Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Small ; : e2310712, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733222

RESUMO

Extracellular vesicles (EVs) are recognized as potential candidates for next-generation drug delivery systems. However, the inherent cancer-targeting efficiency is unsatisfactory, necessitating surface modification to attach cell-binding ligands. By utilizing phospholipase D from Streptomyces in combination with maleimide-containing primary alcohol, the authors successfully anchored ligands onto milk-derived EVs (mEVs), overcoming the issues of ligand leakage or functional alteration seen in traditional methods. Quantitative nano-flow cytometry demonstrated that over 90% of mEVs are effectively modified with hundreds to thousands of ligands. The resulting mEV formulations exhibited remarkable long-term stability in conjugation proportion, ligand number, size distribution, and particle concentration, even after months of storage. It is further shown that conjugating transferrin onto mEVs significantly enhanced cellular uptake and induced pronounced cytotoxic effects when loaded with paclitaxel. Overall, this study presents a highly efficient, stable, cost-effective, and scalable ligand conjugation approach, offering a promising strategy for targeted drug delivery of EVs.

2.
Food Chem ; 445: 138801, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387316

RESUMO

Frog skin, a by-product of Quasipaa Spinosa farming, is rich in protein and potentially a valuable raw material for obtaining antioxidant peptides. This study used papain combined with acid protease to digest frog skin in a two-step enzymatic hydrolysis method. Based on a single factor and response surface experiments, experimental conditions were optimized, and the degree of hydrolysis was 30 %. A frog skin hydrolysate (QSPH-Ⅰ-3) was obtained following ultrafiltration and gel filtration chromatography. IC50 for DPPH, ABTS, and hydroxyl radical scavenging capacities were 1.68 ± 0.05, 1.20 ± 0.14 and 1.55 ± 0.11 mg/mL, respectively. Peptide sequences (17) were analyzed and, through molecular docking, peptides with low binding energies for KEAP1 were identified, which might affect the NRF2-KEAP1 pathway. These findings suggest protein hydrolysates and antioxidant peptide derivatives might be used in functional foods.


Assuntos
Antioxidantes , Sequestradores de Radicais Livres , Antioxidantes/química , Hidrólise , Proteína 1 Associada a ECH Semelhante a Kelch , Sequestradores de Radicais Livres/química , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2 , Peptídeos/química , Hidrolisados de Proteína/química
3.
J Oleo Sci ; 73(2): 239-251, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38311413

RESUMO

Frog oil has been recognized for its nutritional and medicinal value. However, there is limited research on the role of frog oil in preventing obesity. In this study, we aimed to investigate the lipid composition of Quasipaa spinosa oil (QSO) and Rana catesbeiana oil (RCO) using lipidomics analysis. We compared the lipid accumulation effects of these two kinds of frog oils and soybean oil (SO) in Caenorhabditis elegans (C. elegans). Additionally, we determined the gene expression related to lipid metabolism and used the nhr-49 mutant (RB1716) and sir-2.1 mutant (VC199) for validation experiments. The results showed that the lipid composition of QSO and RCO was significantly different (p < 0.05), and QSO was rich in more polyunsaturated fatty acids (PUFAs). After feeding C. elegans, the lipid accumulation of the QSO group was the lowest among the three dietary oil groups. In addition, compared with RCO and SO, QSO significantly inhibited the production of malondialdehyde (MDA) and increased the activity of superoxide dismutase (SOD). The effects of three kinds of dietary oils on the fatty acid composition of C. elegans were significantly different. Compared with SO and RCO, QSO significantly up-regulated (p < 0.05) the expression of sir-2.1 and ech-1 genes. The results showed that QSO might reduce lipid accumulation through the SIRT1 and nuclear hormone signaling pathways. Such a situation was verified experimentally by the nhr-49 mutant (RB1716) and sir-2.1 mutant (VC199). This study proposed a new functional oil, laying the groundwork for developing functional foods from Quasipaa spinosa.


Assuntos
Caenorhabditis elegans , Gorduras Insaturadas na Dieta , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Rana catesbeiana/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Gorduras Insaturadas na Dieta/farmacologia , Óleo de Soja/metabolismo , Metabolismo dos Lipídeos/genética
4.
Food Chem X ; 21: 100853, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38282828

RESUMO

Emblica, also known as Phyllanthus emblica L., is a drug homologous food that is rich in polyphenols with various biological activities. However, its bitterness and astringency pose a significant challenge to its utilization in food products. In this study, we aimed to identify the optimal conditions for debittering Emblica. Our findings revealed that the best debittering conditions were: temperature = 50 °C, pH = 4, α-l-rhamnosidase concentration 200 U/g, and time = 5 h. High-performance liquid chromatography (HPLC) and molecular docking analysis revealed that enzymatic hydrolysis partially removed bitterness compounds. The results of antioxidant activity, xanthine oxidase, and α-glucosidase inhibitory activity assays confirmed that the Emblica fruit powder still exhibited good biological activity after enzymatic debitterization. Moreover, gastric fluids treatment might contribute to the above enhancing effect of enzymatic hydrolysates of Emblica. This study provided a theoretical basis for promoting the processing and utilization of Emblica fruit powder, as well as understanding its biological activity.

5.
J Nutr Biochem ; 115: 109279, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36739098

RESUMO

Eicosapentaenoic acid (EPA) shows antioxidant activity, which may be attributed to its regulatory effect on microRNA expression. Our preliminary study indicated that EPA upregulated miR-494-5p, which was possibly involved in the regulation of cellular stress responses. The current study aimed to address whether miR-494-5p was targeted by EPA to regulate cellular oxidative stress and its possible functional mechanism. The results showed that miR-494-5p mediated the antioxidant effect of EPA and miR-494-5p reduction deteriorated EPA-induced increase in the cellular antioxidant capacity of HepG2 cells. Moreover, the mitochondrial elongation factor 1 (MIEF1) gene was a target gene of miR-494-5p. Both miR-494-5p overexpression and MIEF1 knockdown significantly enhanced cellular antioxidant capacity, as indicated by a reduction in the reactive oxygen species level and an increase in the total cellular antioxidant capacity, along with enhancing antioxidant enzymes. Thus, miR-494-5p and MIEF1 had opposite effects on cellular antioxidant capacity. Furthermore, their regulatory effects on oxidative stress may have been attributed to modulation of mitochondrial function, biogenesis and homeostasis. Taken together, the findings indicated that miR-494-5p mediated EPA activity and promoted cellular antioxidant capacity by inhibiting the expression of MIEF1, which further modulated mitochondrial structure and activity. This study may provide novel insights into the post-translational regulation of antioxidation reactions, which involves the coordinated control of mitochondria.


Assuntos
Antioxidantes , MicroRNAs , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Ácido Eicosapentaenoico/farmacologia , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo , Fator 1 de Elongação de Peptídeos/farmacologia , Células Hep G2 , Estresse Oxidativo , MicroRNAs/metabolismo
6.
Food Chem ; 373(Pt A): 131389, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34710690

RESUMO

Reactive oxygen species (ROS) are mitochondrial respiration byproducts, the accumulation of which may cause oxidative damage and is associated with several chronic health problems. As an essential unsaturated fatty acid, eicosapentaenoic acid (EPA) provides various physiological functions; however, its exact regulatory role remains elusive. The current study aimed to address how EPA regulates cellular antioxidant capacity and the possible mechanisms of action. Upon 48 h of EPA treatment, the ROS levels of HepG2 cells were reduced by at least 40%; the total cellular antioxidant capacity was increased by approximately 50-70%, accompanied by enhanced activities and expression of major antioxidant enzymes. Furthermore, the mitochondrial membrane potential and the mitochondrial biogenesis were dramatically improved in EPA-treated cells. These data suggest that EPA improves cellular antioxidant capacity by enhancing mitochondrial function and biogenesis, which sheds light on EPA as a dietary complement to relieve the oxidative damage caused by chronic diseases.


Assuntos
Antioxidantes , Ácido Eicosapentaenoico , Antioxidantes/metabolismo , Ácido Eicosapentaenoico/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
7.
Oxid Med Cell Longev ; 2021: 8874503, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055199

RESUMO

The marine horseshoe crab (Tachypleus tridentatus) has been considered as food and traditional medicine for many years. Kynurenic acid (KA) was isolated from horseshoe crab in this study for the first time in the world. A previous study in 2018 reported that intraperitoneal administration of KA prevented high-fat diet- (HFD-) induced body weight gain. Now, we investigated the effects of intragastric gavage of KA on HFD mice and found that KA (5 mg/kg/day) inhibited both the body weight gain and the increase of average daily energy intake. KA reduced serum triglyceride and increased serum high-density lipoprotein cholesterol. KA inhibited HFD-induced the increases of serum low-density lipoprotein cholesterol, coronary artery risk index, and atherosclerosis index. KA also suppressed HFD-induced the increase of the ratio of Firmicutes to Bacteroidetes (two dominant gut microbial phyla). KA partially reversed HFD-induced the changes in the composition of gut microbial genera. These overall effects of KA on HFD mice were similar to that of simvastatin (positive control). But the effects of 1.25 mg/kg/day KA on HFD-caused hyperlipidemia were similar to the effects of 5 mg/kg/day simvastatin. The pattern of relative abundance in 40 key genera of gut microbiota from KA group was closer to that from the normal group than that from the simvastatin group. In addition, our in vitro results showed the potential antioxidant activity of KA, which suggests that the improvement effects of KA on HFD mice may be partially associated with antioxidant activity of KA. Our findings demonstrate the potential role of KA as a functional food ingredient for the treatment of obesity and hyperlipidemia as well as the modulation of gut microbiota.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Hiperlipidemias/tratamento farmacológico , Ácido Cinurênico/uso terapêutico , Obesidade/tratamento farmacológico , Animais , Caranguejos Ferradura , Ácido Cinurênico/farmacologia , Masculino , Camundongos
8.
Cell Res ; 26(3): 350-66, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26742694

RESUMO

The molecular mechanism controlling the dismantling of naive pluripotency is poorly understood. Here we show that microRNAs (miRNAs) have important roles during naive to primed pluripotency transition. Dgcr8(-/-) embryonic stem cells (ESCs) failed to completely silence the naive pluripotency program, as well as to establish the primed pluripotency program during differentiation. miRNA profiling revealed that expression levels of a large number of miRNAs changed dynamically and rapidly during naive to primed pluripotency transition. Furthermore, a miRNA screen identified numerous miRNAs promoting naive to primed pluripotency transition. Unexpectedly, multiple miRNAs from miR-290 and miR-302 clusters, previously shown as pluripotency-promoting miRNAs, demonstrated the strongest effects in silencing naive pluripotency. Knockout of both miR-290 and miR-302 clusters but not either alone blocked the silencing of naive pluripotency program. Mechanistically, the miR-290/302 family of miRNAs may facilitate the exit of naive pluripotency in part by promoting the activity of MEK pathway and through directly repressing Akt1. Our study reveals miRNAs as an important class of regulators potentiating ESCs to transition from naive to primed pluripotency, and uncovers context-dependent functions of the miR-290/302 family of miRNAs at different developmental stages.


Assuntos
Células-Tronco Embrionárias/metabolismo , MicroRNAs/metabolismo , Células-Tronco Pluripotentes/metabolismo , Animais , Células Cultivadas , Células-Tronco Embrionárias/enzimologia , Inativação Gênica , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Células-Tronco Pluripotentes/enzimologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Ligação a RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA