RESUMO
Three new heteroleptic Ru complexes, CYC-B22, CYC-B23C, and CYC-B23T, were prepared as sensitizers for coadsorbent-free, panchromatic, and efficient dye-sensitized solar cells. They are simultaneously functionalized with highly conjugated anchoring and ancillary ligands to explore the electronic and steric effects on their photovoltaic characteristics. The coadsorbent-free device based on CYC-B22 achieved the best power conversion efficiency (PCE) of 8.63% and a panchromatic response extending to 850 nm. The two stereoisomers, CYC-B23C and CYC-B23T coordinated with an unsymmetrical anchoring ligand, display similar absorption properties and the same driving forces for electron injection as well as dye regeneration. Nevertheless, the devices show not only the remarkably distinct PCE (6.64% vs 8.38%) but also discernible stability. The molecular simulation for the two stereoisomers adsorbed on TiO2 clarifies the distinguishable distances (16.9 Å vs 19.0 Å) between the sulfur atoms in the NCS ligands and the surface of the TiO2, dominating the charge recombination dynamics and iodine binding and therefore the PCE and stability of the devices. This study on the steric effects caused by the highly conjugated and unsymmetrical anchoring ligand on the adsorption geometry and photovoltaic performance of the dyes paves a new way for advancing the molecular design of polypyridyl metal complex sensitizers.
RESUMO
A series of new ionic fullerene derivatives (C60-RNH3-X; X = Cl, Br, or I) were designed especially for using as additives for tin perosvkite (TPsk, with chemical formula of FA0.98EDA0.01SnI3) to form TPsk-C60-RNH3-X bulk heterojunction (BHJ) films. Inverted tin-perovskite solar cells (TPSCs) based on BHJ TPsk-C60-RNH3-Br absorber achieved the highest power conversion efficiency up to 11.74% with very high FF of 73%, without current hysteresis and stable in a glovebox. The designed spherical ionic fullerene halide additive, sitting in the grain boundaries of the TPsk film, can not only improve the quality of the TPsk film and change the valence band energy to match better with the PEDOT:PSS hole transporter but also be a carrier transporting connector between tin-perovskite grains, the defects/traps passivation/healing agent by interacting with Sn2+ ions and filling the halogen vacancies. The functions of the ionic fullerene halide additive were revealed with XRD patterns, SEM images, element mapping, UPS spectra, infrared spectra, AFM, and SCLC data. Being able to passivate newly generated defects during device operation or sitting on the shelf is an important step to improve the long-term stability of TPSCs. If a passivation agent can move dynamically during cell operation or storage to heal the defects of perovskite, the instability problem of TPSCs can be alleviated. The spherical ionic fullerene halide could be one of the ideal passivation agents satisfying this purpose.