Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Int J Biol Macromol ; 269(Pt 1): 132086, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38705321

RESUMO

Injectable hydrogels based on biopolymers, fabricated utilizing diverse chemical and physical methodologies, exhibit exceptional physical, chemical, and biological properties. They have multifaceted applications encompassing wound healing, tissue regeneration, and across diverse scientific realms. This review critically evaluates their largely uncharted potential in ophthalmology, elucidating their diverse applications across an array of ocular diseases. These conditions include glaucoma, cataracts, corneal disorders (spanning from age-related degeneration to trauma, infections, and underlying chronic illnesses), retina-associated ailments (such as diabetic retinopathy, retinitis pigmentosa, and age-related macular degeneration (AMD)), eyelid abnormalities, and uveal melanoma (UM). This study provides a thorough analysis of applications of injectable hydrogels based on biopolymers across these ocular disorders. Injectable hydrogels based on biopolymers can be customized to have specific physical, chemical, and biological properties that make them suitable as drug delivery vehicles, tissue scaffolds, and sealants in the eye. For example, they can be engineered to have optimum viscosity to be injected intravitreally and sustain drug release to treat retinal diseases. Their porous structure and biocompatibility promote cellular infiltration to regenerate diseased corneal tissue. By accentuating their indispensable role in ocular disease treatment, this review strives to present innovative and targeted approaches in this domain, thereby advancing ocular therapeutics.

2.
Anim Nutr ; 17: 110-122, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38766519

RESUMO

The use of next-generation probiotics (NGP) in pigs for combating diseases has been subject to limited research. Here we explored the potential of a well-known NGP candidate Akkermansia muciniphila targeting pig gut health. In the first screening experiment, we found that the abundance of A. muciniphila peaked at 14 d old but decreased at weaning (21 d old; P < 0.05), suggesting the weaning period may be an effective window for A. muciniphila intervention. Following that, 48 crossbred weaned pigs at 28 d old were randomly assigned to five groups: control (CON), high/low live A. muciniphila (HA/LA), and high/low heat-killed A. muciniphila (HIA/LIA). From 1 to 28 d old, the CON group received gastric infusion of anaerobic sterile saline every other day; the HA and LA groups were gavaged every other day with 1 × 1010 CFU/5 mL and 5 × 108 CFU/5 mL live A. muciniphila, respectively; and the HIA and LIA groups were gavaged every other day with 1 × 1010 CFU/5 mL and 5 × 108 CFU/5 mL heat-killed A. muciniphila, respectively. At d 29, pigs in the CON group were randomly and equally divided into two groups, one of which was named the enterotoxigenic Escherichia coli (ETEC) group, and all groups except CON received a 5-d ETEC challenge. The supplementation of A. muciniphila numerically reduced the diarrhea rate of weaned pigs compared to the pigs that only received the ETEC challenge (P = 0.57), but the LIA group had a higher diarrhea rate than the CON group (P < 0.05). Consistent with this, the supplementation of A. muciniphila improved the small intestinal morphology and structure, proportion of CD4+ T lymphocytes in the blood, as well as the expression of genes related to intestinal barrier and antioxidant indices of pigs with ETEC challenge, especially for the LA group (P < 0.05). Meanwhile, A. muciniphila supplementation reduced the expression of ETEC virulence factor genes in the ileum and colon of pigs challenged by ETEC (P < 0.05). Therefore, A. muciniphila may protect the intestinal health of weaned piglets from damage caused by ETEC infection, but the effect may vary depending on the concentration and activity of A. muciniphila.

3.
Colloids Surf B Biointerfaces ; 239: 113911, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38714079

RESUMO

An innovative nanozyme, iron-doped polydopamine (Fe-PDA), which integrates iron ions into a PDA matrix, conferred peroxidase-mimetic activity and achieved a substantial photothermal conversion efficiency of 43.5 %. Fe-PDA mediated the catalysis of H2O2 to produce toxic hydroxyl radicals (•OH), thereby facilitating lipid peroxidation in tumour cells and inducing ferroptosis. Downregulation of solute carrier family 7 no. 11 (SLC7A11) and solute carrier family 3 no. 2 (SLC3A2) in System Xc- resulted in decreased intracellular glutathione (GSH) production and inactivation of the nuclear factor erythroid 2-related factor 2 (NRF2)-glutathione peroxidase 4 (GPX4) pathway, contributing to ferroptosis. Moreover, the application of photothermal therapy (PTT) enhanced the effectiveness of chemodynamic therapy (CDT), accelerating the Fenton reaction for targeted tumour eradication while sparing adjacent non-cancerous tissues. In vivo experiments revealed that Fe-PDA significantly hampered tumour progression in mice, emphasizing the potential of the dual-modality treatment combining CDT and PTT for future clinical oncology applications.

4.
Small ; : e2402073, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686676

RESUMO

Natural polyphenolic compound rosmarinic acid (RA) has good antitumor activity. However, the distinctive tumor microenvironment, characterized by low pH and elevated levels of glutathione (GSH), enhances the tolerance of tumors to the singular anti-tumor treatment mode using RA, resulting in unsatisfactory therapeutic efficacy. Targeting nonapoptotic programmed cell death processes may provide another impetus to inhibit tumor growth. RA possesses the capability to coordinate with metal elements. To solve the effect restriction of the above single treatment mode, it is proposed to construct a self-assembled nanocomposite, Fe-RA. Under tumor microenvironment, Fe-RA nanocomposite exerts the characteristics of POD-like enzyme activity and depletion of GSH, producing a large amount of hydroxyl radical (·OH) while disrupting the antioxidant defense system of tumor cells. Moreover, due to the enhanced permeability and retention effect (EPR), Fe-RA can transport Fe2+ to a greater extent to tumor cells and increase intracellular iron content. Causing an imbalance in iron metabolism in tumor cells and promoting cell ferroptosis. The results of the synchrotron X-ray absorption spectroscopy (XAS) and high-resolution mass spectrometry (HRMS) prove the successful complexation of Fe-RA nanocomposite. Density functional theory (DFT) explains the efficient catalytic mechanism of its peroxide-like enzyme activity and the reaction principle with GSH.

5.
Theranostics ; 14(5): 1939-1955, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505601

RESUMO

Rationale: Cancer continues to be a significant public health issue. Traditional treatments such as surgery, radiotherapy, and chemotherapy often fall short because of intrinsic issues such as lack of specificity and poor drug delivery, leading to insufficient drug concentration at the tumor site and/or potential side effects. Consequently, improving the delivery of conventional chemotherapy drugs like doxorubicin (DOX) is crucial for their therapeutic efficacy. Successful cancer treatment is achieved when regulated cell death (RCD) of cancer cells, which includes apoptotic and non-apoptotic processes such as ferroptosis, is fundamental to successful cancer treatment. The developing field of nanozymes holds considerable promise for innovative cancer treatment approaches. Methods: A dual-metallic nanozyme system encapsulated with DOX was created, derived from metal-organic frameworks (MOFs), designed to combat tumors by depleting glutathione (GSH) and concurrently liberating DOX. The initial phase of the study examined the GSH oxidase-mimicking function of the dimetallic nanozyme (ZIF-8/SrSe) through enzyme kinetic assays and Density Functional Theory (DFT) simulations. Following this, we probed the ability of ZIF-8/SrSe@DOX to release DOX in response to the tumor microenvironment in vitro, alongside examining its anticancer capabilities and mechanisms prompting apoptosis or ferroptosis in cancer cells. Moreover, we established tumor-bearing animal models to corroborate the anti-tumor effectiveness of our nanozyme complex and to identify the involved apoptotic and ferroptotic pathways implicated. Results: Enzyme kinetic analyses demonstrated that the ZIF-8/SrSe nanozyme exhibits substantial GSH oxidase-like activity, effectively oxidizing reduced GSH to glutathione disulfide (GSSG), while also inhibiting glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11). This inhibition led to an imbalance in iron homeostasis, pronounced caspase activation, and subsequent induction of apoptosis and ferroptosis in tumor cells. Additionally, the ZIF-8/SrSe@DOX nanoparticles efficiently delivered DOX, causing DNA damage and further promoting apoptotic and ferroptotic pathways. Conclusions: This research outlines the design of a novel platform that combines chemotherapeutic agents with a Fenton reaction catalyst, offering a promising strategy for cancer therapy that leverages the synergistic effects of apoptosis and ferroptosis.


Assuntos
Ferroptose , Neoplasias , Morte Celular Regulada , Animais , Apoptose , Sistemas de Liberação de Medicamentos , Glutationa , Dissulfeto de Glutationa , Doxorrubicina/farmacologia , Oxirredutases , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Microambiente Tumoral
6.
Elife ; 122024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38442142

RESUMO

Cytokine storms are associated with severe pathological damage and death in some diseases. Excessive activation of M1 macrophages and the subsequent secretion of pro-inflammatory cytokines are a major cause of cytokine storms. Therefore, promoting the polarization of M2 macrophages to restore immune balance is a promising therapeutic strategy for treating cytokine storm syndrome (CSS). This study was aimed at investigating the potential protective effects of leucine on lipopolysaccharide (LPS)-induced CSS in mice and exploring the underlying mechanisms. CSS was induced by LPS administration in mice, which were concurrently administered leucine orally. In vitro, bone marrow derived macrophages (BMDMs) were polarized to M1 and M2 phenotypes with LPS and interleukin-4 (IL-4), respectively, and treated with leucine. Leucine decreased mortality in mice treated with lethal doses of LPS. Specifically, leucine decreased M1 polarization and promoted M2 polarization, thus diminishing pro-inflammatory cytokine levels and ameliorating CSS in mice. Further studies revealed that leucine-induced macrophage polarization through the mechanistic target of rapamycin complex 1 (mTORC1)/liver X receptor α (LXRα) pathway, which synergistically enhanced the expression of the IL-4-induced M2 marker Arg1 and subsequent M2 polarization. In summary, this study revealed that leucine ameliorates CSS in LPS mice by promoting M2 polarization through the mTORC1/LXRα/Arg1 signaling pathway. Our findings indicate that a fundamental link between metabolism and immunity contributes to the resolution of inflammation and the repair of damaged tissues.


Assuntos
Síndrome da Liberação de Citocina , Interleucina-4 , Animais , Camundongos , Receptores X do Fígado , Leucina/farmacologia , Lipopolissacarídeos , Citocinas , Transdução de Sinais , Macrófagos , Alvo Mecanístico do Complexo 1 de Rapamicina
7.
Sci Rep ; 14(1): 4373, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388553

RESUMO

Cancer therapy necessitates the development of novel and effective treatment modalities to combat the complexity of this disease. In this project, we propose a synergistic approach by combining chemo-photothermal treatment using gold nanorods (AuNRs) supported on thiol-functionalized mesoporous silica, offering a promising solution for enhanced lung cancer therapy. To begin, mesoporous MCM-41 was synthesized using a surfactant-templated sol-gel method, chosen for its desirable porous structure, excellent biocompatibility, and non-toxic properties. Further, thiol-functionalized MCM-41 was achieved through a simple grafting process, enabling the subsequent synthesis of AuNRs supported on thiol-functionalized MCM-41 (AuNR@S-MCM-41) via a gold-thiol interaction. The nanocomposite was then loaded with the anticancer drug doxorubicin (DOX), resulting in AuNR@S-MCM-41-DOX. Remarkably, the nanocomposite exhibited pH/NIR dual-responsive drug release behaviors, facilitating targeted drug delivery. In addition, it demonstrated exceptional biocompatibility and efficient internalization into A549 lung cancer cells. Notably, the combined photothermal-chemo therapy by AuNR@S-MCM-41-DOX exhibited superior efficacy in killing cancer cells compared to single chemo- or photothermal therapies. This study showcases the potential of the AuNR@S-MCM-41-DOX nanocomposite as a promising candidate for combined chemo-photothermal therapy in lung cancer treatment. The innovative integration of gold nanorods, thiol-functionalized mesoporous silica, and pH/NIR dual-responsive drug release provides a comprehensive and effective therapeutic approach for improved outcomes in lung cancer therapy. Future advancements based on this strategy hold promise for addressing the challenges posed by cancer and transforming patient care.


Assuntos
Neoplasias Pulmonares , Nanotubos , Humanos , Terapia Fototérmica , Neoplasias Pulmonares/tratamento farmacológico , Ouro/química , Doxorrubicina , Dióxido de Silício/química , Fototerapia , Nanotubos/química
8.
J Anim Sci Biotechnol ; 15(1): 22, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38331814

RESUMO

BACKGROUND: Transmissible gastroenteritis virus (TGEV) is one of the main pathogens causing severe diarrhea of piglets. The pathogenesis of TGEV is closely related to intestinal inflammation. All-trans retinoic acid (ATRA) is the main active metabolite of vitamin A, which has immunomodulatory and anti-inflammatory properties. However, it is unclear whether ATRA can alleviate TGEV-induced intestinal inflammation and barrier dysfunction in piglets. This study aimed to investigate the effects of ATRA on growth performance, diarrhea, intestinal inflammation and intestinal barrier integrity of TGEV-challenged piglets. METHODS: In a 19-d study, 32 weaned piglets were randomly divided into 4 treatments: Control group (basal diet), TGEV group (basal diet + TGEV challenge), TGEV + ATRA5 group (basal diet + 5 mg/d ATRA + TGEV challenge) and TGEV + ATRA15 group (basal diet + 15 mg/d ATRA + TGEV challenge). On d 14, piglets were orally administered TGEV or the sterile medium. RESULTS: Feeding piglets with 5 and 15 mg/d ATRA alleviated the growth inhibition and diarrhea induced by TGEV (P < 0.05). Feeding piglets with 5 and 15 mg/d ATRA also inhibited the increase of serum diamine oxidase (DAO) activity and the decrease of occludin and claudin-1 protein levels in jejunal mucosa induced by TGEV, and maintained intestinal barrier integrity (P < 0.05). Meanwhile, 5 mg/d ATRA feeding increased the sucrase activity and the expressions of nutrient transporter related genes (GLUT2 and SLC7A1) in jejunal mucosa of TGEV-challenged piglets (P < 0.05). Furthermore, 5 mg/d ATRA feeding attenuated TGEV-induced intestinal inflammatory response by inhibiting the release of interleukin (IL)-1ß, IL-8 and tumor necrosis factor-α (TNF-α), and promoting the secretion of IL-10 and secretory immunoglobulin A (sIgA) (P < 0.05). Feeding 5 mg/d ATRA also down-regulated the expressions of Toll-like receptors and RIG-I like receptors signaling pathway related genes (TLR3, TLR4, RIG-I, MyD88, TRIF and MAVS) and the phosphorylation level of nuclear factor-κB-p65 (NF-κB p65), and up-regulated the inhibitor kappa B alpha (IκBα) protein level in jejunal mucosa of TGEV-challenged piglets (P < 0.05). CONCLUSIONS: ATRA alleviated TGEV-induced intestinal barrier damage by inhibiting inflammatory response, thus improving the growth performance and inhibiting diarrhea of piglets. The mechanism was associated with the inhibition of NF-κB signaling pathway mediated by TLR3, TLR4 and RIG-I.

9.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38198728

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is one of the major bacterial infections, causing substantial economic losses globally in the swine industry. This study aimed to investigate the impact of low Saccharomyces cerevisiae fermentation postbiotics (SCFP), high SCFP, essential oil (EO), or their combination on the growth performance and health of weanling pigs during ETEC infection. Forty-eight male weanling pigs were randomly allocated to five groups: 1) control group (CON-basal diet, n = 16); 2) low SCFP group (LSC-basal diet + 1.25 g/kg SCFP, n = 8); 3) high SCFP group (HSC-basal diet + 2 g/kg SCFP, n = 8); 4) essential oil group (EO-basal diet + 0.4 g/kg EO, n = 8); 5) the SCFP and EO combination group (SE-basal diet + 1.25 g/kg SCFP + 0.4 g/kg EO, n = 8). On day 15 of the trial, pigs in CON were divided into positive control (PC) and negative control (NC), and all pigs, except in NC, were challenged with ETEC. Under the normal condition, dietary LSC, HSC, EO, and EO all increased average daily gain (ADG) (P < 0.05), and decreased F:G ratio (P < 0.05) accompanied by decreased malondialdehyde (MDA) and increases in catalase (CAT), total superoxide dismutase (T-SOD), total antioxidant capacity (T-AOC) indicating enhanced anti-oxidative capacity, as well as decreased IL-2, IL-8, INF-γ, indicating mitigated systemic inflammation. During ETEC infection, all treatments alleviated ETEC-induced ADG reduction, diarrhea, damages in intestinal permeability and morphology, and down-regulation of tight junctions (Claudin1, ZO-1, and Occludin), while HSC and EO exhibited additional protections. All treatments increased CAT, T-SOD, and T-AOC, and decreased MDA in serum and jejunal mucosa at similar degrees (P < 0.05). Moreover, all treatments alleviated ETEC-induced inflammation as shown by decreased IL-6, TNF-α, INF-γ, and increased IL-4 and IL-10 in serum or jejunal mucosa (P < 0.05), and enhanced the immunity by increased serum IgG and mucosal sIgA (P < 0.05). HSC and SE further reduced mucosal INF-γ and TNF-α than LSC or EO aligning with their additional protection against diarrhea during ETEC infection. Additionally, the key gut bacteria (e.g., Terrisporobacter) related to the benefits of SCFP and EO were identified. In sum, all treatments enhanced growth performance and protected against ETEC-induced intestinal damage through the regulation of redox and immune homeostasis. HSP and SE offered extra protection during disease for their additional control of inflammation. Our study provided new insight into the use of feed additives in the context of animal health states.


Weanling pigs are vulnerable to a variety of stressors and pathogen infections. Enterotoxigenic Escherichia coli (ETEC) is one of the leading causes of diarrhea and growth retardation in weanling pigs. The postbiotics, Saccharomyces cerevisiae fermentation postbiotics (SCFP), and essential oil (EO, mainly thymol, and cinnamaldehyde) were reported to exert health benefits in different sites of the intestine. However, whether SCFP and EO have dose and synergistic effects on weanling pigs, especially against ETEC infection, is incompletely understood. Our research has revealed that SCFP, EO, and their combination all enhanced the growth performance and intestinal barrier function, and reduced diarrhea of piglets, albeit to varying degrees, under both health conditions and ETEC infection. We further elucidated the disparity in the regulation of redox and immune homeostasis by SCFP, EO, and their combination contributing to their different action in distinct states. This has led to a reevaluation of the function of additives in the context of gut health and disease susceptibility.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Óleos Voláteis , Doenças dos Suínos , Suínos , Masculino , Animais , Saccharomyces cerevisiae , Fator de Necrose Tumoral alfa , Óleos Voláteis/farmacologia , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Diarreia/microbiologia , Diarreia/veterinária , Dieta/veterinária , Inflamação/veterinária , Superóxido Dismutase , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/microbiologia , Ração Animal/análise , Desmame
10.
Eur Spine J ; 33(3): 1069-1080, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246903

RESUMO

PURPOSE: To compare the clinical outcomes and radiographic outcomes of cortical bone trajectory (CBT) and traditional trajectory (TT) pedicle screw fixation in patients treated with single-level transforaminal lumbar interbody fusion (TLIF). METHODS: This trial included a total of 224 patients with lumbar spine disease who required single-level TLIF surgery. Patients were randomly assigned to the CBT and TT groups at a 1:1 ratio. Demographics and clinical and radiographic data were collected to evaluate the efficacy and safety of CBT and TT screw fixation in TLIF. RESULTS: The baseline characteristic data were similar between the CBT and TT groups. Back and leg pain for both the CBT and TT groups improved significantly from baseline to 24 months postoperatively. The CBT group experienced less pain than the TT group at one week postoperatively. The postoperative radiographic results showed that the accuracy of screw placement was significantly increased in the CBT group compared with the TT group (P < 0.05). The CBT group had a significantly lower rate of FJV than the TT group (P < 0.05). In addition, the rate of fusion and the rate of screw loosening were similar between the CBT and TT groups according to screw loosening criteria. CONCLUSION: This prospective, randomized controlled analysis suggests that clinical outcomes and radiographic characteristics, including fusion rates and caudal screw loosening rates, were comparable between CBT and TT screw fixation. Compared with the TT group, the CBT group showed advantages in the accuracy of screw placement and the FJV rate. CLINICAL TRIALS REGISTRATION: This trial has been registered at the US National Institutes of Health Clinical Trials Registry: NCT03105167.


Assuntos
Parafusos Pediculares , Fusão Vertebral , Humanos , Parafusos Pediculares/efeitos adversos , Fusão Vertebral/métodos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Estudos Prospectivos , Resultado do Tratamento , Osso Cortical/diagnóstico por imagem , Osso Cortical/cirurgia , Dor/etiologia
11.
Small ; 20(1): e2304438, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37661593

RESUMO

The cell elimination strategy based on reactive oxygen species (ROS) is a promising method for tumor therapy. However, its efficacy is significantly limited by ROS deficiency caused by H2 O2 substrate deficiency and up-regulation of cellular antioxidant defense induced by high glutathione (GSH) content in tumor cells. To overcome these obstacles, a multifunctional self-cascaded nanocomposite: glucose oxidase (GOX) loaded NaYF4 :Yb/Er@Mn3 O4 (UC@Mn3 O4 , labeled as UCMn) is constructed. Only in tumor microenvironment, it can be specifically activated through a series of cascades to boost ROS production via a strategy of open source (H2 O2 self-supplying ability). The increased ROS can enhance lipid peroxidation and induce tumor cell apoptosis by activating the protein caspase. More importantly, the nanozyme can consume GSH to inhibit glutathione peroxidase 4 (GPX4) activity, which limits tumor cell resistance to oxidative damage and triggers the tumor cell ferroptosis. Therefore, this strategy is expected to overcome the resistance of tumor to oxidative damage and achieve efficient oxidative damage of tumor. Further, degradation of the Mn3 O4 layer induced by GSH and acidic environment can promote the fluorescence recovery of UC fluorescent nuclear for tumor imaging to complete efficient integration of diagnosis and treatment for tumor.


Assuntos
Ferroptose , Nanocompostos , Neoplasias , Humanos , Glucose Oxidase , Espécies Reativas de Oxigênio , Apoptose , Imagem Óptica , Antioxidantes , Glutationa , Neoplasias/terapia , Linhagem Celular Tumoral , Microambiente Tumoral , Peróxido de Hidrogênio
12.
Horm Metab Res ; 56(3): 214-222, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38052425

RESUMO

The aim of the study was to investigate the relationship between VEGF-460C/T polymorphism and susceptibility to diabetic retinopathy (DR) in type 2 diabetes mellitus (T2DM) by meta-analysis. A comprehensive search was conducted across six databases until September 2023 to identify studies examining the association between VEGF-460C/T polymorphism and susceptibility to DR. Data process was performed by Stata 15.0 software. Eight studies were included, involving 1463 patients with DR. In the overall analysis, the difference was statistically significant only in the homozygous model (CC vs. TT: OR=1.86, p=0.048). A subgroup analysis of 6 papers with genotype frequency satisfying HWE in the control group indicated significant differences among the allele (C vs. T: OR=1.34, p=0.037), recessive (CC vs. CT+TT: OR=1.96, p=0.022) and homozygous (CC vs. TT: OR=2.28, p=0.015) models. However, in the dominant and heterozygous models, the difference was not statistically significant. The sensitivity of the HWE-based subgroup analysis showed that the conclusions in other gene models except the heterozygote model were not robust. This meta-analysis indicated that VEGF-460C/T gene polymorphism is associated with susceptibility to DR in T2DM. Allele C and genotype CC at the VEGF-460C/T locus are associated with an increased risk of DR in T2DM. However, considering that the results are not robust, more trials involving more rigorous design are needed to verify the findings of this review in the future.


Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Retinopatia Diabética/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único/genética , Fator A de Crescimento do Endotélio Vascular/genética
13.
Small ; 20(13): e2308167, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37953455

RESUMO

Intervertebral disc degeneration (IVDD) is a significant contributor to low back pain, characterized by excessive reactive oxygen species generation and inflammation-induced pyroptosis. Unfortunately, there are currently no specific molecules or materials available to effectively delay IVDD. This study develops a multifunctional full name of PG@Cu nanoparticle network (PG@Cu). A designed pentapeptide, bonded on PG@Cu nanoparticles via a Schiff base bond, imparts multifunctionality to the metal polyphenol particles (PG@Cu-FP). PG@Cu-FP exhibits enhanced escape from lysosomal capture, enabling efficient targeting of mitochondria to scavenge excess reactive oxygen species. The scavenging activity against reactive oxygen species originates from the polyphenol-based structures within the nanoparticles. Furthermore, Pyroptosis is effectively blocked by inhibiting Gasdermin mediated pore formation and membrane rupture. PG@Cu-FP successfully reduces the activation of the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 inflammasome by inhibiting Gasdermin protein family (Gasdermin D, GSDMD) oligomerization, leading to reduced expression of Nod-like receptors. This multifaceted approach demonstrates higher efficiency in inhibiting Pyroptosis. Experimental results confirm that PG@Cu-FP preserves disc height, retains water content, and preserves tissue structure. These findings highlight the potential of PG@Cu-FP in improving IVDD and provide novel insights for future research in IVDD treatments.


Assuntos
Degeneração do Disco Intervertebral , Nanopartículas , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Gasderminas , Inflamassomos/metabolismo , Mitocôndrias/metabolismo , Polifenóis/farmacologia
14.
Fitoterapia ; 173: 105786, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38135093

RESUMO

Four kinds of tea polysaccharides (MBTPS, MGTPS, ZBTPS, ZGTPS) were extracted from Maofeng black tea, Maofeng green tea,Ziyan black tea and Ziyan green tea, and then four tea polysaccharides (RMBTPS, RMGTPS, RZBTPS, RZGTPS) after metal removal were prepared. The physicochemical properties, antioxidant activity and inhibitory activity on cancer cell proliferation of the above polysaccharides were studied. The composition analysis shows that these tea polysaccharides were glycoproteins complexes, composed of a variety of monosaccharides, and the removal of metal ions did not lead to fundamental changes in the composition of polysaccharides. In vitro activity, after removing metal ions, the ABTS free radicals scavenging ability and reducing power of tea polysaccharides were decreased, and the inhibitory effect on proliferation of H22 cells weakened. There was a great correlation between metal elements Al and Ni and biological activity. The results showed that the metal ions in tea polysaccharides, especially Al and Ni, had positive effects on biological activity.


Assuntos
Antioxidantes , Neoplasias , Antioxidantes/farmacologia , Antioxidantes/química , Estrutura Molecular , Polissacarídeos/farmacologia , Polissacarídeos/química , Chá/química , Metais/química , Íons
15.
Sci Total Environ ; 905: 167043, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37717771

RESUMO

BACKGROUND: Iron plays a pivotal role in various physiological processes, including intestinal inflammation, ferroptosis, and the modulation of the gut microbiome. However, the way these factors interact with each other is unclear. METHODS: Mice models were fed with low, normal and high iron diets to assess their impacts on colitis, ferroptosis and gut microbiota. Untargeted fecal metabolomics analysis, 16S rRNA sequencing, histopathology analysis, real-time quantitative PCR and western blot were performed to analyze the differences in the intestinal inflammatory response and understanding its regulatory mechanisms between low, normal and high iron groups. RESULTS: The iron overload changed the serum iron, colon iron and fecal iron. In addition, the iron overload induced the colitis, induced the ferroptosis and altered the microbiome composition in the fecal of mice. By using untargeted fecal metabolomics analysis to screen of metabolites in the fecal, we found that different metabolomics profiles in the fecal samples between iron deficiency, normal iron and iron overload groups. The correlation analysis showed that both of iron deficiency and overload were closely related to Dubosiella. The relationship between microbial communities (e.g., Akkermansia, Alistipes, and Dubosiella) and colitis-related parameters was highly significant. Additionally, Alistipes and Bacteroides microbial communities displayed a close association with ferroptosis-related parameters. Iron overload reduced the concentration of metabolites, which exert the anti-inflammatory effects (e.g., (+)-.alpha.-tocopherol) in mice. The nucleotide metabolism, enzyme metabolism and metabolic diseases were decreased and the lipid metabolism was increased in iron deficiency and iron overload groups compared with normal iron group. CONCLUSION: Iron overload exacerbated colitis in mice by modulating ferroptosis and perturbing the gut microbiota. Iron overload-induced ferroptosis was associated with NRF2/GPX-4 signaling pathway. Specific microbial taxa and their associated metabolites were closely intertwined with both colitis and ferroptosis markers.


Assuntos
Colite , Ferroptose , Microbioma Gastrointestinal , Deficiências de Ferro , Sobrecarga de Ferro , Animais , Camundongos , RNA Ribossômico 16S , Colite/induzido quimicamente , Ferro , Bacteroidetes , Firmicutes , Camundongos Endogâmicos C57BL
16.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 37(6): 681-687, 2023 Jun 15.
Artigo em Chinês | MEDLINE | ID: mdl-37331943

RESUMO

Objective: To investigate the effectiveness of joystick technique assisted closed reduction and cannulated screw fixation in the treatment of femoral neck fracture. Methods: Seventy-four patients with fresh femoral neck fractures who met the selection criteria between April 2017 and December 2018 were selected and divided into observation group (36 cases with closed reduction assisted by joystick technique) and control group (38 cases with closed manual reduction). There was no significant difference in gender, age, fracture side, cause of injury, Garden classification, Pauwels classification, time from injury to operation, and complications (except for hypertension) between the two groups ( P>0.05). The operation time, intraoperative infusion volume, complications, and femoral neck shortening were recorded and compared between the two groups. Garden reduction index was used to evaluate the effect of fracture reduction, and score of fracture reduction (SFR) was designed and was used to evaluate the subtle reduction effect of joystick technique. Results: The operation was successfully completed in both groups. There was no significant difference in operation time and intraoperative infusion volume between the two groups ( P>0.05). All patients were followed up 17-38 months, with an average of 27.7 months. Two patients in the observation group received joint replacement due to failure of internal fixation during the follow-up, and the other patients had fracture healing. Within 1 week after operation, the Garden reduxtion index of the observation group was better than the control group; the SFR score of the observation group was also higher than that of the control group; the proportion of femoral neck shortening within 1 week after operation and at 1 year after operation in the observation group were lower than those in the control group. The differences of the above indexes between the two groups were significant ( P<0.05). Conclusion: The joystick technique can improve the effectiveness of closed reduction of femoral neck fractures and reduce the incidence of femoral neck shortening. The designed SFR score can directly and objectively evaluate the reduction effect of femoral neck fracture.


Assuntos
Fraturas do Colo Femoral , Procedimentos de Cirurgia Plástica , Humanos , Resultado do Tratamento , Parafusos Ósseos , Fraturas do Colo Femoral/cirurgia , Fixação Interna de Fraturas/métodos , Estudos Retrospectivos
17.
Free Radic Biol Med ; 205: 202-213, 2023 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-37302616

RESUMO

Acute liver injury (ALI) can progress to severe liver diseases, making its prevention and treatment a focus of research. Retinoic acid (RA) has been shown to have anti-oxidative and iron-regulatory effects on organs. In this study, we investigated the effect of RA on lipopolysaccharide (LPS)-induced ALI in both in vivo and in vitro experiments. We found that RA significantly reduced LPS-induced serum iron and red blood cell-associated disorders, as well as decreased serum ALT and AST levels. RA also reversed the accumulation of non-heme iron and labile iron in LPS-induced mice and hepatocytes by increasing the expression of FTL/H and Fpn. Furthermore, RA inhibited tissue reactive oxygen species (ROS) and malondialdehyde (MDA) production and improved the expression of Nrf2/HO-1/GPX4 in mice and Nrf2 signaling in hepatocytes. In vitro experiments employing RAR agonists and antagonists have revealed that retinoic acid (RA) can effectively inhibit cell ferroptosis induced by lipopolysaccharide (LPS), erastin, and RSL3. The mechanism underlying this inhibition may involve the activation of retinoic acid receptors beta (RARß) and gamma (RARγ). Knocking down the RARß gene in Hepatocytes cells significantly diminished the RA's protective effect, indicating that the anti-ferroptotic role of RA was partially mediated by RARß signaling. Overall, our study demonstrated that RA inhibited ferroptosis-induced liver damage by regulating Nrf2/HO-1/GPX4 and RARß signaling.


Assuntos
Lipopolissacarídeos , Tretinoína , Camundongos , Animais , Tretinoína/farmacologia , Tretinoína/metabolismo , Lipopolissacarídeos/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Fígado/metabolismo , Ferro/metabolismo
18.
Anim Biotechnol ; 34(9): 4900-4909, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37149789

RESUMO

Intrauterine growth retardation (IUGR) can result in early liver oxidative damage and abnormal lipid metabolism in neonatal piglets. Ferulic acid (FA), a phenolic compound widely found in plants, has many biological functions, such as anti-inflammation and anti-oxidation. Thus, we explored the effects of dietary FA supplementation on antioxidant capacity and lipid metabolism in newborn piglets with IUGR. In the study, 24 7-day-old piglets were divided into three groups: normal birth weight (NBW), IUGR, and IUGR + FA. The NBW and IUGR groups were fed formula milk as a basal diet, while the IUGR + FA group was fed a basal diet supplemented with 100 mg/kg FA. The trial lasted 21 days. The results showed that IUGR decreased absolute liver weight, increased transaminase activity, reduced antioxidant capacity, and disrupted lipid metabolism in piglets. Dietary FA supplementation enhanced absolute liver weight, reduced serum MDA level and ROS concentrations in serum and liver, markedly increased serum and liver GSH-PX and T-SOD activities, decreased serum HDL-C and LDL-C and liver NEFA, and increased TG content and HL activity in the liver. The mRNA expression related to the Nrf2-Keap1 signaling pathway and lipid metabolism in liver were affected by IUGR. Supplementing FA improved the antioxidant capacity of liver by down-regulating Keap1 and up-regulating the mRNA expression of SOD1 and CAT, and regulated lipid metabolism by increasing the mRNA expression level of Fasn, Pparα, LPL, and CD36. In conclusion, the study suggests that FA supplementation can improve antioxidant capacity and alleviate lipid metabolism disorders in IUGR piglets.


Assuntos
Antioxidantes , Ácidos Cumáricos , Doenças dos Suínos , Feminino , Animais , Suínos , Antioxidantes/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Metabolismo dos Lipídeos , Retardo do Crescimento Fetal/tratamento farmacológico , Retardo do Crescimento Fetal/veterinária , Retardo do Crescimento Fetal/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Fígado , Suplementos Nutricionais , RNA Mensageiro/metabolismo
19.
Int J Biol Macromol ; 240: 124431, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37060970

RESUMO

Interferons are a group of glycoproteins that are expressed in various cell types in their inflammatory responses to infections. In this study, we explored the protective effects of porcine interferon-λ3 (PIFN-λ3) on intestinal inflammation and injury in mice induced by porcine rotavirus (PRV). BALB/c mice were administrated by PIFN-λ3 or phosphate buffer solution (PBS) for three days prior to PRV infection. We show that PRV infection caused acute inflammatory responses in mice, as indicated by increases in serum concentrations of inflammatory cytokines such as the interlukin-1ß (IL-1ß), interlukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) (P < 0.05). However, PIFN-λ3 administration not only decreased their concentrations but also elevated the concentrations of immunoglobulin (Ig) M and IgG in the PRV challenged mice (P < 0.05). PRV infection significantly decreased the jejunal villus height and the ratio of villus height to crypt depth (V/C); however, PIFN-λ3 treatment significantly elevated the villus height and the abundance of tight junction protein ZO-1 in the jejunum (P < 0.05). Moreover, PIFN-λ3 decreased the replication of PRV in the jejunal epithelium, but significantly increased the abundance of sIgA and the activities of maltase and sucrase in the PRV-challenged mice (P < 0.05). Interestingly, PIFN-λ3 elevated the expression levels of sodium/glucose cotransporter 1 (SGLT1) and mucin 2 (MUC2) in the PRV-challenged mice (P < 0.05). Moreover, PIFN-λ3 significantly increased the expression levels of IL-10, signal transducer and activator of transcription 1 (STAT1), and critical interferon-stimulated genes such as the 2'-5' oligoadenylate synthetase-like 1 (OASL1), interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) and radical S-adenosyl methionine domain containing 2 (RSAD2) in the jejunum upon PRV infection (P < 0.05). The anti-virus and anti-inflammatory effect of PIFN-λ3 should make it an attractive candidate to prevent various pathogen-induced bowel diseases.


Assuntos
Infecções por Rotavirus , Rotavirus , Animais , Suínos , Camundongos , Interferons/metabolismo , Interferons/farmacologia , Mucosa Intestinal/metabolismo , Citocinas/metabolismo , Infecções por Rotavirus/complicações , Infecções por Rotavirus/tratamento farmacológico , Infecções por Rotavirus/metabolismo
20.
Nutrients ; 15(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37111212

RESUMO

Ferroptosis, a form of regulated cell death, has been widely explored as a novel target for the treatment of diseases. The failure of the antioxidant system can induce ferroptosis. Epigallocatechin-3-Gallate (EGCG) is a natural antioxidant in tea; however, whether EGCG can regulate ferroptosis in the treatment of liver oxidative damage, as well as the exact molecular mechanism, is unknown. Here, we discovered that iron overload disturbed iron homeostasis in mice, leading to oxidative stress and damage in the liver by activating ferroptosis. However, EGCG supplementation alleviated the liver oxidative damage caused by iron overload by inhibiting ferroptosis. EGCG addition increased NRF2 and GPX4 expression and elevated antioxidant capacity in iron overload mice. EGCG administration attenuates iron metabolism disorders by upregulating FTH/L expression. Through these two mechanisms, EGCG can effectively inhibit iron overload-induced ferroptosis. Taken together, these findings suggest that EGCG is a potential ferroptosis suppressor, and may be a promising therapeutic agent for iron overload-induced liver disease.


Assuntos
Catequina , Ferroptose , Sobrecarga de Ferro , Hepatopatias , Camundongos , Animais , Antioxidantes/farmacologia , Estresse Oxidativo , Sobrecarga de Ferro/tratamento farmacológico , Catequina/farmacologia , Catequina/uso terapêutico , Hepatopatias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA