Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36558128

RESUMO

High quality and nutritional benefits are ultimately the desirable features that influence the commercial value and market share of broad bean (Vicia faba L.). Different cultivars vary greatly in taste, flavor, and nutrition. However, the molecular basis of these traits remains largely unknown. Here, the grain metabolites of the superior Chinese landrace Cixidabaican (CX) were detected by a widely targeted metabolomics approach and compared with the main cultivar Lingxiyicun (LX) from Japan. The analyses of global metabolic variations revealed a total of 149 differentially abundant metabolites (DAMs) were identified between these two genotypes. Among them, 84 and 65 were up- and down-regulated in CX compared with LX. Most of the DAMs were closely related to healthy eating substances known for their antioxidant and anti-cancer properties, and some others were involved in the taste formation. The KEGG-based classification further revealed that these DAMs were significantly enriched in 21 metabolic pathways, particularly in flavone and flavonol biosynthesis. The differences in key secondary metabolites, including flavonoids, terpenoids, amino acid derivates, and alkaloids, may lead to more nutritional value in a healthy diet and better adaptability for the seed germination of CX. The present results provide important insights into the taste/quality-forming mechanisms and contributes to the conservation and utilization of germplasm resources for breeding broad bean with superior eating quality.


Assuntos
Fabaceae , Vicia faba , Vicia faba/química , Melhoramento Vegetal , Metabolômica , Valor Nutritivo
2.
J Zhejiang Univ Sci B ; 21(6): 442-459, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32478491

RESUMO

Cadmium (Cd) is an element that is nonessential and extremely toxic to both plants and human beings. Soil contaminated with Cd has adverse impacts on crop yields and threatens human health via the food chain. Cultivation of low-Cd cultivars has been of particular interest and is one of the most cost-effective and promising approaches to minimize human dietary intake of Cd. Low-Cd crop cultivars should meet particular criteria, including acceptable yield and quality, and their edible parts should have Cd concentrations below maximum permissible concentrations for safe consumption, even when grown in Cd-contaminated soil. Several low-Cd cereal cultivars and genotypes have been developed worldwide through cultivar screening and conventional breeding. Molecular markers are powerful in facilitating the selection of low-Cd cereal cultivars. Modern molecular breeding technologies may have great potential in breeding programs for the development of low-Cd cultivars, especially when coupled with conventional breeding. In this review, we provide a synthesis of low-Cd cereal breeding.


Assuntos
Cádmio/metabolismo , Grão Comestível/genética , Melhoramento Vegetal , Poluentes do Solo/metabolismo , Grão Comestível/metabolismo , Contaminação de Alimentos/prevenção & controle , Edição de Genes , Genes de Plantas , Marcadores Genéticos , Seleção Genética
3.
J Zhejiang Univ Sci B ; 6(10): 974-80, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16187410

RESUMO

A hydroponic experiment carried out to study the effect of five Cd levels on growth and photosynthesis of two tomato cultivars showed that the addition of 0.1 micromol/L Cd induced a slight increase in plant height of Hezuo 903 and the SPAD (the Soil-Plant Analyses Development) value of the 2 cultivars. However, at higher Cd levels, i.e., 1 and 10 micromol/L, root length and volume, plant height, and SPAD value were all significantly reduced. On an average of the 2 cultivars, exposure to 1 and 10 micromol/L Cd for 33 d reduced plant height by 18.9% and 46.4% and SPAD value by 11.2% and 31.6%, compared with control, respectively. Similarly, root length was reduced by 41.1% and 25.8% and root volume by 45.2% and 63.7%, respectively. The addition of Cd in the growth medium also had significant deleterious effect on net photosynthetic rate (Pn) and intracellular CO(2) concentration (Ci), with Pn being reduced by 27.2% and 62.1% at 1 micromol/L and 10 micromol/L Cd treatments compared to the control, respectively, while Ci increased correspondingly by 28.4% and 39.3%.


Assuntos
Cádmio/toxicidade , Fotossíntese/efeitos dos fármacos , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
4.
Chemosphere ; 57(6): 447-54, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15350406

RESUMO

Hydroponic experiment was carried out to study the effect of three Cd levels on glutathione (GSH), free amino acids (FAA), and ascorbic acid (ASA) concentration in the different tissues of 2 barley cultivars with different Cd tolerance. Cadmium concentration in both roots and shoots increased with external Cd level, while biomass and ASA concentration declined, and Wumaoliuling, a Cd-sensitive genotype was more affected than ZAU 3, a Cd-tolerant genotype. The effect of Cd on GSH concentration was dose- and time-dependent. In the 5 d exposure, root GSH concentration increased in 0.5 microM Cd treatment compared with control, but decreased significantly in 5 microM Cd treatment, irrespective of genotypes. However, in the 10 d exposure, GSH concentration in all plant tissues decreased with increasing Cd levels in the culture medium, and Wumaoliuling was much more affected than ZAU 3. Cadmium treatment greatly altered FAA concentration and composition in plants. The effect of Cd on glutathione (Glu) concentration in roots varied with genotypes. ZAU 3 showed a steady increase in root Glu concentration in both 0.5 and 5 microM Cd treatments, while Wumaoliuling was decreased by 38.0% in 5 microM Cd treatment, compared with the control. The results indicate that GSH and ASA are attributed to Cd tolerance in barley plants, and the relative less reduction in GSH concentration in ZAU 3 under Cd stress relative to the control may account for its higher Cd tolerance.


Assuntos
Aminoácidos/metabolismo , Ácido Ascórbico/metabolismo , Cádmio/toxicidade , Glutationa/metabolismo , Hordeum/metabolismo , Biomassa , China , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Genótipo , Hidroponia , Especificidade da Espécie , Espectrometria de Fluorescência , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA