Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Angew Chem Int Ed Engl ; : e202405765, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721653

RESUMO

In this study, peptide-based self-assembled nanosheets with a thickness of approximately 1 nm were prepared using a hierarchical covalent physical fabrication strategy. The covalent alternating polymerization of helical peptide E3 with an azobenzene (AZO) structure yielded copolymers CoP(E3-AZO), which physically self-assembled into ultrathin nanosheets in an unanticipated two-dimensional horizontal monolayer arrangement. This special monolayer arrangement enabled the thickness of the nanosheets to be equal to the cross-sectional diameter of a single linear copolymer, which is a rare phenomenon. Molecular dynamics simulations suggested that the synergistic effect of multiple molecular interactions drives the self-assembly of CoP(E3-AZO) into nanosheets and that various methods, including phototreatment, pH adjustment, the addition of additives, and introduction of cosolvents, can alter the molecular interactions and modulate the self-assembly of CoP(E3-AZO), yielding diverse nanostructures. Remarkably, the ultrathin nanosheets selectively inhibited cancer cells at certain concentrations.

2.
Cell Signal ; 120: 111236, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810860

RESUMO

Hydrogen sulfide (H2S) is one of the three most crucial gaseous messengers in the body. The discovery of H2S donors, coupled with its endogenous synthesis capability, has sparked hope for the treatment of hematologic malignancies. In the last decade, the investigation into the impact of H2S has expanded, particularly within the fields of cardiovascular function, inflammation, infection, and neuromodulation. Hematologic malignancies refer to a diverse group of cancers originating from abnormal proliferation and differentiation of blood-forming cells, including leukemia, lymphoma, and myeloma. In this review, we delve deeply into the complex interrelation between H2S and hematologic malignancies. In addition, we comprehensively elucidate the intricate molecular mechanisms by which both H2S and its donors intricately modulate the progression of tumor growth. Furthermore, we systematically examine their impact on pivotal aspects, encompassing the proliferation, invasion, and migration capacities of hematologic malignancies. Therefore, this review may contribute novel insights to our understanding of the prospective therapeutic significance of H2S and its donors within the realm of hematologic malignancies.


Assuntos
Neoplasias Hematológicas , Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Humanos , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , Animais , Proliferação de Células/efeitos dos fármacos
3.
Biochim Biophys Acta Gen Subj ; 1868(7): 130612, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38626830

RESUMO

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are characterized by rapid onset and widespread inflammation in the lungs, often leading to respiratory failure. These conditions can be triggered by various factors, resulting in a severe inflammatory response within the lungs. Resveratrol, a polyphenolic compound found in grapes and peanuts, is renowned for its potent antioxidative and anti-inflammatory properties. In this study, we investigated how resveratrol protects against lipopolysaccharide (LPS)-induced ALI in mice. We established mouse models of LPS-induced ALI and inflammation in bronchoalveolar lavage fluid (BALF) macrophages. Through histopathological examination, immunofluorescence, western blot, enzyme-linked immunosorbent assay (ELISA), and transmission electron microscopy (TEM), we assessed the impact of resveratrol on the activation of NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasomes and the process of mitophagy. Our findings indicate that resveratrol significantly mitigated the lung injury and inflammation caused by LPS. This was achieved by inhibiting the oligomerization of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and the activation of NLRP3 inflammasomes. Resveratrol also reduced the levels of IL-1ß and IL-18 in serum and BALF, decreased caspase-1 expression, and diminished macrophage pyroptosis. Furthermore, it upregulated Pink1, Parkin, Beclin-1, Autophagy-Related 5 (Atg5), and Microtubule-Associated Proteins 1 A/1B Light Chain 3B (LC3B-II), thereby enhancing mitophagy. Conversely, mitophagy was inhibited by Pink1 siRNA. In conclusion, resveratrol ameliorated ALI in mice, potentially by inhibiting the activation of NLRP3 inflammasomes, activating the Pink1/Parkin pathway, and promoting mitophagy.


Assuntos
Lesão Pulmonar Aguda , Inflamassomos , Mitofagia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas Quinases , Resveratrol , Ubiquitina-Proteína Ligases , Animais , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Mitofagia/efeitos dos fármacos , Camundongos , Resveratrol/farmacologia , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Lipopolissacarídeos , Líquido da Lavagem Broncoalveolar/química
4.
Eur J Med Chem ; 268: 116275, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38452725

RESUMO

USP2 and USP8 are crucial in the development and progression of breast cancer, primarily through the stabilization of protein substrates such as Her2 and ERα. The dual-target inhibitor ML364, targeting both USP2 and USP8, has garnered significant interest in recent research. In this study, we developed a series of ML364 derivatives using ligand-based drug design strategies. The standout compound, LLK203, demonstrated enhanced inhibitory activity, showing a 4-fold increase against USP2 and a 9-fold increase against USP8, compared to the parent molecule. In MCF-7 breast cancer cells, LLK203 effectively degraded key proteins involved in cancer progression and notably inhibited cell proliferation. Moreover, LLK203 exhibited potent in vivo efficacy in the 4T1 homograft model, while maintaining a low toxicity profile. These results underscore the potential of LLK203 as a promising dual-target inhibitor of USP2/USP8 for breast cancer treatment.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Células MCF-7 , Proliferação de Células , Ubiquitina Tiolesterase , Endopeptidases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/farmacologia
5.
Int J Surg ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498395

RESUMO

BACKGROUND: The available evidence regarding the predictive value of troponins and natriuretic peptides for early postoperative outcomes in pediatrics is limited, controversial, and based on small sample sizes. We aimed to investigate the association of N-terminal pro B-type natriuretic peptide (NT-proBNP) and high-sensitivity troponin T (hs-TnT) with the in-hospital adverse outcomes after congenital cardiac surgeries. METHODS: A secondary analysis based on a prospective study of pediatric congenital heart disease (CHD) patients was conducted to investigate the association of NT-proBNP and hs-TnT tested within 6 hours postoperatively with in-hospital adverse events. A multivariate logistic regression analysis with a minimum P value approach was used to identify the optimal thresholds of NT-proBNP and hs-TnT for risk stratification. RESULTS: NT-proBNP and hs-TnT are positively correlated with cardiopulmonary bypass time, mechanical ventilation duration, and pediatric intensive care unit stay. The predictive performance of NT-proBNP is excellent for adverse events in both patients younger than 1 year [area under the curve (AUC): 0.771, 0.693-0.850] and those older than 1 year (AUC: 0.839, 0.757-0.922). However, hs-TnT exhibited a satisfactory predictive value solely in patients aged over 1 year. (AUC: 0.784, 0.717-0.852). NT-proBNP levels of 2000 to 10000 ng/L [Odds Ratio (OR): 3.79, 1.47-9.76) and exceeding 10000 ng/L (OR: 12.21, 3.66-40.80) were associated with a higher risk of postoperative adverse events in patients younger than 1 year. Patients older than 1 year, with NT-proBNP higher than 500 ng/L (OR: 15.09, 6.05-37.66) or hs-TnT greater than 1200 ng/L (OR: 5.50, 1.47-20.59), had a higher incidence of postoperative adverse events. CONCLUSIONS: NT-proBNP and hs-TnT tested within postoperative 6 hours demonstrated significant predictive value for postoperative adverse events in CHD patients older than 1 year. However, among CHD patients younger than 1 year, only NT-proBNP exhibited commendable predictive performance for postoperative adverse events.

6.
Cell Death Discov ; 10(1): 114, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448410

RESUMO

For a long time, hydrogen sulfide (H2S) has been considered a toxic compound, but recent studies have found that H2S is the third gaseous signaling molecule which plays a vital role in physiological and pathological conditions. Currently, a large number of studies have shown that H2S mediates apoptosis through multiple signaling pathways to participate in cancer occurrence and development, for example, PI3K/Akt/mTOR and MAPK signaling pathways. Therefore, the regulation of the production and metabolism of H2S to mediate the apoptotic process of cancer cells may improve the effectiveness of cancer treatment. In this review, the role and mechanism of H2S in cancer cell apoptosis in mammals are summarized.

7.
Altern Ther Health Med ; 30(2): 171-177, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37856812

RESUMO

Tumor necrosis factor alpha-induced protein-3, also called A20, is a zinc-finger protein that participates in various inflammatory responses; however, the putative relationship between A20 and hepatic fibrosis remains unelucidated. Therefore, we investigated the role and mechanism of action of A20 in activating hepatic stellate cells (HSC) during the progression of hepatic fibrosis. Cell counting kit-8 (CCK8), colony growth, transwell assays, cell cycle analysis, and apoptosis assays were performed to explore the effect of A20 on cell function in vitro. An interspecies intravenous injection of the adeno-associated virus was used to assess the in vivo role of A20. The regulation of A20 on p65 was detected using mass spectrometry and immunoprecipitation. Our findings revealed that A20 was highly expressed in the liver tissues of patients with hepatic fibrosis and that the expression level of A20 in the liver tissue was closely correlated with the stage of liver fibrosis. In the LX-2 cell line, the downregulation of A20 upregulated the expression of fibrosis-related proteins and increased the expression of inflammatory factors, indicating the activation of HSC and vice versa. In addition, overexpression of A20 in mice reduced the degree of liver fibrosis in thioacetamide model mice. Finally, co-immunoprecipitation demonstrated that A20 could interact with p65. Hence, A20 inhibits HSC activation by binding to p65.


Assuntos
NF-kappa B , Fator de Necrose Tumoral alfa , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Transdução de Sinais , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia
8.
Adv Mater ; 36(4): e2304935, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37589665

RESUMO

Rapid detection of various exosomes is of great significance in early diagnosis and postoperative monitoring of cancers. Here, a divisional optical biochip is reported for multiplex exosome analysis via combining the self-assembly of nanochains and precise surface patterning. Arising from resonance-induced near-field enhancement, the nanochains show distinct color changes after capturing target exosomes for direct visual detection. Then, a series of divisional nanochain-based biochips conjugated with several specific antibodies are fabricated through designed hydrophilic and hydrophobic patterns. Because of the significant wettability difference, one sample droplet is precisely self-splitting into several microdroplets enabling simultaneous identification of multiple target exosomes in 30 min with a sensitivity of 6 × 107 particles mL-1 , which is about two orders lower than enzyme-linked immunosorbent assay. Apart from the trace amount detection, excellent semiquantitative capability is demonstrated to distinguish clinical exosomes from glioblastoma patients and healthy people. This method is simple, versatile, and highly efficient that can be extended as a diagnostic tool for many diseases, promoting the development of liquid biopsy.


Assuntos
Exossomos , Humanos , Exossomos/química , Sistemas Automatizados de Assistência Junto ao Leito , Molhabilidade , Interações Hidrofóbicas e Hidrofílicas , Anticorpos
9.
Value Health Reg Issues ; 41: 15-24, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38154365

RESUMO

OBJECTIVES: In the absence of evidence on whether neoadjuvant (NAC) or adjuvant chemotherapy (AC) is more beneficial for various tumor treatments, economic evaluation (EE) can assist medical decision making. There is limited evidence on their cost-effectiveness and their prospective evaluation is less likely in the future. Therefore, a systematic review and meta-analysis about EE for NAC versus AC in solid tumor help compare these therapies from various perspectives. METHODS: Various databases were searched for studies published from inception to 2021. This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses reporting guidelines and economic-specific guidelines. The data were pooled using a random effects model when possible. RESULTS: The retrieval identified 15 EE studies of NAC versus AC in 8 types of cancer. NAC is the dominant strategy for pancreatic, head and neck, rectal, prostate cancers and colorectal liver metastases. For ovarian cancer, NAC is cost-effective with a lower cost and higher or similar quality-adjusted life-year. There were no significant differences in cost and outcomes for lung cancer. For stage IV or high-risk patients with ovarian or prostate cancer, NAC was cost-effective but not for patients who were not high risk. CONCLUSIONS: The EEs results for NAC versus AC were inconsistent because of their different model structures, assumptions, cost inclusions, and a shortage of studies. There are multiple sources of heterogeneity across EEs evidence synthesis. More high-quality EE studies on NAC versus AC in initial cancer treatment are necessary.


Assuntos
Análise Custo-Benefício , Terapia Neoadjuvante , Neoplasias , Humanos , Quimioterapia Adjuvante/métodos , Quimioterapia Adjuvante/economia , Terapia Neoadjuvante/métodos , Terapia Neoadjuvante/economia , Terapia Neoadjuvante/estatística & dados numéricos , Terapia Neoadjuvante/normas , Análise Custo-Benefício/métodos , Neoplasias/tratamento farmacológico , Neoplasias/economia
10.
Sci China Life Sci ; 67(4): 765-777, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38110796

RESUMO

Human-specific insertions play important roles in human phenotypes and diseases. Here we reported a 446-bp insertion (Insert-446) in intron 11 of the TBC1D8B gene, located on chromosome X, and traced its origin to a portion of intron 6 of the EBF1 gene on chromosome 5. Interestingly, Insert-446 was present in the human Neanderthal and Denisovans genomes, and was fixed in humans after human-chimpanzee divergence. We have demonstrated that Insert-446 acts as an enhancer through binding transcript factors that promotes a higher expression of human TBC1D8B gene as compared with orthologs in macaques. In addition, over-expression TBC1D8B promoted cell proliferation and migration through "a dual finger" catalytic mechanism (Arg538 and Gln573) in the TBC domain in vitro and knockdown of TBC1D8B attenuated tumorigenesis in vivo. Knockout of Insert-446 prevented cell proliferation and migration in cancer and normal cells. Our results reveal that the human-specific Insert-446 promotes cell proliferation and migration by upregulating the expression of TBC1D8B gene. These findings provide a significant insight into the effects of human-specific insertions on evolution.


Assuntos
Regulação Neoplásica da Expressão Gênica , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Íntrons
11.
J Am Chem Soc ; 145(44): 24108-24115, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37788442

RESUMO

Protocells have garnered considerable attention from cell biologists, materials scientists, and synthetic biologists. Phase-separating coacervate microdroplets have emerged as a promising cytomimetic model because they can internalize and concentrate components from dilute surrounding environments. However, the membrane-free nature of such coacervates leads to coalescence into a bulk phase, a phenomenon that is not representative of the cells they are designed to mimic. Herein, we develop a membranized peptide coacervate (PC) with oppositely charged oligopeptides as the molecularly crowded cytosol and a metal-phenolic network (MPN) coating as the membrane. The hybrid protocell efficiently internalizes various bioactive macromolecules (e.g., bovine serum albumin and immunoglobulin G) (>90%) while also resisting radicals due to the semipermeable cytoprotective membrane. Notably, the resultant PC@MPNs are capable of anabolic cascade reactions and remain in discrete protocellular populations without coalescence. Finally, we demonstrate that the MPN protocell membrane can be postfunctionalized with various functional molecules (e.g., folic acid and fluorescence dye) to more closely resemble actual cells with complex membranes, such as recognition molecules, which allows for drug delivery. This membrane-bound cytosolic protocell structure paves the way for innovative synthetic cells with structural and functional complexity.


Assuntos
Células Artificiais , Células Artificiais/química , Peptídeos , Soroalbumina Bovina/química , Substâncias Macromoleculares
12.
Int J Surg ; 109(12): 3788-3795, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37678273

RESUMO

BACKGROUND: The modified L-shaped incision technique (MLIT) was successfully applied to the repair of supracardiac total anomalous pulmonary venous connection (TAPVC) with promising mid-term outcomes. It is, however, unclear whether or not MLIT could be an alternative to sutureless technique (ST). METHODS: All patients ( n =141) who underwent MLIT or ST repair for supracardiac TAPVC between June 2009 and June 2022 were included and a propensity score-matched analysis was performed to reduce the heterogeneity. RESULTS: MLIT was performed in 80.9% (114/141), whereas ST was performed in 19.1% (27/141). Patients who underwent MLIT repair had a lower incidence of pulmonary veinous obstruction (PVO)-related reintervention (1.8 vs. 18.5%, P =0.002), and late mortality (2.6 vs. 18.2%, P =0.006). Overall survival at 10 years was 92.5% (87.7-97.7%) for MLIT and 66.8% (44.4-100%) for ST ( P =0.012). Freedom from postoperative PVO at 10 years was 89.1% (83.2-95.5%) for MLIT and 79.9% (65.6-97.4%) for ST ( P =0.12). Cox proportional hazards regression identified prolonged mechanical ventilation duration, postoperative PVO, respiratory dysfunction, and low cardiac output syndrome were associated with postoperative death and PVO-related reintervention. CONCLUSIONS: The MLIT strategy is a safe, technologically feasible, and effective approach for supracardiac TAPVC, which is associated with more favorable and promising freedom from death and PVO-related reintervention.


Assuntos
Veias Pulmonares , Síndrome de Cimitarra , Ferida Cirúrgica , Humanos , Lactente , Veias Pulmonares/cirurgia , Veias Pulmonares/anormalidades , Estudos Retrospectivos , Complicações Pós-Operatórias/etiologia , Síndrome de Cimitarra/cirurgia , Síndrome de Cimitarra/complicações , Ferida Cirúrgica/complicações , Resultado do Tratamento
13.
Transl Oncol ; 38: 101770, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37716259

RESUMO

BACKGROUND: Hydrogen sulfide (H2S) has been identified as the third gaseous signaling molecule. Endogenous H2S plays a key role in the progression of various types of cancer. However, the effect of endogenous H2S on the growth of esophageal cancer (EC) remains unknown. METHODS: In this study, three kinds of H2S-producing enzymes inhibitors, DL-propargylglycine (PAG, inhibitor of cystathionine-γ-lyase), aminooxyacetic acid (AOAA, inhibitor of cystathionine-ß-synthase), and L-aspartic acid (L-Asp, inhibitor of 3-mercaptopyruvate sulfurtransferase) were used to determine the role of endogenous H2S in the growth of EC9706 and K450 human EC cells. RESULTS: The results indicated that the combination (PAG+AOAA+L-Asp) group showed higher inhibitory effects on the viability, proliferation, migration, and invasion of EC cells than PAG, AOAA, and L-Asp group. Inhibition of endogenous H2S promoted apoptosis via activation of mitogen-activated protein kinase pathway in EC cells. Endogenous H2S suppression triggered pyroptosis of EC cells by activating reactive oxygen species-mediated nuclear factor-κB signaling pathway. In addition, the combine group showed its more powerful growth-inhibitory effect on the growth of human EC xenograft tumors in nude mice without obvious toxicity. CONCLUSION: Our results indicate that inhibition of endogenous H2S production can significantly inhibit human EC cell growth via promotion of apoptosis and pyroptosis. Endogenous H2S may be a promising therapeutic target in EC cells. Novel inhibitors for H2S-producing enzymes can be designed and developed for EC treatment.

14.
Molecules ; 28(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37570630

RESUMO

Gliomas are the most common primary central nervous system tumors, with a high mortality rate. Early and accurate diagnosis of gliomas is critical for successful treatment. Biosensors are significant in the detection of molecular biomarkers because they are simple to use, portable, and capable of real-time analysis. This review discusses several important molecular biomarkers as well as various biosensors designed for glioma diagnosis, such as electrochemical biosensors and optical biosensors. We present our perspectives on the existing challenges and hope that this review can promote the improvement of biosensors.


Assuntos
Técnicas Biossensoriais , Glioma , Humanos , Biomarcadores , Biópsia Líquida , Glioma/diagnóstico , Técnicas Eletroquímicas
15.
iScience ; 26(8): 107321, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37554468

RESUMO

Neurological diseases are one of the most pressing issues in modern times worldwide. It thus possesses explicit attention from researchers and medical health providers to guard public health against such an expanding threat. Various treatment modalities have been developed in a remarkably short time but, unfortunately, have yet to lead to the wished-for efficacy or the sought-after clinical improvement. The main hurdle in delivering therapeutics to the brain has always been the blood-brain barrier which still represents an elusive area with lots of mysteries yet to be solved. Meanwhile, nanotechnology has emerged as an optimistic platform that is potentially holding the answer to many of our questions on how to deliver drugs and treat CNS disorders using novel technologies rather than the unsatisfying conventional old methods. Nanocarriers can be engineered in a way that is capable of delivering a certain therapeutic cargo to a specific target tissue. Adding to this mind-blowing nanotechnology, the revolutionizing gene-altering biologics can have the best of both worlds, and pave the way for the long-awaited cure to many diseases, among those diseases thus far are Alzheimer's disease (AD), brain tumors (glioma and glioblastoma), Down syndrome, stroke, and even cases with HIV. The review herein collects the studies that tested the mixture of both sciences, nanotechnology, and epigenetics, in the context of brain therapeutics using three main categories of gene-altering molecules (siRNA, miRNA, and CRISPR) with a special focus on the advancements regarding the new favorite, intranasal route of administration.

16.
Virol J ; 20(1): 158, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468960

RESUMO

African swine fever (ASF) is an acute infectious haemorrhagic fever of pigs caused by African swine fever virus (ASFV). Aloe-emodin (Ae) is an active ingredient of Chinese herbs with antiviral, anticancer, and anti-inflammatory effects. We investigated the antiviral activity and mechanism of action of Ae against ASFV using Real-time quantitative PCR (qPCR), western blotting, and indirect immunofluorescence assays. Ae significantly inhibited ASFV replication. Furthermore, transcriptomic analysis revealed that ASFV infection activated the NF-κB signaling pathway in the early stage and the apoptosis pathway in the late stage. Ae significantly downregulated the expression levels of MyD88, phosphor-NF-κB p65, and pIκB proteins as well as the mRNA levels of IL-1ß and IL-8 in porcine alveolar macrophages (PAMs) infected with ASFV, thereby inhibiting the activation of the NF-κB signaling pathway induced by ASFV. Flow cytometry and western blot analysis revealed that Ae significantly increased the percentage of ASFV-induced apoptotic cells. Additionally, Ae promoted apoptosis by upregulating the expression levels of cleaved-caspase3 and Bax proteins and downregulating the expression levels of Bcl-2 proteins. This suggests that Ae promotes apoptosis by inhibiting the NF-κB pathway, resulting in inhibition of ASFV replication. These findings have further improved therapeutic reserves for the prevention and treatment of ASF.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Aloe , Emodina , Animais , Vírus da Febre Suína Africana/genética , Aloe/metabolismo , Antivirais/farmacologia , Apoptose , Emodina/farmacologia , NF-kappa B/metabolismo , Transdução de Sinais , Suínos , Replicação Viral
17.
Nanoscale ; 15(20): 8996-9002, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37144607

RESUMO

On-surface synthesis is a modern technique for the preparation of atomically low-dimensional molecular nanostructures. However, most nanomaterials grow horizontally on the surface, and the step-by-step longitudinally controllable covalent bonding reaction on the surface is rarely reported. Here, we successfully achieved bottom-up on-surface synthesis by using coiled-coil homotetrameric peptide bundles called 'bundlemers' as building blocks. Rigid nano-cylindrical bundlemer with two click-reactive functionalities at each end can be grafted vertically onto the surface or another bundlemer with complementary clickable groups by click reaction at one end, thus enabling the longitudinal bottom-up synthesis of rigid rods with an exact number of bundlemers (up to 6) on the surface. Moreover, we can graft linear poly(ethylene glycol) (PEG) to one terminal of rigid rods to obtain rod-PEG hybrid nanostructures that can be released from the surface under specific conditions. Interestingly, rod-PEG nanostructures consisting of different numbers of bundles can self-assemble in water into different nano-hyperstructures. In general, the bottom-up on-surface synthesis strategy presented here can provide a simple and accurate method to manufacture a variety of nanomaterials.


Assuntos
Nanoestruturas , Peptídeos , Peptídeos/química , Polietilenoglicóis/química , Nanoestruturas/química , Água/química
18.
J Virol ; 97(4): e0188922, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37022174

RESUMO

African swine fever (ASF) is a highly infectious disease caused by the African swine fever virus (ASFV) in swine. It is characterized by the death of cells in infected tissues. However, the molecular mechanism of ASFV-induced cell death in porcine alveolar macrophages (PAMs) remains largely unknown. In this study, transcriptome sequencing of ASFV-infected PAMs found that ASFV activated the JAK2-STAT3 pathway in the early stages and apoptosis in the late stages of infection. Meanwhile, the JAK2-STAT3 pathway was confirmed to be essential for ASFV replication. AG490 and andrographolide (AND) inhibited the JAK2-STAT3 pathway, promoted ASFV-induced apoptosis, and exerted antiviral effects. Additionally, CD2v promoted STAT3 transcription and phosphorylation as well as translocation into the nucleus. CD2v is the main envelope glycoprotein of the ASFV, and further investigations showed that CD2v deletion downregulates the JAK2-STAT3 pathway and promotes apoptosis to inhibit ASFV replication. Furthermore, we discovered that CD2v interacts with CSF2RA, which is a hematopoietic receptor superfamily member in myeloid cells and a key receptor protein that activates receptor-associated JAK and STAT proteins. In this study, CSF2RA small interfering RNA (siRNA) downregulated the JAK2-STAT3 pathway and promoted apoptosis to inhibit ASFV replication. Taken together, ASFV replication requires the JAK2-STAT3 pathway, while CD2v interacts with CSF2RA to regulate the JAK2-STAT3 pathway and inhibit apoptosis to facilitate virus replication. These results provide a theoretical basis for the escape mechanism and pathogenesis of ASFV. IMPORTANCE African swine fever is a hemorrhagic disease caused by the African swine fever virus (ASFV), which infects pigs of different breeds and ages, with a fatality rate of up to 100%. It is one of the key diseases affecting the global livestock industry. Currently, no commercial vaccines or antiviral drugs are available. Here, we show that ASFV replicates via the JAK2-STAT3 pathway. More specifically, ASFV CD2v interacts with CSF2RA to activate the JAK2-STAT3 pathway and inhibit apoptosis, thereby maintaining the survival of infected cells and promoting viral replication. This study revealed an important implication of the JAK2-STAT3 pathway in ASFV infection and identified a novel mechanism by which CD2v has evolved to interact with CSF2RA and maintain JAK2-STAT3 pathway activation to inhibit apoptosis, thus elucidating new information regarding the signal reprogramming of host cells by ASFV.


Assuntos
Vírus da Febre Suína Africana , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos , Proteínas do Envelope Viral , Replicação Viral , Animais , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/genética , Apoptose/genética , Suínos , Replicação Viral/genética , Proteínas do Envelope Viral/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Interações entre Hospedeiro e Microrganismos , Regulação para Baixo
19.
Cell Prolif ; 56(9): e13449, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36929586

RESUMO

Hydrogen sulphide (H2 S) is a gaseous neurotransmitter that can be self-synthesized by living organisms. With the deepening of research, the pathophysiological mechanisms of endogenous H2 S in cancer have been increasingly elucidated: (1) promote angiogenesis, (2) stimulate cell bioenergetics, (3) promote migration and proliferation thereby invasion, (4) inhibit apoptosis and (5) activate abnormal cell cycle. However, the increasing H2 S levels via exogenous sources show the opposite trend. This phenomenon can be explained by the bell-shaped pharmacological model of H2 S, that is, the production of endogenous (low concentration) H2 S promotes tumour growth while the exogenous (high concentration) H2 S inhibits tumour growth. Here, we review the impact of endogenous H2 S synthesis and metabolism on tumour progression, summarize the mechanism of action of H2 S in tumour growth, and discuss the possibility of H2 S as a potential target for tumour treatment.


Assuntos
Sulfeto de Hidrogênio , Neoplasias , Humanos , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/uso terapêutico , Neoplasias/tratamento farmacológico , Metabolismo Energético/fisiologia
20.
J Oncol ; 2023: 8456852, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36925651

RESUMO

Hepatocellular carcinoma (HCC) is a disease with high morbidity, high mortality, and low cure rate. Hyaluronic acid (HA) is widely adopted in tissue engineering and drug delivery. 5-(4-Hydroxyphenyl)-3H-1, 2-dithiol-3-thione (ADT-OH) is one of commonly used H2S donors. In our previous study, HA-ADT was designed and synthesized via coupling of HA and ADT-OH. In this study, compared with sodium hydrosulfide (NaHS, a fast H2S-releasing donor) and morpholin-4-ium (4-methoxyphenyl)-morpholin-4-ylsulfanylidenesulfido-λ5-phosphane (GYY4137, a slow H2S-releasing donor), HA-ADT showed stronger inhibitory effect on the proliferation, migration, invasion, and cell cycle of human HCC cells. HA-ADT promoted apoptosis by suppressing the expressions of phospho (p)-protein kinase B (PKB/AKT), p-glycogen synthase kinase-3ß (GSK-3ß), p-ß-catenin, and also inhibited autophagy via the downregulation of the protein levels of p-Smad2, p-Smad3, and transforming growth factor-ß (TGF-ß) in human HCC cells. Moreover, HA-ADT inhibited HCC xenograft tumor growth more effectively than both NaHS and GYY4137. Therefore, HA-ADT can suppress the growth of HCC cells by blocking the AKT/GSK-3ß/ß-catenin and TGF-ß/Smad2/3 signaling pathways. HA-ADT and its derivatives may be developed as promising antitumor drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA