RESUMO
Background: Adult acute leukemia most commonly manifests as acute myeloid leukemia (AML), a highly heterogeneous malignant tumor of the blood system. The application of genetic diagnostic technology is currently prevalent in numerous clinical sectors. According to recent research, the presence of specific gene mutations or rearrangements in leukemia cells is the primary cause of the disease. As different types of leukemia are caused by atypical mutated genes, testing for these mutations or rearrangements can help diagnose leukemia and identify the disease's molecular targets for treatment. Methods: Using the search fields "WT1," "DNMT3A," "Acute myeloid leukemia," and "survival," the CBM, Cochrane Library, Scopus, EMBASE, and PUBMED databases were separately reviewed. The methodology for evaluating the risk of bias developed by the Cochrane Collaboration was used in conjunction with a methodical evaluation of pertinent literature. Excluded studies with the following characteristics: (1) incomplete and repetitive publications, (2) unable to retrieve or convert data, (3) non-English or Chinese articles. Results: This analysis included 13 studies covering a total of 3478 subjects. The frequency of Wilms' Tumor 1 (WT1) mutations is 6.7%-35.73%, and the frequency of DNMT3A mutations is 12.06%-51.1%. The remission rate of patients with WT1 mutations was less than that of patients without WT1 mutations (OR = 0.22; 95% confidence interval [CI]: 0.14, 0.36; p < 0.00001; I2 = 55%). The DNMT3A mutation has no statistical significance for the prognosis of AML (OR = 1.21; 95% CI: 0.93, 1.58; p = 0.16; I2 = 80%). After removing one study, the heterogeneity of the indicator (mitigation rate) among other studies of DNMT3A mutation was dramatically reduced (OR = 0.63; 95% CI: 0.43, 0.93; p = 0.02; I2 = 0%). Conclusions: Our meta-analysis shows that WT1 mutations hurt the remission rate of AML. Moreover, the impact of DNMT3A mutations on AML needs to be treated with caution. Gene diagnosis is critical for the prognosis and clinical management of AML.
RESUMO
Hereditary spherocytosis (HS) is a chronic hemolytic disorder caused by inherited defects in the red blood cell membrane. This study discusses the treatment strategy for the decline in hemoglobin level in three HS probands with moderately severe or severe hemolysis and summarizes the appropriate laboratory tests that help improve clinical management of blood transfusion in HS patients. Three probands who were diagnosed with HS in our hospital and their family members were included in this study. Clinical data of the three families were reviewed to summarize their hematopoietic characteristics. DNA from all family members of the 3 HS probands was amplified by polymerase chain reaction (PCR) and sequenced by the Sanger method to assess genetic relation for HS. Based on the sequencing results, the type of mutated membrane protein in each proband was analyzed using the eosin-5'-maleimide (EMA) binding test and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The hemoglobin level was reduced in all 3 probands after different levels of infection. The fluorescence of EMA-labeled red blood cell (RBC) was decreased. DNA sequencing showed that His54Pro, Leu1858Val, and 6531-12C>T compound heterozygous mutations were present in the SPTA1 gene of patient I-1, Arg344Gln and c.609+86G>A heterozygous mutations were present in the SLC4A1 gene of patient II-1, and Leu2032Pro homozygous mutation was present in the SPTB gene of patient III-1. SDS-PAGE results demonstrated that the concentration of band 3 was reduced in II-1, whereas the levels of the corresponding mutant proteins in the other probands were unchanged. The family members of the respective patients presented mutations in major genes causing HS. The Leu2032Pro mutation identified in patient III-1 is a new missense mutation of the SPTB gene in the Chinese population that has never been reported in literature previously. The presence or absence of acute or chronic infections is a critical deciding factor for the treatment and clinical management of HS patient via blood transfusion. For patients with infections, hemoglobin concentration can be restored once the infection is controlled, thus obviating the need for proper infection control before blood transfusion.