Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Cardiovasc Diabetol ; 23(1): 116, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566123

RESUMO

BACKGROUND: Diabetic cardiomyopathy (DCM) is a serious complication in patients with type 1 diabetes mellitus (T1DM), which still lacks adequate therapy. Irisin, a cleavage peptide off fibronectin type III domain-containing 5, has been shown to preserve cardiac function in cardiac ischemia-reperfusion injury. Whether or not irisin plays a cardioprotective role in DCM is not known. METHODS AND RESULTS: T1DM was induced by multiple low-dose intraperitoneal injections of streptozotocin (STZ). Our current study showed that irisin expression/level was lower in the heart and serum of mice with STZ-induced TIDM. Irisin supplementation by intraperitoneal injection improved the impaired cardiac function in mice with DCM, which was ascribed to the inhibition of ferroptosis, because the increased ferroptosis, associated with increased cardiac malondialdehyde (MDA), decreased reduced glutathione (GSH) and protein expressions of solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4), was ameliorated by irisin. In the presence of erastin, a ferroptosis inducer, the irisin-mediated protective effects were blocked. Mechanistically, irisin treatment increased Sirtuin 1 (SIRT1) and decreased p53 K382 acetylation, which decreased p53 protein expression by increasing its degradation, consequently upregulated SLC7A11 and GPX4 expressions. Thus, irisin-mediated reduction in p53 decreases ferroptosis and protects cardiomyocytes against injury due to high glucose. CONCLUSION: This study demonstrated that irisin could improve cardiac function by suppressing ferroptosis in T1DM via the SIRT1-p53-SLC7A11/GPX4 pathway. Irisin may be a therapeutic approach in the management of T1DM-induced cardiomyopathy.


Assuntos
Diabetes Mellitus Tipo 1 , Cardiomiopatias Diabéticas , Ferroptose , Humanos , Animais , Camundongos , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/prevenção & controle , Sirtuína 1 , Fibronectinas , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Proteína Supressora de Tumor p53 , Miócitos Cardíacos
2.
Gynecol Oncol ; 178: 8-13, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37734188

RESUMO

BACKGROUND: We previously reported that REBACIN effectively eliminates persistent high-risk human papillomavirus (hrHPV) infection. Here, we conducted a prospective multicenter cohort study to evaluate the safety and effectiveness of REBACIN, taking into account factors such as specific hrHPV subtype and patient's age. METHODS: According to inclusion/exclusion criteria and participant willingness, 3252 patients were divided into REBACIN group while 249 patients into control group. Patients in REBACIN group received one course treatment of intravaginal administration of REBACIN while no treatment in control group. After drug withdrawal, participants in both groups were followed up. RESULTS: The clearance rate of persistent hrHPV infection in REBACIN group was 60.64%, compared to 20.08% in control group. Specifically, the clearance rates for single-type infection of HPV16 or HPV18 were 70.62% and 69.23%, respectively, which was higher than that of HPV52 (59.04%) or HPV58 (62.64%). In addition, the single, double, and triple/triple+ infections had a clearance rate of 65.70%, 53.31%, and 38.30%, respectively. Moreover, 1635 patients under 40 years old had a clearance rate of 65.14%, while it was 55.08% for 1447 patients over 40 years old. No serious adverse effects were found. CONCLUSION: This study confirmed that REBACIN can effectively and safely eliminate persistent hrHPV infection, which the clearance rate of HPV16/18 is higher than that of HPV52/58, the clearance rate of single-type infection is higher than that of multiple-type infections, and the clearance rate in young patients is higher than that in elder patients, providing a guidance for REBACIN application in clearing hrHPV persistent infection in real-world settings. CLINICAL TRIAL REGISTRATION: Chinese Clinical Trial Registry Registration Number: ChiCTR1800015617 http://www.chictr.org.cn/showproj.aspx?proj=26529 Date of Registration: 2018-04-11.


Assuntos
Infecções por Papillomavirus , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Feminino , Humanos , Idoso , Adulto , Papillomavirus Humano , Estudos de Coortes , Estudos Prospectivos , Papillomavirus Humano 16 , Papillomavirus Humano 18 , Infecções por Papillomavirus/tratamento farmacológico , Papillomaviridae , Genótipo
3.
Int J Radiat Biol ; 99(10): 1542-1549, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36952604

RESUMO

PURPOSE: To explore the minimum split dose of FLASH radiotherapy (FLASH). MATERIAL AND METHODS: Lungs of nude mice were used to verify the capacity of normal tissue sparing of FLASH, while tumor-bearing nude mice were used to evaluate the curative power. Xenografted tumor models were established in Balb/c-nu mice using A549 cells at a concentration of 5×106/100 µL. With the same total dose (20 Gy), the dose rate of FLASH was 200 Gy/s when conventional radiotherapy(CONV) was 0.033 Gy/s. Two schemes of FLASH irradiations were applied: single pulse (FLASH1) and ten pulses (FLASH10). Then, according to the different tissue types and irradiation schemes, mice were divided into eight groups: Control-T, CONV-T, FLASH1-T, FLASH10-T (T for tumor) and Control-L, CONV-L, FLASH1-L, FLASH10-L (L for lung). Evaluation of FLASH effect was based on the changes in tumor volume and pathological analysis of tumor and lung tissues before and after irradiation. RESULTS: Compared to control group, the mean volume of tumors in nude mice increased slowly or decreased after irradiation with both FLASH and CONV (Control-T: 233.6±55.19 mm3, CONV-T: 146.1±50.62 mm3, FLASH1-T: 148±18.83 mm3, FLASH10-T: 119.1±50.62 mm3, p ≤ .05) . Tumor cells of irradiated groups had similar degrees of dissolution damage and inflammation, while the acute radiation pneumonia induced by FLASH was less severe. The pulmonary pathology of FLASH1-L and FLASH10-L were similar, and only a few neutrophils were observed. In addition to inflammatory cells, slight thickening of alveolar septum and obvious interstitial hemorrhage were also observed in the CONV-L group. CONCLUSION: The FLASH effect was successfully reproduced in both single and fractionated irradiation, with 2 Gy being the minimum split dose to achieve the FLASH effect in existing experiments. It is suggested that the transient oxygen depletion might not be the only mechanism behind the FLASH effect.


Assuntos
Neoplasias Pulmonares , Animais , Camundongos , Camundongos Nus , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patologia , Pulmão/patologia , Oxigênio , Dosagem Radioterapêutica
4.
Clin Transl Radiat Oncol ; 38: 138-146, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36425537

RESUMO

Background/Purpose: Investigating the antitumor effect and intratumor as well as local immune response in breast cancer-bearing mice after MV X-ray ultra-high dose rate radiotherapy (FLASH-RT) and conventional dose rate radiotherapy (CONV-RT). Materials/Methods: Six-week-old female C57BL/6 mice were inoculated subcutaneously with Py8119 and Py230 breast tumor cells in the inguinal mammary gland and administered 10 Gy abdominal 6 MV X-ray FLASH-RT (125 Gy/s) or CONV-RT (0.2 Gy/s) 15 days after tumor inoculation. Tumor and spleen tissues were obtained at different time points post-irradiation (PI) for analysis of immune cell infiltration using flow cytometry and immunohistochemical (IHC) staining. Intestine tissues were collected 3 days PI to evaluate normal tissue damage and immune cell infiltration. Results: Both FLASH-RT and CONV-RT significantly delayed tumor growth. Flow cytometry showed increased CD8+/CD3 + and CD8+/CD4 + ratios, and IHC confirmed a similar increased CD8 + T cell infiltration at 2 weeks PI in Py8119 tumor tissues in both irradiation groups. No statistical difference was observed between the irradiation groups in terms of tumor growth and increased T cell infiltration in the tumor. Unexpectedly, significantly smaller spleen weight and substantially higher CD8+/CD3 + and lower CD4+/CD3 + ratios were observed in the spleens of the FLASH-RT group than in the spleens of the non-irradiated control and CONV-RT groups 4 weeks PI. Pathological analysis revealed severe red pulp expansion in several spleens from the CONV-RT group, but not in the spleens of the FLASH-RT group. Reduced intestinal damage, macrophage and neutrophil infiltration were observed in the FLASH-RT group compared with CONV-RT group. Conclusions: FLASH-RT and CONV-RT effectively suppressed tumor growth and promoted CD8 + T cell influx into tumors. FLASH-RT can induce different splenic immune responses and reduce radiation-induced damage in the spleen and intestine, which may potentially enhance the therapeutic ratio of FLASH-RT.

5.
Front Oncol ; 12: 1047222, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36561517

RESUMO

Previous studies have demonstrated that REBACIN® intervention eliminates persistent high-risk human papillomavirus (hrHPV) infection. The initial establishment and subsequent progression of cervical cancer mainly depends on two major oncogenes, E6/E7, and previous studies have proposed E6/E7 oncogenes as a target for therapeutic drug development. The aim of this study was to investigate in vitro and in vivo whether REBACIN® inhibits E6/E7 oncogenes for elucidating the mechanism of REBACIN® in the clearance of persistent hrHPV infection. In vitro, after REBACIN® treatment, the growth of both Ca Ski and HeLa cervical cancer cells containing the E6/E7 oncogenes was prevented. In line with this finding is that E6/E7 expression was inhibited, which can be counteracted by the co-application of anti-REBACIN® antibody. These studies demonstrated that REBACIN® can effectively inhibit the growth of cervical cancer cells via targeting HPV E6/E7 expression. To further verify this finding in clinic, 108 volunteer patients with persistent hrHPV infections were randomly divided into REBACIN®, recombinant human interferon alpha-2b (Immunological drug control), or no-treatment blank control groups, received intravaginal administration of REBACIN®, interferon or no-treatment every other day for three months, and then followed up for E6/E7 mRNA assay. In REBACIN® group, 68.57% of patients showed complete clearance of HPV E6/E7 mRNA, which was significantly higher compared to 25.00% in the interferon immunological drug control group and 20.00% in blank control group, confirming that REBACIN® is potently efficacious on clearing persistent hrHPV infections via inhibition of HPV E6/E7 oncogenes. Clinical trial registration: http://www.chictr.org.cn/historyversionpuben.aspx?regno=ChiCTR2100045911, identifier ChiCTR2100045911.

6.
Proc Natl Acad Sci U S A ; 119(43): e2208506119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36256824

RESUMO

DNA-damaging treatments such as radiotherapy (RT) have become promising to improve the efficacy of immune checkpoint inhibitors by enhancing tumor immunogenicity. However, accompanying treatment-related detrimental events in normal tissues have posed a major obstacle to radioimmunotherapy and present new challenges to the dose delivery mode of clinical RT. In the present study, ultrahigh dose rate FLASH X-ray irradiation was applied to counteract the intestinal toxicity in the radioimmunotherapy. In the context of programmed cell death ligand-1 (PD-L1) blockade, FLASH X-ray minimized mouse enteritis by alleviating CD8+ T cell-mediated deleterious immune response compared with conventional dose rate (CONV) irradiation. Mechanistically, FLASH irradiation was less efficient than CONV X-ray in eliciting cytoplasmic double-stranded DNA (dsDNA) and in activating cyclic GMP-AMP synthase (cGAS) in the intestinal crypts, resulting in the suppression of the cascade feedback consisting of CD8+ T cell chemotaxis and gasdermin E-mediated intestinal pyroptosis in the case of PD-L1 blocking. Meanwhile, FLASH X-ray was as competent as CONV RT in boosting the antitumor immune response initiated by cGAS activation and achieved equal tumor control in metastasis burdens when combined with anti-PD-L1 administration. Together, the present study revealed an encouraging protective effect of FLASH X-ray upon the normal tissue without compromising the systemic antitumor response when combined with immunological checkpoint inhibitors, providing the rationale for testing this combination as a clinical application in radioimmunotherapy.


Assuntos
Neoplasias , Radioimunoterapia , Camundongos , Animais , Raios X , Piroptose , Inibidores de Checkpoint Imunológico , Ligantes , Nucleotidiltransferases/metabolismo
7.
Front Oncol ; 12: 995612, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212435

RESUMO

FLASH radiotherapy (FLASH-RT) is a novel radiotherapy technology defined as ultra-high dose rate (≥ 40 Gy/s) radiotherapy. The biological effects of FLASH-RT include two aspects: first, compared with conventional dose rate radiotherapy, FLASH-RT can reduce radiation-induced damage in healthy tissue, and second, FLASH-RT can retain antitumor effectiveness. Current research shows that mechanisms of the biological effects of FLASH-RT are related to oxygen. However, due to the short time of FLASH-RT, evidences related to the mechanisms are indirect, and the exact mechanisms of the biological effects of FLASH-RT are not completely clear and some are even contradictory. This review focuses on the mechanisms of the biological effects of FLASH-RT and proposes future research directions.

8.
Front Microbiol ; 13: 836446, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663860

RESUMO

Chronic hepatitis B (CHB) virus infection is one of the leading causes of cirrhosis and liver cancer. Although the major drugs against CHB including nucleos(t)ide analogs and PEG-interferon can effectively control human hepatitis B virus (HBV) infection, complete cure of HBV infection is quite rare. Targeting host factors involved in the viral life cycle contributes to developing innovative therapeutic strategies to improve HBV clearance. In this study, we found that the mRNA and protein levels of SIRT2, a class III histone deacetylase, were significantly upregulated in CHB patients, and that SIRT2 protein level was positively correlated with HBV viral load, HBsAg/HBeAg levels, HBcrAg, and ALT/AST levels. Functional analysis confirmed that ectopic SIRT2 overexpression markedly increased total HBV RNAs, 3.5-kb RNA and HBV core DNA in HBV-infected HepG2-Na+/taurocholate cotransporting polypeptide cells and primary human hepatocytes. In contrast, SIRT2 silencing inhibited HBV transcription and replication. In addition, we found a positive correlation between SIRT2 expression and HBV RNAs synthesis as well as HBV covalently closed circular DNA transcriptional activity. A mechanistic study suggested that SIRT2 enhances the activities of HBV enhancer I/HBx promoter (EnI/Xp) and enhancer II/HBc promoter (EnII/Cp) by targeting the transcription factor p53. The levels of HBV EnI/Xp and EnII/Cp-bound p53 were modulated by SIRT2. Both the mutation of p53 binding sites in EnI/Xp and EnII/Cp as well as overexpression of p53 abolished the effect of SIRT2 on HBV transcription and replication. In conclusion, our study reveals that, in terms of host factors, a SIRT2-targeted program might be a more effective therapeutic strategy for HBV infection.

9.
Proc Natl Acad Sci U S A ; 119(19): e2123483119, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35507878

RESUMO

Immunotherapy approaches focusing on T cells have provided breakthroughs in treating solid tumors. However, there remains an opportunity to drive anticancer immune responses via other cell types, particularly myeloid cells. ATRC-101 was identified via a target-agnostic process evaluating antibodies produced by the plasmablast population of B cells in a patient with non-small cell lung cancer experiencing an antitumor immune response during treatment with checkpoint inhibitor therapy. Here, we describe the target, antitumor activity in preclinical models, and data supporting a mechanism of action of ATRC-101. Immunohistochemistry studies demonstrated tumor-selective binding of ATRC-101 to multiple nonautologous tumor tissues. In biochemical analyses, ATRC-101 appears to target an extracellular, tumor-specific ribonucleoprotein (RNP) complex. In syngeneic murine models, ATRC-101 demonstrated robust antitumor activity and evidence of immune memory following rechallenge of cured mice with fresh tumor cells. ATRC-101 increased the relative abundance of conventional dendritic cell (cDC) type 1 cells in the blood within 24 h of dosing, increased CD8+ T cells and natural killer cells in blood and tumor over time, decreased cDC type 2 cells in the blood, and decreased monocytic myeloid-derived suppressor cells in the tumor. Cellular stress, including that induced by chemotherapy, increased the amount of ATRC-101 target in tumor cells, and ATRC-101 combined with doxorubicin enhanced efficacy compared with either agent alone. Taken together, these data demonstrate that ATRC-101 drives tumor destruction in preclinical models by targeting a tumor-specific RNP complex leading to activation of innate and adaptive immune responses.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Neoplasias , Imunidade Adaptativa , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Imunidade Inata , Camundongos , Neoplasias/patologia
10.
Med Phys ; 49(7): 4812-4822, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35451077

RESUMO

BACKGROUND: Ultrahigh dose-rate irradiation (FLASH-IR) was reported to be efficient in tumor control while reducing normal tissue radiotoxicity. However, the mechanism of such phenomenon is still unclear. Besides, the FLASH experiments using high energy X-ray, the most common modality in clinical radiotherapy, are rarely reported. This study aims to investigate the radiobiological response using 6 MV X-ray FLASH-IR or conventional dose-rate IR (CONV-IR). METHODS: The superconducting linac of Chengdu THz Free Electron Laser (CTFEL) facility was used for FLASH-IR, a diamond radiation detector and a CeBr3 scintillation detector were used to monitor the time structure and dose rate of FLASH pulses. BALB/c nude mice received whole abdominal 6 MV X-ray FLASH-IR or CONV-IR, the prescribed dose was 15 Gy or 10 Gy and the delivered absolute dose was monitored with EBT3 films. The mice were either euthanized 24 h post-IR to evaluate acute tissue responses or followed up for 6 weeks to observe late-stage responses and survival probability. Complete blood count, histological analyses, and measurement of cytokine expression and redox status were performed. RESULTS: The mean dose rate of >150 Gy/s and instantaneous dose rate of >5.5 × 105  Gy/s was reached in FLASH-IR at the center of mice body. After 6 weeks' follow-up of mice that received 15 Gy IR, the FLASH group showed faster body weight recovery and higher survival probability than the CONV group. Histological analysis showed that FLASH-IR induced less acute intestinal damage than CONV-IR. Complete blood count and cytokine concentration measurement found that the inflammatory blood cell counts and pro-inflammatory cytokine concentrations were elevated at the acute stage after both FLASH-IR and CONV-IR. However, FLASH irradiated mice had significantly fewer inflammatory blood cells and diminished pro-inflammatory cytokine at the late stage. Moreover, higher reactive oxygen species (ROS) signal intensities but significantly reduced lipid peroxidation were found in the FLASH group than in the CONV group in the acute stage. CONCLUSIONS: The radioprotective effect of 6 MV X-ray FLASH-IR was observed. The differences in inflammatory responses and redox status between the two groups may be the factors responsible for reduced radiotoxicities following FLASH-IR. Further studies are required to thoroughly evaluate the impact of ROS on FLASH effect.


Assuntos
Citocinas , Estresse Oxidativo , Animais , Camundongos , Camundongos Nus , Espécies Reativas de Oxigênio , Raios X
11.
Radiother Oncol ; 166: 44-50, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34774651

RESUMO

PURPOSE: This study aimed to evaluate whether high-energy X-rays (HEXs) of the PARTER (platform for advanced radiotherapy research) platform built on CTFEL (Chengdu THz Free Electron Laser facility) can produce ultrahigh dose rate (FLASH) X-rays and trigger the FLASH effect. MATERIALS AND METHODS: EBT3 radiochromic film and fast current transformer (FCT) devices were used to measure absolute dose and pulsed beam current of HEXs. Subcutaneous tumor-bearing mice and healthy mice were treated with sham, FLASH, and conventional dose rate radiotherapy (CONV), respectively to observe the tumor control efficiency and normal tissue damage. RESULTS: The maximum dose rate of HEXs of PARTER was up to over 1000 Gy/s. Tumor-bearing mice experiment showed a good result on tumor control (p < 0.0001) and significant difference in survival curves (p < 0.005) among the three groups. In the thorax-irradiated healthy mice experiment, there was a significant difference (p = 0.038) in survival among the three groups, with the risk of death decreased by 81% in the FLASH group compared to that in the CONV group. The survival time of healthy mice irradiated in the abdomen in the FLASH group was undoubtedly higher (62.5% of mice were still alive when we stopped observation) than that in the CONV group (7 days). CONCLUSION: This study confirmed that HEXs of the PARTER system can produce ultrahigh dose rate X-rays and trigger a FLASH effect, which provides a basis for future scientific research and clinical application of HEX in FLASH radiotherapy.


Assuntos
Neoplasias , Animais , Protocolos Clínicos , Humanos , Camundongos , Radiografia , Dosagem Radioterapêutica , Raios X
12.
Water Res ; 209: 117890, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34856430

RESUMO

Traditional methods of cyanides' (CN-) mineralization cannot overcome the contradiction between the high alkalinity required for the inhibition of hydrogen cyanide evolution and the low alkalinity required for the efficient hydrolysis of cyanate (CNO-) intermediates. Thus, in this study, a novel Electro-Fenton system was constructed, in which the free cyanides released from ferricyanide photolysis can be efficiently mineralized by the synergy of •OH and •O2-. The complex bonds in ferricyanide (100 mL, 0.25 mM) were completely broken within 80 min under ultraviolet radiation, releasing free cyanides. Subsequently, in combination with the heterogeneous Electro-Fenton process, •OH and •O2- were simultaneously generated and 92.9% of free cyanides were transformed into NO3- within 120 min. No low-toxic CNO- intermediates were accumulated during the Electro-Fenton process. A new conversion mechanism was proposed that CN- was activated into electron-deficient cyanide radical (•CN) by •OH, and then the •CN intermediates reacted with •O2- via nucleophilic addition to quickly form NO3-, preventing the formation of CNO- and promoting the mineralization of cyanide. Furthermore, this new strategy was used to treat the actual cyanide residue eluent, achieving rapid recovery of irons and efficient mineralization of cyanides. In conclusion, this study proposes a new approach for the mineralization treatment of cyanide-containing wastewater.

13.
Front Med (Lausanne) ; 8: 627355, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34355000

RESUMO

High-risk human papillomavirus (hrHPV) persistent infection is the major cause of cervical cancer. Clinical intervention of hrHPV-associated high-grade squamous intraepithelial lesion (HSIL) is critical to prevent cervical cancer, and current treatment is surgery (an invasive therapy). However, some patients refuse to do so for an afraid of potential adverse effects on future fertility or other concerns which creates a critical need for development of non-invasive therapeutic strategies. Here, we report for the first time the cases of non-invasive intervention with REBACIN®, a proprietary antiviral biologics, in clinical treatment of HSIL. From 12,958 visiting patients assessed for eligibility, 18 HSIL-patients with cervical intraepithelial neoplasia-grade 2, positive of both diffused overexpression of p16 and high-risk HPV were enrolled in this non-invasive clinical intervention mainly due to concerns of future fertility. REBACIN® was administered intravaginally every other day for 3 months (one-course) except during menstrual period, and were followed up for 6-36 months for the examination of high-risk HPV DNA, cervical cytology, and histopathology. After one to three course treatments, most cases (16/18) displayed both the regression from HSIL (CIN2) to normal cervical cytology and clearance of high-risk HPV infection. Further studies demonstrated REBACIN® significantly suppressed HPV16 E7 oncoprotein expression in a human cervical cancer cell line, which is consistent with previous finding that REBACIN® inhibits the growth of tumors induced by expression of E6/E7 oncogenes of either HPV16 or HPV18. This report indicates REBACIN® as a novel effective non-invasive clinical intervention for HSIL-patients as well for high-risk HPV persistent infection, providing a new clinical option for the non-invasive treatment of hrHPV-associated high-grade squamous intraepithelial lesion, which is worthy of further research on clinical validation and application.

14.
Front Oncol ; 11: 644400, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113566

RESUMO

The biological effects of radiation dose to organs at risk surrounding tumor target volumes are a major dose-limiting constraint in radiotherapy. This can mean that the tumor cannot be completely destroyed, and the efficacy of radiotherapy will be decreased. Thus, ways to reduce damage to healthy tissue has always been a topic of particular interest in radiotherapy research. Modern radiotherapy technologies such as helical tomotherapy (HT), intensity-modulated radiation therapy (IMRT), and proton radiotherapy can reduce radiation damage to healthy tissues. Recent outcomes of animal experiments show that FLASH radiotherapy (FLASH-RT) can reduce radiation-induced damage in healthy tissue without decreasing antitumor effectiveness. The very short radiotherapy time compared to that of conventional dose-rate radiotherapy is another advantage of FLASH-RT. The first human patient received FLASH-RT in Switzerland in 2018. FLASH-RT may become one of the main radiotherapy technologies in clinical applications in the future. We summarize the history of the development of FLASH-RT, its mechanisms, its influence on radiotherapy, and its future.

15.
Biomed Opt Express ; 11(7): 3890-3899, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33014573

RESUMO

In recent years, many studies have been conducted to investigate the non-thermal effects of THz radiation on different organisms, but further studies are needed to fully elucidate the effects, especially on the molecular level. In this study, we explored the effects of at 3.1 THz radiation on protein expression in Escherichia coli (E. coli) using red fluorescent protein as a reporter molecule. After 8 hours of continuous THz irradiation of bacteria on LB (Luria-Bertani) solid plates at an average power of 33 mW/cm2 and 10 Hz pulse repetition frequency, we found that the plasmid copy number, protein expression and fluorescence intensity of bacteria from the irradiated area were 3.8-, 2.7-, and 3.3 times higher than in bacteria from the un-irradiated area, respectively. These findings suggest that plasmid replication changed significantly in bacteria exposed to 3.1 THz radiation, resulting in increased protein expression as evidenced by increased fluorescence intensity of the RFP reporter.

16.
Nat Cancer ; 1(7): 681-691, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-35122038

RESUMO

Inhibiting the programmed death-1 (PD-1) pathway is one of the most effective approaches to cancer immunotherapy, but its mechanistic basis remains incompletely understood. Binding of PD-1 to its ligand PD-L1 suppresses T-cell function in part by inhibiting CD28 signaling. Tumor cells and infiltrating myeloid cells can express PD-L1, with myeloid cells being of particular interest as they also express B7-1, a ligand for CD28 and PD-L1. Here we demonstrate that dendritic cells (DCs) represent a critical source of PD-L1, despite being vastly outnumbered by PD-L1+ macrophages. Deletion of PD-L1 in DCs, but not macrophages, greatly restricted tumor growth and led to enhanced antitumor CD8+ T-cell responses. Our data identify a unique role for DCs in the PD-L1-PD-1 regulatory axis and have implications for understanding the therapeutic mechanism of checkpoint blockade, which has long been assumed to reflect the reversal of T-cell exhaustion induced by PD-L1+ tumor cells.


Assuntos
Antígeno B7-H1 , Neoplasias , Antígeno B7-H1/genética , Antígenos CD28/metabolismo , Células Dendríticas , Humanos , Ligantes , Neoplasias/genética , Receptor de Morte Celular Programada 1/genética
17.
Int J Cancer ; 145(10): 2712-2719, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30989655

RESUMO

The development of highly sensitive HPV-genotyping tests has opened the possibility of treating HPV-infected women before high-grade lesions appear. The lack of efficient intervention for persistent high-risk HPV infection necessitates the need for development of novel therapeutic strategy. Here we demonstrate that REBACIN®, a proprietary antiviral biologics, has shown potent efficacy in the clearance of persistent HPV infections. Two independent parallel clinical studies were investigated, which a total of 199 patients were enrolled and randomly divided into a REBACIN®-test group and a control group without treatment. The viral clearance rates for the REBACIN® groups were 61.5% (24/39) and 62.5% (35/56), respectively, for the two independent parallel studies. In contrast, the nontreatment groups showed self-clearance rates at 20.0% (8/40) and 12.5% (8/64). We further found that REBACIN® was able to significantly repress the expression of HPV E6 and E7 oncogenes in TC-1 and Hela cells. The two viral genes are well known for the development of high-grade premalignancy lesion and cervical cancer. In a mouse model, REBACIN® was indicated to notably suppress E6/E7-induced tumor growth, suggesting E6 and E7 oncogenes as a potential target of REBACIN®. Taken together, our studies shed light into the development of a novel noninvasive therapeutic intervention for clearance of persistent HPV infection with significant efficacy.


Assuntos
Antivirais/uso terapêutico , Produtos Biológicos/uso terapêutico , Infecções por Papillomavirus/tratamento farmacológico , Neoplasias do Colo do Útero/prevenção & controle , Adulto , Animais , Antivirais/farmacologia , Produtos Biológicos/farmacologia , Modelos Animais de Doenças , Feminino , Células HeLa , Papillomavirus Humano 16/efeitos dos fármacos , Papillomavirus Humano 16/patogenicidade , Humanos , Camundongos , Pessoa de Meia-Idade , Proteínas Oncogênicas Virais/antagonistas & inibidores , Proteínas E7 de Papillomavirus/antagonistas & inibidores , Infecções por Papillomavirus/virologia , Proteínas Repressoras/antagonistas & inibidores , Resultado do Tratamento , Neoplasias do Colo do Útero/virologia , Carga Viral/efeitos dos fármacos
18.
Int J Oncol ; 53(5): 1827-1835, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30106141

RESUMO

The novel neurite outgrowth inhibitor B (Nogo­B) receptor (NgBR) is specific for Nogo­B, which is highly expressed in various human organs and cells, including the lung, liver, kidney, smooth muscle cells, blood vessel endothelial cells and inflammatory cells. Previous studies have indicated that NgBR directly interacts with Nogo­B and is able to independently influence lipid and cholesterol homeostasis, angiogenesis, N­glycosylation, the epithelial-mesenchymal transition, the chemotaxis of endothelial cells and cellular proliferation and apoptosis. These multiple functions and actions of this receptor provide an understanding of the important roles of NgBR in various conditions, including fatty liver, atherosclerosis, intracranial microaneurysms, retinitis pigmentosa and severe neurological impairment. Furthermore, NgBR has been demonstrated to exert protean, multifunctional and enigmatic effects in cancer. The present review summarizes the latest knowledge on the suppressing and activating effects of NgBR, emphasizing its function in cancer. Further basic and medical research on this receptor may provide novel insight into its clinical implications on the prognosis of relevant human cancer types.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Neoplasias/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Estresse do Retículo Endoplasmático , Regulação Neoplásica da Expressão Gênica , Glicosilação , Humanos , Metabolismo dos Lipídeos , Receptores X do Fígado/metabolismo , Neoplasias/patologia , Neovascularização Patológica/etiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Resposta a Proteínas não Dobradas/fisiologia
19.
Clin Anat ; 31(6): 891-898, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29752839

RESUMO

The mammalian target of rapamycin, mTOR, is a serine-threonine protein kinase downstream of the phosphatidylinositol 3-kinase (PI3K)-AKT axis. The pathway can regulate cell growth, proliferation, and survival by activating ribosomal kinases. Recent studies have implicated the mTOR signaling pathway in ovarian neoplasms, polycystic ovary syndrome (PCOS) and premature ovarian failure (POF). Preclinical investigations have demonstrated that the PI3K/AKT/mTOR pathway is frequently activated in the control of various ovarian functions. mTOR allows cancer cells to escape the normal biochemical system and regulates the balance between apoptosis and survival. Some recent studies have suggested that involvement of the mTOR signaling system is an important pathophysiological basis of PCOS. Overexpression of the mTOR pathway can impair the interaction of cumulus cells, lead to insulin resistance, and affect the growth of follicles directly. The roles of mTOR signaling in follicular development have been extensively studied in recent years; abnormalities in this process lead to a series of pathologies such as POF and infertility. To improve understanding of the role of the mTOR signaling pathway in the pathogenesis and development of ovarian diseases, here we review the roles of mTOR signaling in such diseases and discuss the corresponding therapeutic strategies that target this pathway. Clin. Anat. 31:891-898, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Neoplasias Ovarianas/metabolismo , Síndrome do Ovário Policístico/metabolismo , Insuficiência Ovariana Primária/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Feminino , Humanos , Imunossupressores/farmacocinética , Folículo Ovariano/metabolismo , Transdução de Sinais , Sirolimo/farmacocinética , Serina-Treonina Quinases TOR/efeitos dos fármacos
20.
EMBO Rep ; 18(8): 1442-1459, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28615290

RESUMO

Like many transcription regulators, histone methyltransferases G9a and G9a-like protein (GLP) can act gene-specifically as coregulators, but mechanisms controlling this specificity are mostly unknown. We show that adjacent post-translational methylation and phosphorylation regulate binding of G9a and GLP to heterochromatin protein 1 gamma (HP1γ), formation of a ternary complex with the glucocorticoid receptor (GR) on chromatin, and function of G9a and GLP as coactivators for a subset of GR target genes. HP1γ is recruited by G9a and GLP to GR binding sites associated with genes that require G9a, GLP, and HP1γ for glucocorticoid-stimulated transcription. At the physiological level, G9a and GLP coactivator function is required for glucocorticoid activation of genes that repress cell migration in A549 lung cancer cells. Thus, regulated methylation and phosphorylation serve as a switch controlling G9a and GLP coactivator function, suggesting that this mechanism may be a general paradigm for directing specific transcription factor and coregulator actions on different genes.


Assuntos
Regulação da Expressão Gênica , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Processamento de Proteína Pós-Traducional , Células A549 , Aurora Quinase B/genética , Aurora Quinase B/metabolismo , Cromatina , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/metabolismo , Metilação de DNA , Antígenos de Histocompatibilidade/genética , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/genética , Humanos , Fosforilação , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA