Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Discov ; 13(12): 2548-2565, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-37655965

RESUMO

PML nuclear bodies (NB) are disrupted in PML-RARA-driven acute promyelocytic leukemia (APL). Arsenic trioxide (ATO) cures 70% of patients with APL, driving PML-RARA degradation and NB reformation. In non-APL cells, arsenic binding onto PML also amplifies NB formation. Yet, the actual molecular mechanism(s) involved remain(s) elusive. Here, we establish that PML NBs display some features of liquid-liquid phase separation and that ATO induces a gel-like transition. PML B-box-2 structure reveals an alpha helix driving B2 trimerization and positioning a cysteine trio to form an ideal arsenic-binding pocket. Altering either of the latter impedes ATO-driven NB assembly, PML sumoylation, and PML-RARA degradation, mechanistically explaining clinical ATO resistance. This B2 trimer and the C213 trio create an oxidation-sensitive rheostat that controls PML NB assembly dynamics and downstream signaling in both basal state and during stress response. These findings identify the structural basis for arsenic targeting of PML that could pave the way to novel cancer drugs. SIGNIFICANCE: Arsenic curative effects in APL rely on PML targeting. We report a PML B-box-2 structure that drives trimer assembly, positioning a cysteine trio to form an arsenic-binding pocket, which is disrupted in resistant patients. Identification of this ROS-sensitive triad controlling PML dynamics and functions could yield novel drugs. See related commentary by Salomoni, p. 2505. This article is featured in Selected Articles from This Issue, p. 2489.


Assuntos
Arsênio , Arsenicais , Leucemia Promielocítica Aguda , Humanos , Arsênio/farmacologia , Corpos Nucleares da Leucemia Promielocítica , Cisteína , Arsenicais/farmacologia , Óxidos/farmacologia , Trióxido de Arsênio/farmacologia , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , Proteínas Oncogênicas , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo
2.
Biomater Adv ; 152: 213524, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37336009

RESUMO

Calcium phosphate bone cements (CPC) can be used in minimally invasive surgery because of their injectability, and they can also be used to repair small and irregular bone defects. This study aimed to release the antibiotic gentamicin sulfate (Genta) to reduce tissue inflammation and prevent infection in the early stages of bone recovery. Subsequently, the sustained release of the bone-promoting drug ferulic acid (FA) mimicked the response of osteoprogenitor D1 cells interaction, thereby accelerating the healing process of the overall bone repair. Accordingly, the different particle properties of micro-nano hybrid mesoporous bioactive glass (MBG), namely, micro-sized MBG (mMBG) and nano-sized MBG (nMBG), were explored separately to generate different dose releases in MBG/CPC composite bone cement. Results show that nMBG had better sustained-release ability than mMBG when impregnated with the same dose. When 10 wt% of mMBG hybrid nMBG and composite CPC were used, the amount of MBG slightly shortened the working/setting time and lowered the strength but did not hinder the biocompatibility, injectability, anti-disintegration, and phase transformation of the composite bone cement. Furthermore, compared with 2.5wt%Genta@mMBG/7.5 wt% FA@nMBG/CPC, 5wt.%Genta@mMBG/5wt.%FA@nMBG/CPC exhibited better antibacterial activity, better compressive strength, stronger mineralization of osteoprogenitor cell, and similar 14-day slow-release trend of FA. The MBG/CPC composite bone cement developed can be used in clinical surgery to achieve the synergistic sustained release of antibacterial and osteoconductive activities.


Assuntos
Antibacterianos , Cimentos Ósseos , Antibacterianos/farmacologia , Cimentos Ósseos/farmacologia , Preparações de Ação Retardada/farmacologia , Regeneração Óssea , Fosfatos de Cálcio
3.
Cancer Discov ; 11(12): 3198-3213, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34301789

RESUMO

Acute myeloid leukemia (AML) pathogenesis often involves a mutation in the NPM1 nucleolar chaperone, but the bases for its transforming properties and overall association with favorable therapeutic responses remain incompletely understood. Here we demonstrate that an oncogenic mutant form of NPM1 (NPM1c) impairs mitochondrial function. NPM1c also hampers formation of promyelocytic leukemia (PML) nuclear bodies (NB), which are regulators of mitochondrial fitness and key senescence effectors. Actinomycin D (ActD), an antibiotic with unambiguous clinical efficacy in relapsed/refractory NPM1c-AMLs, targets these primed mitochondria, releasing mitochondrial DNA, activating cyclic GMP-AMP synthase signaling, and boosting reactive oxygen species (ROS) production. The latter restore PML NB formation to drive TP53 activation and senescence of NPM1c-AML cells. In several models, dual targeting of mitochondria by venetoclax and ActD synergized to clear AML and prolong survival through targeting of PML. Our studies reveal an unexpected role for mitochondria downstream of NPM1c and implicate a mitochondrial/ROS/PML/TP53 senescence pathway as an effector of ActD-based therapies. SIGNIFICANCE: ActD induces complete remissions in NPM1-mutant AMLs. We found that NPM1c affects mitochondrial biogenesis and PML NBs. ActD targets mitochondria, yielding ROS which enforce PML NB biogenesis and restore senescence. Dual targeting of mitochondria with ActD and venetoclax sharply potentiates their anti-AML activities in vivo. This article is highlighted in the In This Issue feature, p. 2945.


Assuntos
Leucemia Mieloide Aguda , Proteínas Nucleares , Dactinomicina/farmacologia , Dactinomicina/uso terapêutico , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Mitocôndrias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina
4.
Int J Biol Macromol ; 178: 381-393, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33662414

RESUMO

Alzheimer's disease is a neurodegenerative disease which severely impacts the health of the elderly. Current treatments are only able to alleviate symptoms, but not prevent or cure the disease. The neurofibrillary tangles formed by tau protein aggregation are one of the defining characteristics of Alzheimer's disease, so tau protein has become a key target for the drug design. In this study, we show that fisetin, a plant-derived polyphenol compound, can inhibit aggregation of the tau fragment, K18, and can disaggregate tau K18 filaments in vitro. Meanwhile it is able to prevent the formation of tau aggregates in cells. Both experimental and computational studies indicate that fisetin could directly interact with tau K18 protein. The binding is mainly created by hydrogen bond and van der Waal force, prevents the formation of ß-strands at the two hexapeptide motifs, and does not perturb the secondary structure or the tubulin binding ability of tau protein. In summary, fisetin might be a candidate for further development as a potential preventive or therapeutic drug for Alzheimer's disease.


Assuntos
Flavonóis/química , Agregados Proteicos/efeitos dos fármacos , Proteínas tau/química , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Motivos de Aminoácidos , Flavonóis/farmacologia , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA