Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Cardiovasc Disord ; 24(1): 431, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39148029

RESUMO

BACKGROUND: Hyperhomocysteinemia (HHcy) is an independent risk factor for atherosclerosis (AS). Endothelial mesenchymal transition (EndMT) refers to the process in which endothelial cells lose endothelial cell morphology and characteristic gene expression, and acquire phenotypic characteristics and gene expression related to mesenchymal cells. Numerous studies have confirmed that EndMT is involved in the formation of atherosclerosis. Catalpol is one of the active components of Rehmannia, which has antioxidant, anti-inflammatory, anti-tumor, neuroprotective and other biological activities. Studies have shown that catalpol can reduce atherosclerotic plaque induced by high sugar or fat. However, the effect of catalpol on HHCY-induced EndMT is unclear. METHODS AND RESULTS: In vitro HHcy-treated primary human umbilical vein endothelial cells (HUVECs) were used to construct a cell model, and the antioxidants N-acetylcysteine (NAC) and catalase alcohol were administered. In vivo C57BL/6N mice were given a diet fed with 4.4% high methionine chow to construct a HHcy mice model and were treated with catalpol. The results showed that hhcy could induce morphological transformation of endothelial cells into mesenchymal cells, increase intracellular ROS content, up-regulate α-SMA, N-cadherin, p-p65 protein expression, down-regulate VE-cadherin, CD31 protein expression, induce pathological changes of aortic root endothelium, and increase aortic endothelial ROS content. Catalpol reversed these hhcy induced outcomes. CONCLUSIONS: Catalpol inhibits HHcy-induced EndMT, and the underlying mechanism may be related to the ROS/NF-κB signaling pathway. Catalpol may be a potential drug for the treatment of HHcy-related AS.


Assuntos
Aterosclerose , Transição Endotélio-Mesênquima , Hiper-Homocisteinemia , Glucosídeos Iridoides , NF-kappa B , Espécies Reativas de Oxigênio , Animais , Humanos , Antígenos CD/metabolismo , Antioxidantes/farmacologia , Aterosclerose/tratamento farmacológico , Aterosclerose/etiologia , Aterosclerose/patologia , Caderinas/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Transição Endotélio-Mesênquima/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/patologia , Hiper-Homocisteinemia/tratamento farmacológico , Hiper-Homocisteinemia/metabolismo , Hiper-Homocisteinemia/complicações , Glucosídeos Iridoides/farmacologia , Glucosídeos Iridoides/uso terapêutico , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Camundongos
2.
Cell Commun Signal ; 22(1): 213, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566235

RESUMO

BACKGROUND: Desensitization of G protein-coupled receptors (GPCRs) refers to the attenuation of receptor responsiveness by prolonged or intermittent exposure to agonists. The binding of ß-arrestin to the cytoplasmic cavity of the phosphorylated receptor, which competes with the G protein, has been widely accepted as an extensive model for explaining GPCRs desensitization. However, studies on various GPCRs, including dopamine D2-like receptors (D2R, D3R, D4R), have suggested the existence of other desensitization mechanisms. The present study employed D2R/D3R variants with different desensitization properties and utilized loss-of-function approaches to uncover the mechanisms underlying GPCRs homologous desensitization, focusing on the signaling cascade that regulates the ubiquitination of AKT. RESULTS: AKT undergoes K8/14 ubiquitination by TRAF6, which occurs in the nucleus and promotes its membrane recruitment, phosphorylation and activation under receptor desensitization conditions. The nuclear entry of TRAF6 relies on the presence of the importin complex. Src regulates the nuclear entry of TRAF6 by mediating the interaction between TRAF6 and importin ß1. Ubiquitinated AKT translocates to the plasma membrane where it associates with Mdm2 to phosphorylate it at the S166 and S186 residues. Thereafter, phosphorylated Mdm2 is recruited to the nucleus, resulting in the deubiquitination of ß-Arr2. The deubiquitinated ß-Arr2 then forms a complex with Gßγ, which serves as a biomarker for GPCRs desensitization. Like in D3R, ubiquitination of AKT is also involved in the desensitization of ß2 adrenoceptors. CONCLUSION: Our study proposed that the property of a receptor that causes a change in the subcellular localization of TRAF6 from the cytoplasm to the nucleus to mediate AKT ubiquitination could initiate the desensitization of GPCRs.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Fator 6 Associado a Receptor de TNF , Fator 6 Associado a Receptor de TNF/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Ubiquitinação , Fosforilação , Carioferinas
3.
iScience ; 27(3): 109045, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38361622

RESUMO

Splenectomy often accompanies distal pancreatectomy for pancreatic cancer. However, debates persist on splenic function loss impact. Prior studies in mice revealed splenectomy promotes pancreatic cancer growth by altering CD4/Foxp3 and CD8/Foxp3 ratios. The effect on other immune cells remains unclear. Clinical observations indicate splenectomy induces immunosuppression, heightening recurrence and metastasis risk. Here, we established an orthotopic pancreatic cancer model with splenectomy and observed a significant increase in tumor burden. Flow cytometry revealed elevated MDSCs, CD8+PD-1high+ T cells, and reduced CD4+ T cells, CD8+ T cells, and natural killer cells in tumors. Bulk sequencing identified increased MicroRNA (miRNA) hsa-7b-5p post-splenectomy, correlating with staging and immunosuppression. Similar results were obtained in vivo by constructing a KPC-miRNA hsa-7b-5p-sh cell line. These findings suggest that splenectomy enhances the expression of miRNA hsa-7b-5p, inhibits the tumor immune microenvironment, and promotes pancreatic cancer growth.

4.
Biochem Biophys Res Commun ; 628: 40-48, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36063601

RESUMO

Dopamine D2 receptor (D2R) plays a key role in the regulation of glucose homeostasis by stimulating the secretion of many glucoregulatory hormones. Insulin resistance (IR) is associated with the pathogenesis of metabolic disorders which occurs when PI3K/Akt signaling pathway is downregulated. However, the potential involvement of D2R in insulin resistance remains unclear. In the present study, we investigated the regulation of glucose transport by D2-like receptors and discovered that activation of D2R, but not D3R or D4R, suppressed insulin-induced 2-DOG uptake and Glut4 membrane translocation in a GRK2- and Src-dependent manner. Further study revealed that activation of D2R inhibits insulin-induced phosphorylation of Akt at Thr308 and Ser473, which are hallmarks of its kinase activity, by increasing the interaction of tyrosine phosphorylated GRK2 with Akt and then preventing Akt from interacting with PDK1. Thus, this study demonstrates that Src mediated GRK2 tyrosine phosphorylation is an essential physiological event that mediates the roles of D2R in insulin resistance.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G , Resistência à Insulina , Receptores de Dopamina D2 , Animais , Dopamina , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Glucose/metabolismo , Humanos , Insulina/metabolismo , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Dopamina D2/metabolismo , Tirosina/metabolismo
5.
Colloids Surf B Biointerfaces ; 218: 112765, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35981470

RESUMO

Precise molecular engineering of AIEgens-based cationic delivery systems for high transfection efficiency (TE) and effective photodynamic therapy (PDT) holds a huge potential for cancer treatment. Herein, three amphiphiles (DT-C6/8/12-M) consisting of di(triazole-[12]aneN3) (M) and 1,1-dicyano-2-phenyl-2-(4-diphenylamino)phenyl-ethylene (DT) units have been developed to achieve luminescent tracking, efficient TE, and effective PDT in vitro and in vivo. These compounds exhibited strong aggregated induced emission (AIE) at 630 nm and mega Stokes shifts of up to 160 nm. They were able to bind DNA into nanoparticles with suitable sizes, positive surface potential, and good biocompatibility in the presence of DOPE. Among them, vector DT-C12-M/DOPE with n-dodecyl linker achieved a transfection efficiency as high as 42.3 folds that of Lipo2000 in PC-3 cell lines. DT-C12-M/DOPE exhibited the capability of successful endo/lysosomal escape and rapid nuclear delivery of pDNA, and the gene delivery process was clearly monitored via confocal laser scanning microscopy. Moreover, efficient reactive oxygen species (ROS) generation by DT-C12-M upon light irradiation led to effective PDT in vitro . We further show that combination of p53 gene therapy and PDT dramatically enhanced cancer therapeutic outcome in vivo. This "three birds, one stone" strategy offers a novel and promising approach for real-time tracking of gene delivery and better cancer treatment.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , DNA/genética , Etilenos , Terapia Genética , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Espécies Reativas de Oxigênio , Triazóis , Proteína Supressora de Tumor p53
6.
Colloids Surf B Biointerfaces ; 217: 112651, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35759892

RESUMO

Gene therapy holds great promise for treatment of gene-associated diseases. However, safe and successful clinical application urgently requires further advancement of constructing efficient delivery systems. Herein, three amphiphilic peptide dendrimers (TTC-L-KRR/KKK/KHH), containing the natural amino acid residues (lysine K, arginine R, and histidine H) and AIE-based photosensitizer (tetraphenylethenethiophene modified cyanoacrylate, TTC) modified with alkyl chain (L), have been designed and prepared for improving therapeutic potency via the combination of gene therapy (GT) and photodynamic therapy (PDT). All three compounds possessed typical aggregation-induced emission (AIE) characteristics and ultralow critical micelle concentrations (CMCs). The liposomes consisting of amphiphilic peptide dendrimers and dioleoylphosphatidylethanolamine (DOPE) can effectively bind DNA into nanoparticles with appropriate sizes, regular morphology and good biocompatibility. Among them, liposomes TTC-L-KKK/DOPE exhibited the highest transfection efficiency up to 5.7-fold as compared with Lipo2000 in HeLa cells. Meanwhile, rapid endocytosis, successful endo/lysosomal escape, gene release and rapid nuclear delivery of DNA revealed the superiority of liposomes TTC-L-KKK/DOPE during gene delivery process. More importantly, efficient reactive oxygen species (ROS) generation by TTC-L-KKK/DOPE led to effective PDT, thus improving therapeutic potency via combining with p53 mediated-gene therapy. Our work brought novel insight and direction for the construction of bio-safe and bio-imaging liposome as the multifunctional nonviral gene vectors for the effective combined gene/photodynamic therapies.


Assuntos
Dendrímeros , Neoplasias , Fotoquimioterapia , DNA , Dendrímeros/química , Células HeLa , Humanos , Lipossomos/química , Neoplasias/tratamento farmacológico , Neoplasias/genética , Peptídeos/química , Transfecção
7.
J Mater Chem B ; 10(6): 945-957, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35072195

RESUMO

Six amphiphiles (TTC-L-M-1/2/3/4/5/6), each consisting of hydrophilic macrocyclic polyamine triazole-[12]aneN3 (M) and a hydrophobic photosensitizer tetraphenylethenethiophene modified cyanoacrylate (TTC) moiety linked with alkyl chains (L), have been designed and synthesized for synergetic anticancer gene therapy and photodynamic therapy (PDT). These amphiphiles showed strong AIE fluorescence emissions around 600 nm with large Stokes shifts up to 168 nm in an aqueous solution. They were able to condense DNA into nanoparticles with appropriate sizes, positive charges, reversible release, and good biocompatibility. Quantitative and qualitative gene transfection studies indicated that TTC-L-M-4 with a 12 carbon alkyl chain exhibited the best transfection efficiency in HeLa cells, and its transfection efficiency was 4.5-fold that of Lipo2000 in the presence of DOPE. The detailed and efficient delivery process of DNA by TTC-L-M-4 was clearly observed through one- and two-photon fluorescence imaging. Simultaneously, TTC-L-M-4/DOPE was able to deliver siRNA and gene silencing was better than that of Lipo2000. Furthermore, TTC-L-M-4 was able to efficiently generate reactive oxygen species (ROS) for PDT upon light irradiation. It was further demonstrated that combined p53 gene therapy and PDT significantly enhanced cancer therapy in vitro and in vivo. This study provides novel one-for-all organic agents with multiple therapeutic modalities.


Assuntos
Fotoquimioterapia , DNA , Células HeLa , Humanos , Fótons , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia
8.
Bioorg Chem ; 116: 105299, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34454300

RESUMO

The development of cationic polymers as non-viral gene vectors has been hurdled by their high toxicity, thus degradable and biocompatible polymers are urgently demanded. Herein, five polyesters (B3a-B3e) were synthesized based on the ring-opening copolymerization between α-allyl-δ-valerolactone and δ-valerolactone derivatives decorated with alkyl or alkoxyl chains of different lengths, followed by the modification with 1,5,9-triazacyclododecyl ([12]aneN3) through thiol-ene click reactions. The five polyesters effectively condensed DNA into nanoparticles. Of them, B3a with a shorter alkyl chain and B3d with more positive charged units showed stronger DNA condensing performance and can completely retard the migration of DNA at N/P = 1.6 in the presence of DOPE. B3b/DOPE with a longer alkyl chain exhibited the highest transfection efficiency in HeLa cells with 1.8 times of 25 kDa PEI, while B3d/DOPE with more positive charged units exhibited highest transfection efficiency in A549 cells with 2.3 times of 25 kDa PEI. B3b/DOPE and B3d/DOPE successfully delivered pEGFP into zebrafish, which was superior to 25 kDa PEI (1.5 folds and 1.1 folds, respectively). The cytotoxicity measurements proved that the biocompatibility of these polyesters was better than 25 kDa PEI, due to their degradable property in acid environment. The results indicated that these cationic polyesters can be developed as potential non-viral gene vectors for DNA delivery.


Assuntos
DNA/genética , Técnicas de Transferência de Genes , Lactonas/química , Nanopartículas/química , Poliésteres/química , Cátions/química , Cátions/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Vetores Genéticos/química , Humanos , Estrutura Molecular , Plasmídeos/genética , Poliésteres/farmacologia , Polimerização , Relação Estrutura-Atividade
9.
ACS Appl Mater Interfaces ; 13(20): 23384-23395, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33982571

RESUMO

Construction of multifunctional nonviral gene vectors to execute defined tasks holds great potential for the precise and effective treatment of gene-associated diseases. Herein, we have developed four large π-conjugation triphenylamine derivatives bearing two polar [12]aneN3 heads and a lipophilic tail for applications in gene delivery, one/two-photon-triggered near-infrared (NIR) fluorescence bioimaging, and combined photodynamic therapy (PDT) and gene therapy of cancer. These compounds possess typical NIR aggregation-induced emission characteristics, mega Stokes shifts, strong two-photon excitation fluorescence, and excellent DNA condensation abilities. Among them, vector 4 with a tail of n-hexadecane realized a transfection efficiency as high as 6.7 times that of the commercial transfection agent Lipofectamine 2000 in HEK293T cell lines. Using vector 4 as an example, transfection process tracking and ex vivo/in vivo tumoral imaging and retention with high resolution, high brightness, deep tissue penetration, and good biosafety were demonstrated. In addition, efficient singlet oxygen (1O2) generation by the DNA complex formed by vector 4 (4/DNA) resulted in effective PDT. Combined with anticancer gene therapy, collaborative cancer treatment with a dramatically enhanced cancer cell-killing effect was achieved. The development of this "three birds, one stone" approach suggests a new and promising strategy for better cancer treatment and real-time tracking of gene delivery.


Assuntos
Antineoplásicos , Corantes Fluorescentes , Vetores Genéticos , Nanomedicina Teranóstica/métodos , Animais , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Feminino , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Terapia Genética , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Fotoquimioterapia , Espectroscopia de Luz Próxima ao Infravermelho
10.
ACS Med Chem Lett ; 8(2): 239-244, 2017 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-28197319

RESUMO

Mcl-1 is a pro-apoptotic BH3 protein family member similar to Bcl-2 and Bcl-xL. Overexpression of Mcl-1 is often seen in various tumors and allows cancer cells to evade apoptosis. Here we report the discovery and optimization of a series of non-natural peptide Mcl-1 inhibitors. Screening of DNA-encoded libraries resulted in hit compound 1, a 1.5 µM Mcl-1 inhibitor. A subsequent crystal structure demonstrated that compound 1 bound to Mcl-1 in a ß-turn conformation, such that the two ends of the peptide were close together. This proximity allowed for the linking of the two ends of the peptide to form a macrocycle. Macrocyclization resulted in an approximately 10-fold improvement in binding potency. Further exploration of a key hydrophobic interaction with Mcl-1 protein and also with the moiety that engages Arg256 led to additional potency improvements. The use of protein-ligand crystal structures and binding kinetics contributed to the design and understanding of the potency gains. Optimized compound 26 is a <3 nM Mcl-1 inhibitor, while inhibiting Bcl-2 at only 5 µM and Bcl-xL at >99 µM, and induces cleaved caspase-3 in MV4-11 cells with an IC50 of 3 µM after 6 h.

11.
J Hazard Mater ; 322(Pt B): 540-550, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27776853

RESUMO

A convenient route to convert the highly toxic phosphine (PH3) tail gas into high-performance polybenzoxazines was first described in this paper. Two aliphatic polyamines, namely tris(aminomethyl)phosphine oxide and bis(aminomethyl)phenylphosphine oxide, were synthesized from tetrakis(hydroxymethyl)phosphonium sulfate (THPS), a green derivative of PH3 tail gas. And then two novel phosphorus-containing benzoxazine monomers, tris(3,4-dihydro-2H-1,3-benzoxazin-3-yl-methyl)phosphine oxide (TBOz) and benzylbis(3,4-dihydro-2H-1,3-benzoxazin-3-yl-methyl) phosphine oxide (BBOz) were prepared by three-steps procedure. FT-IR and DSC technologies were adopted to study the thermal-initiated polymerization behaviors of two benzoxazine monomers. Thermal properties of these crosslinked polymers were studied by TGA and DMA. The results display that the polybenzoxazines (PTBOz and PBBOz) exhibite good thermal stabilities and high glass transition temperatures. The char yield of polybanzoxazine is high as 47% and indiactes that phosphorus-containing polybenzoxazines show high fire-retardancy. The surface free energies of the PTBOz and PBBOz are 37.1 and 40.4mJm-2 by Owens two-liquid method. The dielectric properties of the PTBOz and PBBOz remaine near constant in the experimental frequency range.

12.
Oncol Lett ; 2(6): 1191-1196, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22848287

RESUMO

Peptidyl-prolyl isomerase Pin1 specifically catalyzes the cis/trans-isomerization of proline in the target sequence of phosphorylated Ser/Thr-Pro in over 50 critical regulatory proteins. Pin1 is abnormally overexpressed in a range of human cancers, including lung, breast, colon and prostate cancers. However, few reports of Pin1 overexpression are currently available in clinical samples. Therefore, we examined the expression of Pin1 and p53 in non-pathological human tissues and esophageal cancer tissues. In esophageal cancer tissues, Pin1 and p53 immunoreactivity was detected in cancer cells in 67 and 58% of cases, respectively. Moreover, Pin1 and p53 immunoreactivity was significantly correlated with lymph node-positive disease and more advanced cancer stage. The results demonstrated that high expression levels of Pin1 correlated with high levels of p53. Therefore, Pin1 is suggested to play key roles in the regulation of esophageal cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA