Clínica/tendências , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/química , Isoformas de Proteínas/classificação , Isoformas de Proteínas/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/classificação , Transdução de Sinais , Sociedades Científicas , Terminologia como Assunto
3.
Hum Genomics ; 7: 22, 2013 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-24172014

RESUMO

The serpin family comprises a structurally similar, yet functionally diverse, set of proteins. Named originally for their function as serine proteinase inhibitors, many of its members are not inhibitors but rather chaperones, involved in storage, transport, and other roles. Serpins are found in genomes of all kingdoms, with 36 human protein-coding genes and five pseudogenes. The mouse has 60 Serpin functional genes, many of which are orthologous to human SERPIN genes and some of which have expanded into multiple paralogous genes. Serpins are found in tissues throughout the body; whereas most are extracellular, there is a class of intracellular serpins. Serpins appear to have roles in inflammation, immune function, tumorigenesis, blood clotting, dementia, and cancer metastasis. Further characterization of these proteins will likely reveal potential biomarkers and therapeutic targets for disease.


Assuntos
Serpinas/genética , Serpinas/fisiologia , Animais , Modelos Animais de Doenças , Evolução Molecular , Variação Genética , Humanos , Camundongos , Família Multigênica , Filogenia , Conformação Proteica
4.
Hum Genomics ; 5(6): 691-702, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22155607

RESUMO

The secretoglobins (SCGBs) comprise a family of small, secreted proteins found in animals exclusively of mammalian lineage. There are 11 human SCGB genes and five pseudogenes. Interestingly, mice have 68 Scgb genes, four of which are highly orthologous to human SCGB genes; the remainder represent an 'evolutionary bloom' and make up a large gene family represented by only six counterparts in humans. SCGBs are found in high concentrations in many mammalian secretions, including fluids of the lung, lacrimal gland, salivary gland, prostate and uterus. Whereas the biological activities of most individual SCGBs have not been fully characterised, what already has been discovered suggests that this family has an important role in the modulation of inflammation, tissue repair and tumorigenesis. In mice, the large Scgb1b and Scgb2b gene families encode the androgen-binding proteins, which have been shown to play a role in mate selection. Although much has been learned about SCGBs in recent years, clearly more research remains to be done to allow a better understanding of the roles of these proteins in human health and disease. Such information is predicted to reveal valuable novel drug targets for the treatment of inflammation, as well as designing biomarkers that might identify tissue damage or cancer.


Assuntos
Proteína de Ligação a Androgênios/genética , Evolução Molecular , Secretoglobinas/genética , Animais , Humanos , Camundongos
5.
Nature ; 440(7088): 1194-8, 2006 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-16641997

RESUMO

After the completion of a draft human genome sequence, the International Human Genome Sequencing Consortium has proceeded to finish and annotate each of the 24 chromosomes comprising the human genome. Here we describe the sequencing and analysis of human chromosome 3, one of the largest human chromosomes. Chromosome 3 comprises just four contigs, one of which currently represents the longest unbroken stretch of finished DNA sequence known so far. The chromosome is remarkable in having the lowest rate of segmental duplication in the genome. It also includes a chemokine receptor gene cluster as well as numerous loci involved in multiple human cancers such as the gene encoding FHIT, which contains the most common constitutive fragile site in the genome, FRA3B. Using genomic sequence from chimpanzee and rhesus macaque, we were able to characterize the breakpoints defining a large pericentric inversion that occurred some time after the split of Homininae from Ponginae, and propose an evolutionary history of the inversion.


Assuntos
Cromossomos Humanos Par 3/genética , Animais , Sequência de Bases , Quebra Cromossômica/genética , Inversão Cromossômica/genética , Mapeamento de Sequências Contíguas , Ilhas de CpG/genética , DNA Complementar/genética , Evolução Molecular , Etiquetas de Sequências Expressas , Projeto Genoma Humano , Humanos , Macaca mulatta/genética , Dados de Sequência Molecular , Pan troglodytes/genética , Análise de Sequência de DNA , Sintenia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA