Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 3(113): 113ra126, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22174314

RESUMO

Clinical use of recombinant fibroblast growth factor 21 (FGF21) for the treatment of type 2 diabetes and other disorders linked to obesity has been proposed; however, its clinical development has been challenging owing to its poor pharmacokinetics. Here, we describe an alternative antidiabetic strategy using agonistic anti-FGFR1 (FGF receptor 1) antibodies (R1MAbs) that mimic the metabolic effects of FGF21. A single injection of R1MAb into obese diabetic mice induced acute and sustained amelioration of hyperglycemia, along with marked improvement in hyperinsulinemia, hyperlipidemia, and hepatosteatosis. R1MAb activated the mitogen-activated protein kinase pathway in adipose tissues, but not in liver, and neither FGF21 nor R1MAb improved glucose clearance in lipoatrophic mice, which suggests that adipose tissues played a central role in the observed metabolic effects. In brown adipose tissues, both FGF21 and R1MAb induced phosphorylation of CREB (cyclic adenosine 5'-monophosphate response element-binding protein), and mRNA expression of PGC-1α (peroxisome proliferator-activated receptor-γ coactivator 1α) and the downstream genes associated with oxidative metabolism. Collectively, we propose FGFR1 in adipose tissues as a major functional receptor for FGF21, as an upstream regulator of PGC-1α, and as a compelling target for antibody-based therapy for type 2 diabetes and other obesity-associated disorders.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Diabetes Mellitus Tipo 2/terapia , Fatores de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Distribuição Tecidual , Transativadores/metabolismo , Fatores de Transcrição
2.
PLoS One ; 6(3): e17868, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21437243

RESUMO

Fibroblast growth factor 19 (FGF19) is a hormone-like protein that regulates carbohydrate, lipid and bile acid metabolism. At supra-physiological doses, FGF19 also increases hepatocyte proliferation and induces hepatocellular carcinogenesis in mice. Much of FGF19 activity is attributed to the activation of the liver enriched FGF Receptor 4 (FGFR4), although FGF19 can activate other FGFRs in vitro in the presence of the coreceptor ßKlotho (KLB). In this report, we investigate the role of FGFR4 in mediating FGF19 activity by using Fgfr4 deficient mice as well as a variant of FGF19 protein (FGF19v) which is specifically impaired in activating FGFR4. Our results demonstrate that FGFR4 activation mediates the induction of hepatocyte proliferation and the suppression of bile acid biosynthesis by FGF19, but is not essential for FGF19 to improve glucose and lipid metabolism in high fat diet fed mice as well as in leptin-deficient ob/ob mice. Thus, FGF19 acts through multiple receptor pathways to elicit pleiotropic effects in regulating nutrient metabolism and cell proliferation.


Assuntos
Ácidos e Sais Biliares/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Glucose/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Ácidos e Sais Biliares/sangue , Células CHO , Proliferação de Células/efeitos dos fármacos , Cricetinae , Cricetulus , Fatores de Crescimento de Fibroblastos/química , Teste de Tolerância a Glucose , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Hiperglicemia/patologia , Hiperglicemia/prevenção & controle , Camundongos , Camundongos Obesos , Modelos Biológicos , Dados de Sequência Molecular , Proteínas Recombinantes/farmacologia
3.
Nat Cell Biol ; 11(3): 286-94, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19234454

RESUMO

Dishevelled (Dsh) is a cytoplasmic multidomain protein that is required for all known branches of the Wnt signalling pathway. The Frizzled/planar cell polarity (Fz/PCP) signalling branch requires an asymmetric cortical localization of Dsh, but this process remains poorly understood. Using a genome-wide RNA interference (RNAi) screen in Drosophila melanogaster cells, we show that Dsh membrane localization is dependent on the Na(+)/H(+) exchange activity of the plasma membrane exchanger Nhe2. Manipulating Nhe2 expression levels in the eye causes PCP defects, and Nhe2 interacts genetically with Fz. Our data show that the binding and surface recruitment of Dsh by Fz is pH- and charge-dependent. We identify a polybasic stretch within the Dsh DEP domain that binds to negatively charged phospholipids and appears to be mechanistically important. Dsh recruitment by Fz can be abolished by converting these basic amino-acid residues into acidic ones, as in the mutant, DshKR/E. In vivo, the DshKR/E(2x) mutant with two substituted residues fails to associate with the membrane during active PCP signalling but rescues canonical Wnt signalling defects in a dsh-background. These results suggest that direct interaction between Fz and Dsh is stabilized by a pH and charge-dependent interaction of the DEP domain with phospholipids. This stabilization is particularly important for the PCP signalling branch and, thus, promotes specific pathway selection in Wnt signalling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Membrana Celular/metabolismo , Polaridade Celular , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Células Epiteliais/citologia , Receptores Frizzled/metabolismo , Fosfoproteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Animais , Linhagem Celular , Sinais (Psicologia) , Proteínas Desgrenhadas , Proteínas de Drosophila/metabolismo , Eletroquímica , Células Epiteliais/metabolismo , Olho/citologia , Receptores Frizzled/química , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Fenótipo , Fosfolipídeos , Fosfoproteínas/química , Ligação Proteica , Estrutura Terciária de Proteína , Transdução de Sinais
4.
Endocrinology ; 149(3): 1407-14, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18079193

RESUMO

The forkhead transcription factor forkhead box protein O1 (FoxO1), a downstream target of phosphatidylinositol 3-kinase/Akt signaling, has been reported to suppress skeletal myocyte differentiation, but the mechanism by which FoxO1 regulates myogenesis is not fully understood. We have previously demonstrated that a nutrient-sensing mammalian target of rapamycin (mTOR) pathway controls the autocrine production of IGF-II and the subsequent phosphatidylinositol 3-kinase/Akt signaling downstream of IGF-II in myogenesis. Here we report a regulatory loop connecting FoxO1 to the mTOR pathway. Inducible activation of a FoxO1 active mutant in the C2C12 mouse myoblasts blocks myogenic differentiation at an early stage and meanwhile leads to proteasome-dependent degradation of a specific subset of components in the mTOR signaling network, including mTOR, raptor, tuberous sclerosis complex 2, and S6 protein kinase 1. This function of FoxO1 requires new protein synthesis, consistent with the idea that a transcriptional target of FoxO1 may be responsible for the degradation of mTOR. We further show that active FoxO1 inhibits IGF-II expression at the transcriptional activation level, through the modulation of mTOR protein levels. Moreover, the addition of exogenous IGF-II fully rescues myocyte differentiation from FoxO inhibition. Taken together, we propose that the mTOR-IGF-II pathway is a major mediator of FoxO's inhibitory function in skeletal myogenesis.


Assuntos
Diferenciação Celular/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Mioblastos Esqueléticos/metabolismo , Mioblastos Esqueléticos/patologia , Proteínas Quinases/metabolismo , Transdução de Sinais/fisiologia , Animais , Diferenciação Celular/genética , Linhagem Celular , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Camundongos , Desenvolvimento Muscular/genética , Desenvolvimento Muscular/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Quinases/genética , Transdução de Sinais/genética , Serina-Treonina Quinases TOR , Transcrição Gênica/genética , Transcrição Gênica/fisiologia
5.
J Biol Chem ; 281(11): 7357-63, 2006 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-16407298

RESUMO

The mammalian target of rapamycin (mTOR) regulates nutrient-dependent cell growth and proliferation through cytoplasmic targets, such as S6 kinase 1 (S6K1). Consistent with its main function in the cytoplasm, mTOR is predominantly cytoplasmic. However, previously we have found that mTOR shuttles between the nucleus and cytoplasm, and we have proposed that the nucleocytoplasmic shuttling of mTOR is required for the maximal activation of S6K1. The intrinsic signals directing mTOR nuclear transport and the underlying mechanisms are unknown. In this study we initially set out to identify nuclear export signals in mTOR. A systematic scan of the mTOR sequence revealed 16 peptides conforming to the canonical leucine-rich nuclear export signal, of which 3 were found by reporter assays to contain leptomycin B-sensitive and leucine-dependent nuclear export activity. Unexpectedly, mTOR proteins with those conserved leucines mutated to alanines were unable to enter the nucleus. Further investigation revealed that the L982A/L984A and L1287A/L1289A mutations likely induced a global structural change in mTOR, whereas the L545A/L547A mutation directly impaired the nuclear import of the protein, potentially regulated by a nucleocytoplasmic shuttling signal. The loss of nuclear import was accompanied by the significantly reduced ability of the L545A/L547A mutant to activate S6K1 in cells. Most importantly, when nuclear import was restored in the L545A/L547A mutant by the addition of an exogenous nuclear import signal, signaling to S6K1 was rescued. Taken together, our observations suggest the existence of a nuclear shuttling signal in mTOR and provide definitive evidence for the requirement of mTOR nuclear import in its cytoplasmic signaling to S6K1.


Assuntos
Citoplasma/metabolismo , Proteínas Quinases/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Sirolimo/química , Transporte Ativo do Núcleo Celular , Alanina/química , Sequência de Aminoácidos , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Proliferação de Células , Genes Reporter , Haplorrinos , Humanos , Leucina/química , Microscopia de Fluorescência , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Peptídeos/química , Transdução de Sinais , Serina-Treonina Quinases TOR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA