Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(33): e2303696120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549266

RESUMO

Glucagon-like peptide-1 receptor (GLP-1R) and glucagon receptor (GCGR), two members of class B1 G protein-coupled receptors, play important roles in glucose homeostasis and energy metabolism. They share a high degree of sequence homology but have different functionalities. Unimolecular dual agonists of both receptors developed recently displayed better clinical efficacies than that of monotherapy. To study the underlying molecular mechanisms, we determined high-resolution cryo-electron microscopy structures of GLP-1R or GCGR in complex with heterotrimeric Gs protein and three GLP-1R/GCGR dual agonists including peptide 15, MEDI0382 (cotadutide) and SAR425899 with variable activating profiles at GLP-1R versus GCGR. Compared with related structures reported previously and supported by our published pharmacological data, key residues responsible for ligand recognition and dual agonism were identified. Analyses of peptide conformational features revealed a difference in side chain orientations within the first three residues, indicating that distinct engagements in the deep binding pocket are required to achieve receptor selectivity. The middle region recognizes extracellular loop 1 (ECL1), ECL2, and the top of transmembrane helix 1 (TM1) resulting in specific conformational changes of both ligand and receptor, especially the dual agonists reshaped ECL1 conformation of GLP-1R relative to that of GCGR, suggesting an important role of ECL1 interaction in executing dual agonism. Structural investigation of lipid modification showed a better interaction between lipid moiety of MEDI0382 and TM1-TM2 cleft, in line with its increased potency at GCGR than SAR425899. Together, the results provide insightful information for the design and development of improved therapeutics targeting these two receptors simultaneously.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1 , Receptores de Glucagon , Microscopia Crioeletrônica , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Ligantes , Lipídeos , Peptídeos/química , Receptores de Glucagon/agonistas
2.
Cell Res ; 32(8): 761-772, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35739238

RESUMO

Somatostatin receptors (SSTRs) play versatile roles in inhibiting the secretion of multiple hormones such as growth hormone and thyroid-stimulating hormone, and thus are considered as targets for treating multiple tumors. Despite great progress made in therapeutic development against this diverse receptor family, drugs that target SSTRs still show limited efficacy with preferential binding affinity and conspicuous side-effects. Here, we report five structures of SSTR2 and SSTR4 in different states, including two crystal structures of SSTR2 in complex with a selective peptide antagonist and a non-peptide agonist, respectively, a cryo-electron microscopy (cryo-EM) structure of Gi1-bound SSTR2 in the presence of the endogenous ligand SST-14, as well as two cryo-EM structures of Gi1-bound SSTR4 in complex with SST-14 and a small-molecule agonist J-2156, respectively. By comparison of the SSTR structures in different states, molecular mechanisms of agonism and antagonism were illustrated. Together with computational and functional analyses, the key determinants responsible for ligand recognition and selectivity of different SSTR subtypes and multiform binding modes of peptide and non-peptide ligands were identified. Insights gained in this study will help uncover ligand selectivity of various SSTRs and accelerate the development of new molecules with better efficacy by targeting SSTRs.


Assuntos
Neoplasias , Receptores de Somatostatina , Microscopia Crioeletrônica , Humanos , Ligantes , Neoplasias/metabolismo , Receptores de Somatostatina/agonistas , Receptores de Somatostatina/metabolismo , Somatostatina/metabolismo , Somatostatina/farmacologia , Somatostatina/uso terapêutico
3.
Sci Adv ; 8(26): eabn8048, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35767622

RESUMO

As the only member of the CX3C chemokine receptor subfamily, CX3CR1 binds to its sole endogenous ligand CX3CL1, which shows notable potential as a therapeutic target in atherosclerosis, cancer, and neuropathy. However, the drug development of CX3CR1 is hampered partially by the lack of structural information. Here, we present two cryo-electron microscopy structures of CX3CR1-Gi1 complexes in ligand-free and CX3CL1-bound states at 2.8- and 3.4-Å resolution, respectively. Together with functional data, the structures reveal the key factors that govern the recognition of CX3CL1 by both CX3CR1 and US28. A much smaller conformational change of helix VI upon activation than previously solved class A GPCR-Gi complex structures is observed in CX3CR1, which may correlate with three cholesterol molecules that play essential roles in conformation stabilization and signaling transduction. Thus, our data deepen the understanding of cholesterol modulation in GPCR (G protein-coupled receptor) signaling and provide insights into the diversity of G protein coupling.


Assuntos
Quimiocina CX3CL1 , Receptores de Quimiocinas , Receptor 1 de Quimiocina CX3C/metabolismo , Quimiocina CX3CL1/metabolismo , Colesterol , Microscopia Crioeletrônica , Humanos , Receptores de Quimiocinas/metabolismo , Transdução de Sinais
4.
Sci Adv ; 8(18): eabm1232, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35507650

RESUMO

In response to three highly conserved neuropeptides, neuropeptide Y (NPY), peptide YY, and pancreatic polypeptide (PP), four G protein-coupled receptors mediate multiple essential physiological processes, such as food intake, vasoconstriction, sedation, and memory retention. Here, we report the structures of the human Y1, Y2, and Y4 receptors in complex with NPY or PP, and the Gi1 protein. These structures reveal distinct binding poses of the peptide upon coupling to different receptors, reflecting the importance of the conformational plasticity of the peptide in recognizing the NPY receptors. The N terminus of the peptide forms extensive interactions with the Y1 receptor, but not with the Y2 and Y4 receptors. Supported by mutagenesis and functional studies, subtype-specific interactions between the receptors and peptides were further observed. These findings provide insight into key factors that govern NPY signal recognition and transduction, and would enable development of selective drugs.

5.
Nature ; 604(7907): 779-785, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35418679

RESUMO

Adhesion G protein-coupled receptors (aGPCRs) are essential for a variety of physiological processes such as immune responses, organ development, cellular communication, proliferation and homeostasis1-7. An intrinsic manner of activation that involves a tethered agonist in the N-terminal region of the receptor has been proposed for the aGPCRs8,9, but its molecular mechanism remains elusive. Here we report the G protein-bound structures of ADGRD1 and ADGRF1, which exhibit many unique features with regard to the tethered agonism. The stalk region that proceeds the first transmembrane helix acts as the tethered agonist by forming extensive interactions with the transmembrane domain; these interactions are mostly conserved in ADGRD1 and ADGRF1, suggesting that a common stalk-transmembrane domain interaction pattern is shared by members of the aGPCR family. A similar stalk binding mode is observed in the structure of autoproteolysis-deficient ADGRF1, supporting a cleavage-independent manner of receptor activation. The stalk-induced activation is facilitated by a cascade of inter-helix interaction cores that are conserved in positions but show sequence variability in these two aGPCRs. Furthermore, the intracellular region of ADGRF1 contains a specific lipid-binding site, which proves to be functionally important and may serve as the recognition site for the previously discovered endogenous ADGRF1 ligand synaptamide. These findings highlight the diversity and complexity of the signal transduction mechanisms of the aGPCRs.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Humanos , Ligantes , Proteínas Oncogênicas/agonistas , Proteínas Oncogênicas/metabolismo , Ligação Proteica , Domínios Proteicos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo
6.
Nat Commun ; 13(1): 1057, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35217653

RESUMO

Glucose homeostasis, regulated by glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1) and glucagon (GCG) is critical to human health. Several multi-targeting agonists at GIPR, GLP-1R or GCGR, developed to maximize metabolic benefits with reduced side-effects, are in clinical trials to treat type 2 diabetes and obesity. To elucidate the molecular mechanisms by which tirzepatide, a GIPR/GLP-1R dual agonist, and peptide 20, a GIPR/GLP-1R/GCGR triagonist, manifest their multiplexed pharmacological actions over monoagonists such as semaglutide, we determine cryo-electron microscopy structures of tirzepatide-bound GIPR and GLP-1R as well as peptide 20-bound GIPR, GLP-1R and GCGR. The structures reveal both common and unique features for the dual and triple agonism by illustrating key interactions of clinical relevance at the near-atomic level. Retention of glucagon function is required to achieve such an advantage over GLP-1 monotherapy. Our findings provide valuable insights into the structural basis of functional versatility of tirzepatide and peptide 20.


Assuntos
Diabetes Mellitus Tipo 2 , Receptores de Glucagon , Microscopia Crioeletrônica , Diabetes Mellitus Tipo 2/tratamento farmacológico , Polipeptídeo Inibidor Gástrico , Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Glucose/uso terapêutico , Humanos , Peptídeos/química , Receptores Acoplados a Proteínas G
7.
Nat Commun ; 12(1): 737, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531491

RESUMO

The human neuropeptide Y (NPY) Y2 receptor (Y2R) plays essential roles in food intake, bone formation and mood regulation, and has been considered an important drug target for obesity and anxiety. However, development of drugs targeting Y2R remains challenging with no success in clinical application yet. Here, we report the crystal structure of Y2R bound to a selective antagonist JNJ-31020028 at 2.8 Å resolution. The structure reveals molecular details of the ligand-binding mode of Y2R. Combined with mutagenesis studies, the Y2R structure provides insights into key factors that define antagonistic activity of diverse antagonists. Comparison with the previously determined antagonist-bound Y1R structures identified receptor-ligand interactions that play different roles in modulating receptor activation and mediating ligand selectivity. These findings deepen our understanding about molecular mechanisms of ligand recognition and subtype specificity of NPY receptors, and would enable structure-based drug design.


Assuntos
Receptores de Neuropeptídeo Y/metabolismo , Benzamidas/farmacologia , Cristalografia por Raios X , Células HEK293 , Humanos , Mutagênese/genética , Mutagênese/fisiologia , Hormônios Peptídicos/farmacologia , Piperazinas/farmacologia , Estrutura Secundária de Proteína , Piridinas/farmacologia , Receptores de Neuropeptídeo Y/genética , Difração de Raios X
8.
FASEB J ; 34(10): 13091-13105, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32812686

RESUMO

Succinate receptor GPR91 is one of G protein-coupled receptors (GPCRs), and is expressed in a variety of cell types and tissues. Succinate is its natural ligand, and its activation represents that an intrinsic metabolic intermediate exerts a regulatory role on many critical life processes involving pathophysiologic mechanisms, such as innate immunity, inflammation, tissue repair, and oncogenesis. With the illustration of 3-dimensional crystal structure of the receptor and discovery of its antagonists, it is possible to dissect the succinate-GPR91-G protein signaling pathways in different cell types under pathophysiological conditions. Deep understanding of the GPR91-ligand binding mode with various agonists and antagonists would aid in elucidating the molecular basis of a spectrum of chronic illnesses, such as hypertension, diabetes, and their renal and retina complications, metabolic-associated fatty liver diseases, such as nonalcoholic steatohepatitis and its fibrotic progression, inflammatory bowel diseases (Crohn's disease and ulcerative colitis), age-related macular degeneration, rheumatoid arthritis, and progressive behaviors of malignancies. With better delineation of critical regulatory role of the succinate-GPR91 axis in these illnesses, therapeutic intervention may be developed by specifically targeting this signaling pathway with small molecular antagonists or other strategies.


Assuntos
Doenças Autoimunes/metabolismo , Cardiopatias/metabolismo , Hepatopatias/metabolismo , Neoplasias/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Animais , Humanos , Ligantes , Receptores Acoplados a Proteínas G/química
9.
Nano Lett ; 20(7): 5575-5582, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32578992

RESUMO

Glucagon binding to the class-B G-protein-coupled glucagon receptor (GCGR) triggers the release of glucose from the liver during fasting. Recently, GCGR crystal structures have highlighted the conformation and molecular details of inactive and active receptor states. However, the dynamics of the conformational changes accompanying GCGR activation remains unclear. Here, we use multiplex force-distance curve-based atomic force microscopy (FD-based AFM) to probe in situ glucagon binding to individual GCGRs and monitor dynamically the transition to the active conformer. After a "dock" step, in which glucagon is partially bound to the GCGR extracellular domain, further interactions of the N-terminus with the transmembrane domain trigger an increase in the stiffness of the complex, adopting a highly stable and rigid "lock" conformer. This mechanotransduction is key for G-protein recruitment.


Assuntos
Mecanotransdução Celular , Receptores Acoplados a Proteínas G , Ligantes , Peptídeos , Ligação Proteica
10.
J Biol Chem ; 295(28): 9313-9325, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32371397

RESUMO

Unimolecular dual agonists of the glucagon (GCG) receptor (GCGR) and glucagon-like peptide-1 receptor (GLP-1R) are a new class of drugs that are potentially superior to GLP-1R-specific agonists for the management of metabolic disease. The dual-agonist, peptide 15 (P15), is a glutamic acid 16 analog of GCG with GLP-1 peptide substitutions between amino acids 17 and 24 that has potency equivalent to those of the cognate peptide agonists at the GCGR and GLP-1R. Here, we have used cryo-EM to solve the structure of an active P15-GCGR-Gs complex and compared this structure to our recently published structure of the GCGR-Gs complex bound to GCG. This comparison revealed that P15 has a reduced interaction with the first extracellular loop (ECL1) and the top of transmembrane segment 1 (TM1) such that there is increased mobility of the GCGR extracellular domain and at the C terminus of the peptide compared with the GCG-bound receptor. We also observed a distinct conformation of ECL3 and could infer increased mobility of the far N-terminal His-1 residue in the P15-bound structure. These regions of conformational variance in the two peptide-bound GCGR structures were also regions that were distinct between GCGR structures and previously published peptide-bound structures of the GLP-1R, suggesting that greater conformational dynamics may contribute to the increased efficacy of P15 in activation of the GLP-1R compared with GCG. The variable domains in this receptor have previously been implicated in biased agonism at the GLP-1R and could result in altered signaling of P15 at the GCGR compared with GCG.


Assuntos
Microscopia Crioeletrônica , Peptídeos/química , Receptores de Glucagon , Animais , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/química , Receptor do Peptídeo Semelhante ao Glucagon 1/ultraestrutura , Humanos , Domínios Proteicos , Estrutura Quaternária de Proteína , Receptores de Glucagon/agonistas , Receptores de Glucagon/química , Receptores de Glucagon/ultraestrutura
11.
Br J Pharmacol ; 177(11): 2413-2433, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32037507

RESUMO

Eight G protein-coupled P2Y receptor subtypes respond to extracellular adenine and uracil mononucleotides and dinucleotides. P2Y receptors belong to the δ group of rhodopsin-like GPCRs and contain two structurally distinct subfamilies: P2Y1 , P2Y2 , P2Y4 , P2Y6 , and P2Y11 (principally Gq protein-coupled P2Y1 -like) and P2Y12-14 (principally Gi protein-coupled P2Y12 -like) receptors. Brain P2Y receptors occur in neurons, glial cells, and vasculature. Endothelial P2Y1 , P2Y2 , P2Y4 , and P2Y6 receptors induce vasodilation, while smooth muscle P2Y2 , P2Y4 , and P2Y6 receptor activation leads to vasoconstriction. Pancreatic P2Y1 and P2Y6 receptors stimulate while P2Y13 receptors inhibits insulin secretion. Antagonists of P2Y12 receptors, and potentially P2Y1 receptors, are anti-thrombotic agents, and a P2Y2 /P2Y4 receptor agonist treats dry eye syndrome in Asia. P2Y receptor agonists are generally pro-inflammatory, and antagonists may eventually treat inflammatory conditions. This article reviews recent developments in P2Y receptor pharmacology (using synthetic agonists and antagonists), structure and biophysical properties (using X-ray crystallography, mutagenesis and modelling), physiological and pathophysiological roles, and present and potentially future therapeutic targeting.


Assuntos
Agonistas do Receptor Purinérgico P2Y , Antagonistas do Receptor Purinérgico P2Y , Receptores Acoplados a Proteínas G , Transdução de Sinais , Humanos , Neurônios , Receptores Purinérgicos P2Y1
12.
Int J Biol Macromol ; 133: 564-574, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31004640

RESUMO

Dendrobium devonianum has been used as herbal medicines and nutraceutical products since ancient time in China. However, its chemical composition and pharmacological mechanisms are not fully known. In present studies, by chemical purification and characteristic identification, we discovered a novel polysaccharide from D. devonianum, which was designated as DvP-1 with molecular weights of 9.52 × 104 Da. DvP-1 is a homogeneous heteropolysaccharide consisting of D-mannose and d-glucose in the molar ration of 10.11: 1. The main glycosidic linkages were ß-1, 4-Manp, which were substituted with acetyl groups at the O-2, O-3 and/or O-6 positions. DvP-1 was found to directly stimulate the activation of macrophages in vitro, as evidenced by inducing morphologic change, thereby promoting the production of cytokines TNF-α, IL-6 and NO, and enhancing the pinocytic activity of macrophages. By establishing a zebrafish model, we also found that DvP-1 could alleviate vinorelbine-induced decrease of macrophages in vivo. Further findings indicated that DvP-1 activated macrophages through several toll-like receptors (TLRs), but mainly through TLR4. DvP-1 served as a TLR4 agonist and induced ERK, JNK, p38, and IκB-α phosphorylation, suggesting the activation of MAPK and NFκB signaling pathways downstream of TLR4. These findings could help us further understand the immunomodulating effects of D. devonianum in Chinese medicines or health foods for immunocompromised persons. They also show the medicinal value of DvP-1 for the treatment of cancer and infectious diseases caused by TLR4 dysfunction.


Assuntos
Dendrobium/química , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Polissacarídeos/farmacologia , Receptor 4 Toll-Like/agonistas , Animais , Proliferação de Células/efeitos dos fármacos , Citocinas/biossíntese , Macrófagos/citologia , Camundongos , Monossacarídeos/análise , Polissacarídeos/química , Células RAW 264.7 , Baço/imunologia , Vinorelbina/farmacologia , Peixe-Zebra
13.
Mol Neurodegener ; 14(1): 8, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30736827

RESUMO

BACKGROUND: Neurotropic virus-based tracers have been extensively applied in mapping and manipulation of neural circuits. However, their neurotropic and neurotoxic properties remain to be fully characterized. METHODS: Through neural circuit tracing, we systematically compared the neurotropism discrepancy among different multi-trans-synaptic and mono-synaptic retrograde viral tracers including pseudorabies virus (PRV), rabies virus (RV), and the newly engineered retro adeno-associated virus (rAAV2-retro) tracers. The (single-cell) RNA sequencing analysis was utilized for seeking possible attribution to neurotropism discrepancy and comparing cell toxicity caused by viral infection between glycoprotein-deleted RV (RV-∆G) and rAAV2-retro. Viral toxicity induced microglia activation and neuronal protein change were evaluated by immunohistochemistry. RESULTS: Multi-trans-synaptic retrograde viral tracers, PRV and RV, exhibit differential neurotropism when they were used for central neural circuit tracing from popliteal lymph nodes. Mono-synaptic retrograde tracers, including RV-∆G and rAAV2-retro, displayed discrepant neurotropic property, when they were applied to trace the inputs of lateral hypothalamic area and medial preoptic nucleus. rAAV2-retro demonstrated preference in cerebral cortex, whereas RV-∆G prefers to label basal ganglia and hypothalamus. Remarkably, we detected a distinct preference for specific cortical layer of rAAV2-retro in layer 5 and RV-∆G in layer 6 when they were injected into dorsal lateral geniculate nucleus to label corticothalamic neurons in primary visual cortex. Complementation of TVA receptor gene in RV-resistant neurons enabled EnvA-pseudotyped RV infection, supporting receptors attribution to viral neurotropism. Furthermore, both RV-∆G and rAAV2-retro exerted neurotoxic influence at the injection sites and retrogradely labeled sites, while the changes were more profound for RV-∆G infection. Finally, we demonstrated a proof-of-concept strategy for more comprehensive high-order circuit tracing of a specific target nucleus by combining rAAV2-retro, RV, and rAAV tracers. CONCLUSIONS: Different multi-trans-synaptic and mono-synaptic retrograde viral tracers exhibited discrepant neurotropism within certain brain regions, even cortical layer preference. More neurotoxicity was observed under RV-∆G infection as compared with rAAV2-retro. By combining rAAV2-retro, RV, and rAAV tracers, high-order circuit tracing can be achieved. Our findings provide important reference for appropriate application of viral tracers to delineate the landscape and dissect the function of neural network.


Assuntos
Encéfalo/virologia , Dependovirus , Corantes Fluorescentes , Herpesvirus Suídeo 1 , Vírus da Raiva , Animais , Proteínas Luminescentes , Camundongos , Infecções por Parvoviridae/patologia , Pseudorraiva/patologia , Raiva/patologia , Tropismo Viral
14.
Nature ; 556(7702): 520-524, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29670288

RESUMO

Neuropeptide Y (NPY) receptors belong to the G-protein-coupled receptor superfamily and have important roles in food intake, anxiety and cancer biology 1,2 . The NPY-Y receptor system has emerged as one of the most complex networks with three peptide ligands (NPY, peptide YY and pancreatic polypeptide) binding to four receptors in most mammals, namely the Y1, Y2, Y4 and Y5 receptors, with different affinity and selectivity 3 . NPY is the most powerful stimulant of food intake and this effect is primarily mediated by the Y1 receptor (Y1R) 4 . A number of peptides and small-molecule compounds have been characterized as Y1R antagonists and have shown clinical potential in the treatment of obesity 4 , tumour 1 and bone loss 5 . However, their clinical usage has been hampered by low potency and selectivity, poor brain penetration ability or lack of oral bioavailability 6 . Here we report crystal structures of the human Y1R bound to the two selective antagonists UR-MK299 and BMS-193885 at 2.7 and 3.0 Å resolution, respectively. The structures combined with mutagenesis studies reveal the binding modes of Y1R to several structurally diverse antagonists and the determinants of ligand selectivity. The Y1R structure and molecular docking of the endogenous agonist NPY, together with nuclear magnetic resonance, photo-crosslinking and functional studies, provide insights into the binding behaviour of the agonist and for the first time, to our knowledge, determine the interaction of its N terminus with the receptor. These insights into Y1R can enable structure-based drug discovery that targets NPY receptors.


Assuntos
Arginina/análogos & derivados , Di-Hidropiridinas/química , Di-Hidropiridinas/metabolismo , Ácidos Difenilacéticos/química , Ácidos Difenilacéticos/metabolismo , Neuropeptídeo Y/metabolismo , Compostos de Fenilureia/química , Compostos de Fenilureia/metabolismo , Receptores de Neuropeptídeo Y/antagonistas & inibidores , Receptores de Neuropeptídeo Y/química , Arginina/química , Arginina/metabolismo , Arginina/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Di-Hidropiridinas/farmacologia , Ácidos Difenilacéticos/farmacologia , Humanos , Fosfatos de Inositol/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação , Neuropeptídeo Y/química , Neuropeptídeo Y/farmacologia , Ressonância Magnética Nuclear Biomolecular , Compostos de Fenilureia/farmacologia , Ligação Proteica , Receptores de Neuropeptídeo Y/agonistas , Receptores de Neuropeptídeo Y/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
15.
Curr Opin Struct Biol ; 51: 53-60, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29567494

RESUMO

Class B G protein-coupled receptors (GPCRs) are important drug targets in many human diseases, including type 2 diabetes, obesity, cardiovascular disease and neurodegeneration. Peptide hormones bind to these receptors through interactions with both the extracellular domain and transmembrane domain. Despite remarkable advances in structural studies of GPCRs, structural characterization of the full-length class B receptors remains extremely challenging due to their conformational complexity. The recently solved structures of class B GPCRs reveal the structural basis of peptide ligand recognition and modulation mechanisms of small molecule allosteric modulators. Furthermore, these structures provide essential insights into molecular mechanisms of class B GPCR signal transduction and modulation.


Assuntos
Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Animais , Sítios de Ligação , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Ligantes , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade
16.
Sci Adv ; 3(6): e1701016, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28630934

RESUMO

G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors belong to the largest family of membrane-embedded cell surface proteins and are involved in a diverse array of physiological processes. Despite progress in the mass spectrometry of membrane protein complexes, G protein-coupled receptors have remained intractable because of their low yield and instability after extraction from cell membranes. We established conditions in the mass spectrometer that preserve noncovalent ligand binding to the human purinergic receptor P2Y1. Results established differing affinities for nucleotides and the drug MRS2500 and link antagonist binding with the absence of receptor phosphorylation. Overall, therefore, our results are consistent with drug binding, preventing the conformational changes that facilitate downstream signaling. More generally, we highlight opportunities for mass spectrometry to probe effects of ligand binding on G protein-coupled receptors.


Assuntos
Ligantes , Espectrometria de Massas , Receptores Acoplados a Proteínas G/química , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Modelos Moleculares , Conformação Molecular , Fosforilação , Ligação Proteica , Receptores Acoplados a Proteínas G/metabolismo , Receptores Purinérgicos P2Y1/química , Receptores Purinérgicos P2Y1/metabolismo , Relação Estrutura-Atividade
17.
Mol Pharmacol ; 88(2): 220-30, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25837834

RESUMO

Eight G protein-coupled P2Y receptor (P2YR) subtypes are important physiologic mediators. The human P2YRs are fully activated by ATP (P2Y2 and P2Y11), ADP (P2Y1, P2Y12, and P2Y13), UTP (P2Y2 and P2Y4), UDP (P2Y6 and P2Y14), and UDP glucose (P2Y14). Their structural elucidation is progressing rapidly. The X-ray structures of three ligand complexes of the Gi-coupled P2Y12R and two of the Gq-coupled P2Y1Rs were recently determined and will be especially useful in structure-based ligand design at two P2YR subfamilies. These high-resolution structures, which display unusual binding site features, complement mutagenesis studies for probing ligand recognition and activation. The structural requirements for nucleotide agonist recognition at P2YRs are relatively permissive with respect to the length of the phosphate moiety, but less so with respect to base recognition. Nucleotide-like antagonists and partial agonists are also known for P2Y1, P2Y2, P2Y4, and P2Y12Rs. Each P2YR subtype has the ability to be activated by structurally bifunctional agonists, such as dinucleotides, typically, dinucleoside triphosphates or tetraphosphates, and nucleoside polyphosphate sugars (e.g., UDP glucose) as well as the more conventional mononucleotide agonists. A range of dinucleoside polyphosphates, from triphosphates to higher homologs, occurs naturally. Earlier modeling predictions of the P2YRs were not very accurate, but recent findings have provided much detailed structural insight into this receptor family to aid in the rational design of new drugs.


Assuntos
Nucleotídeos/metabolismo , Agonistas do Receptor Purinérgico P2Y/metabolismo , Receptores Purinérgicos P2Y/química , Sítios de Ligação , Humanos , Modelos Moleculares , Nucleotídeos/química , Conformação Proteica , Agonistas do Receptor Purinérgico P2Y/química , Receptores Purinérgicos P2Y/metabolismo , Relação Estrutura-Atividade
18.
Nature ; 520(7547): 317-21, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25822790

RESUMO

In response to adenosine 5'-diphosphate, the P2Y1 receptor (P2Y1R) facilitates platelet aggregation, and thus serves as an important antithrombotic drug target. Here we report the crystal structures of the human P2Y1R in complex with a nucleotide antagonist MRS2500 at 2.7 Å resolution, and with a non-nucleotide antagonist BPTU at 2.2 Å resolution. The structures reveal two distinct ligand-binding sites, providing atomic details of P2Y1R's unique ligand-binding modes. MRS2500 recognizes a binding site within the seven transmembrane bundle of P2Y1R, which is different in shape and location from the nucleotide binding site in the previously determined structure of P2Y12R, representative of another P2YR subfamily. BPTU binds to an allosteric pocket on the external receptor interface with the lipid bilayer, making it the first structurally characterized selective G-protein-coupled receptor (GPCR) ligand located entirely outside of the helical bundle. These high-resolution insights into P2Y1R should enable discovery of new orthosteric and allosteric antithrombotic drugs with reduced adverse effects.


Assuntos
Nucleotídeos de Desoxiadenina/química , Nucleotídeos de Desoxiadenina/metabolismo , Antagonistas do Receptor Purinérgico P2Y/química , Receptores Purinérgicos P2Y1/química , Receptores Purinérgicos P2Y1/metabolismo , Uracila/análogos & derivados , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Nucleotídeos de Desoxiadenina/farmacologia , Humanos , Ligantes , Modelos Moleculares , Conformação Molecular , Antagonistas do Receptor Purinérgico P2Y/metabolismo , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Tionucleotídeos/química , Tionucleotídeos/metabolismo , Uracila/química , Uracila/metabolismo , Uracila/farmacologia
19.
Nature ; 509(7498): 119-22, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24784220

RESUMO

The P2Y12 receptor (P2Y12R), one of eight members of the P2YR family expressed in humans, is one of the most prominent clinical drug targets for inhibition of platelet aggregation. Although mutagenesis and modelling studies of the P2Y12R provided useful insights into ligand binding, the agonist and antagonist recognition and function at the P2Y12R remain poorly understood at the molecular level. Here we report the structures of the human P2Y12R in complex with the full agonist 2-methylthio-adenosine-5'-diphosphate (2MeSADP, a close analogue of endogenous agonist ADP) at 2.5 Šresolution, and the corresponding ATP derivative 2-methylthio-adenosine-5'-triphosphate (2MeSATP) at 3.1 Šresolution. These structures, together with the structure of the P2Y12R with antagonist ethyl 6-(4-((benzylsulfonyl)carbamoyl)piperidin-1-yl)-5-cyano-2-methylnicotinate (AZD1283), reveal striking conformational changes between nucleotide and non-nucleotide ligand complexes in the extracellular regions. Further analysis of these changes provides insight into a distinct ligand binding landscape in the δ-group of class A G-protein-coupled receptors (GPCRs). Agonist and non-nucleotide antagonist adopt different orientations in the P2Y12R, with only partially overlapped binding pockets. The agonist-bound P2Y12R structure answers long-standing questions surrounding P2Y12R-agonist recognition, and reveals interactions with several residues that had not been reported to be involved in agonist binding. As a first example, to our knowledge, of a GPCR in which agonist access to the binding pocket requires large-scale rearrangements in the highly malleable extracellular region, the structural and docking studies will therefore provide invaluable insight into the pharmacology and mechanisms of action of agonists and different classes of antagonists for the P2Y12R and potentially for other closely related P2YRs.


Assuntos
Difosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/análogos & derivados , Agonistas do Receptor Purinérgico P2Y/química , Receptores Purinérgicos P2Y12/química , Tionucleotídeos/química , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Humanos , Ligantes , Modelos Moleculares , Niacina/análogos & derivados , Niacina/química , Niacina/metabolismo , Conformação Proteica , Agonistas do Receptor Purinérgico P2Y/metabolismo , Antagonistas do Receptor Purinérgico P2Y/química , Antagonistas do Receptor Purinérgico P2Y/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Especificidade por Substrato , Sulfonamidas/química , Sulfonamidas/metabolismo , Tionucleotídeos/metabolismo
20.
Nature ; 509(7498): 115-8, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24670650

RESUMO

P2Y receptors (P2YRs), a family of purinergic G-protein-coupled receptors (GPCRs), are activated by extracellular nucleotides. There are a total of eight distinct functional P2YRs expressed in human, which are subdivided into P2Y1-like receptors and P2Y12-like receptors. Their ligands are generally charged molecules with relatively low bioavailability and stability in vivo, which limits our understanding of this receptor family. P2Y12R regulates platelet activation and thrombus formation, and several antithrombotic drugs targeting P2Y12R--including the prodrugs clopidogrel (Plavix) and prasugrel (Effient) that are metabolized and bind covalently, and the nucleoside analogue ticagrelor (Brilinta) that acts directly on the receptor--have been approved for the prevention of stroke and myocardial infarction. However, limitations of these drugs (for example, a very long half-life of clopidogrel action and a characteristic adverse effect profile of ticagrelor) suggest that there is an unfulfilled medical need for developing a new generation of P2Y12R inhibitors. Here we report the 2.6 Å resolution crystal structure of human P2Y12R in complex with a non-nucleotide reversible antagonist, AZD1283. The structure reveals a distinct straight conformation of helix V, which sets P2Y12R apart from all other known class A GPCR structures. With AZD1283 bound, the highly conserved disulphide bridge in GPCRs between helix III and extracellular loop 2 is not observed and appears to be dynamic. Along with the details of the AZD1283-binding site, analysis of the extracellular interface reveals an adjacent ligand-binding region and suggests that both pockets could be required for dinucleotide binding. The structure provides essential insights for the development of improved P2Y12R ligands and allosteric modulators as drug candidates.


Assuntos
Fibrinolíticos/química , Niacina/análogos & derivados , Receptores Purinérgicos P2Y12/química , Sulfonamidas/química , Sítios de Ligação , Cristalografia por Raios X , Dissulfetos/metabolismo , Humanos , Ligantes , Modelos Moleculares , Simulação de Acoplamento Molecular , Niacina/química , Niacina/metabolismo , Conformação Proteica , Antagonistas do Receptor Purinérgico P2Y/química , Antagonistas do Receptor Purinérgico P2Y/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Sulfonamidas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA